AMCS Written Preliminary Exam Part II, May 8, 2013

1. What is the radius of convergence of the power series around z = 0 for the function

(1)
$$f(z) = \frac{z-i}{(z^2 - \frac{1}{4})(z+i)}?$$

How about the power series centered at z = 2i?

2. Find a conformal map from the half strip

(2)
$$D = \{z : \operatorname{Re} z < 0 \text{ and } 0 < \operatorname{Im} z < \pi \}$$

to the upper half plane $H_+ = \{z : \operatorname{Im} z > 0\}.$

3. Compute the following integrals:

(a)

$$\int_{0}^{\infty} \frac{\log x \, dx}{1+x^2},$$

(b)

$$\int_{-\infty}^{\infty} \frac{\cos(ax)dx}{x^2 + a^2}, \text{ for } a \in (0, \infty).$$

4. If $A = (a_{ij})$ is an $n \times n$ matrix, then the trace of A, tr A is defined to be

(3)
$$\operatorname{tr} A = \sum_{i=1}^{n} a_{ii}.$$

Show that if A and B are two $n \times n$ matrices then

$$(4) tr AB = tr BA$$

Find a formula for the tr A in terms of the eigenvalues of A and prove that it is correct.

- 5. Suppose that X is a 3×3 real, skew symmetric matrix, that is $X^t = -X$. Prove that there is a non-zero vector v such that Xv = 0.
- 6. Let \mathcal{P}_3 denote polynomials of degree at most 3. The differential operator

$$Lp = x\partial_x^2 p - 2\partial_x p$$

defines a linear map from \mathcal{P}_3 to itself. What is the matrix of this transformation in terms of the basis $\{1, x, x^2, x^3\}$? What is the rank of *L*? Give a basis for the range of *L* and the nullspace of *L*.

7. Suppose that f is a 2π -periodic function that satisfies the estimate

$$|f(x) - f(y)| \le M|x - y|^{\alpha}$$

for an $0 < \alpha < 1$, and let

(6)
$$\hat{f}(n) = \frac{1}{2\pi} \int_{0}^{2\pi} f(x)e^{-inx}dx.$$

Show that

(7)
$$S_N(x) = \sum_{n=-N}^N \hat{f}(n)e^{inx}$$

converges uniformly to f(x) for all real x. Hint:

(8)
$$S_N(x) = \int_0^{2\pi} f(y) \frac{\sin(N + \frac{1}{2})(x - y)}{2\pi \sin(\frac{1}{2}(x - y))} dy.$$

8. Suppose that X_1 and X_2 are independent random variables, uniformly distributed in [-1, 1]. What is the probability that $\max\{X_1, X_2\} \ge 0$.