AMCS Written Preliminary Exam
Part I, May 1, 2017

1. Let \(f(x) \) be a non-negative, monotone decreasing function for which the integral
\[
\int_{0}^{\infty} f(x) \, dx < \infty.
\]
Prove that
\[
\lim_{x \to \infty} x f(x) = 0.
\]

2. Find three different Laurent expansion for function
\[
f(z) = \frac{1}{1 + 3z + z^2}.
\]
State where each expansion is valid.

3. Let \(A \) be the \(9 \times 9 \) matrix
\[
A = \begin{pmatrix}
2s & t & t & t & \cdots & t \\
t & 2s & t & t & \cdots & t \\
t & t & 2s & t & \cdots & t \\
\vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
t & t & t & t & \cdots & 2s
\end{pmatrix}
\]
(All off-diagonal entries are \(t \) and all diagonal entries are \(2s \).) For which complex values of \(t \) and \(s \) is this matrix invertible?

4. Find the maximum of \(x_1^2 \cdot x_2^2 \cdots x_n^2 \) subject to the constraint
\[
x_1^2 + \cdots + x_n^2 = 1.
\]
From the solution to this problem prove that, for arbitrary positive real numbers \(r_1, \ldots, r_n \), we have the inequality
\[
(r_1 \cdots r_n)^{\frac{1}{n}} \leq \frac{r_1 + \cdots + r_n}{n}.
\]
Prove this directly, without recourse to induction.
5. Suppose that A is an invertible $n \times n$ matrix with characteristic polynomial

$$\det(A - \lambda \text{Id}) = \sum_{j=0}^{n} a_j \lambda^j.$$

What is the characteristic polynomial of A^{-1}? If B is a 2×2 matrix with characteristic polynomial

$$\det(B - \lambda \text{Id}) = \lambda^2 - 3\lambda - 3,$$

then what is the characteristic polynomial of $2B - 3\text{Id}$?

6. Let X and Y be independent, standard normal, random variables, that is, their joint density is

$$p(x, y) = \frac{1}{2\pi} e^{-\frac{x^2+y^2}{2}}.$$

Give an expression for $\text{Prob}(X + Y < -1)$ in terms of the normal CDF

$$\Phi(x) := \int_{-\infty}^{x} \frac{e^{-t^2/2}}{\sqrt{2\pi}} dt.$$

7. A simple random walk is a particle moving, at each time step, either left or right by 1 unit, each with probability 1/2. What is the average amount of time it takes a simple random walk, started at 1, to hit the set $\{0, 5\}$?