AMCS Written Preliminary Exam Part II, May 8, 2013

1. What is the radius of convergence of the power series around $z=0$ for the function

$$
\begin{equation*}
f(z)=\frac{z-i}{\left(z^{2}-\frac{1}{4}\right)(z+i)} ? \tag{1}
\end{equation*}
$$

How about the power series centered at $z=2 i$?
2. Find a conformal map from the half strip

$$
\begin{equation*}
D=\{z: \operatorname{Re} z<0 \text { and } 0<\operatorname{Im} z<\pi\} \tag{2}
\end{equation*}
$$

to the upper half plane $H_{+}=\{z: \operatorname{Im} z>0\}$.
3. Compute the following integrals:
(a)

$$
\int_{0}^{\infty} \frac{\log x d x}{1+x^{2}}
$$

(b)

$$
\int_{-\infty}^{\infty} \frac{\cos (a x) d x}{x^{2}+a^{2}}, \text { for } a \in(0, \infty)
$$

4. If $A=\left(a_{i j}\right)$ is an $n \times n$ matrix, then the trace of $A, \operatorname{tr} A$ is defined to be

$$
\begin{equation*}
\operatorname{tr} A=\sum_{i=1}^{n} a_{i i} \tag{3}
\end{equation*}
$$

Show that if A and B are two $n \times n$ matrices then

$$
\begin{equation*}
\operatorname{tr} A B=\operatorname{tr} B A \tag{4}
\end{equation*}
$$

Find a formula for the $\operatorname{tr} A$ in terms of the eigenvalues of A and prove that it is correct.
5. Suppose that X is a 3×3 real, skew symmetric matrix, that is $X^{t}=-X$. Prove that there is a non-zero vector v such that $X v=0$.
6. Let \mathscr{P}_{3} denote polynomials of degree at most 3. The differential operator

$$
\begin{equation*}
L p=x \partial_{x}^{2} p-2 \partial_{x} p \tag{5}
\end{equation*}
$$

defines a linear map from \mathscr{P}_{3} to itself. What is the matrix of this transformation in terms of the basis $\left\{1, x, x^{2}, x^{3}\right\}$? What is the rank of L ? Give a basis for the range of L and the nullspace of L.
7. Suppose that f is a 2π-periodic function that satisfies the estimate

$$
|f(x)-f(y)| \leq M|x-y|^{\alpha}
$$

for an $0<\alpha<1$, and let

$$
\begin{equation*}
\hat{f}(n)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i n x} d x \tag{6}
\end{equation*}
$$

Show that

$$
\begin{equation*}
S_{N}(x)=\sum_{n=-N}^{N} \hat{f}(n) e^{i n x} \tag{7}
\end{equation*}
$$

converges uniformly to $f(x)$ for all real x. Hint:

$$
\begin{equation*}
S_{N}(x)=\int_{0}^{2 \pi} f(y) \frac{\sin \left(N+\frac{1}{2}\right)(x-y)}{2 \pi \sin \left(\frac{1}{2}(x-y)\right)} d y . \tag{8}
\end{equation*}
$$

8. Suppose that X_{1} and X_{2} are independent random variables, uniformly distributed in $[-1,1]$. What is the probability that $\max \left\{X_{1}, X_{2}\right\} \geq 0$.
