AMCS Written Preliminary Exam Part I, May 8, 2013

1. Let A and B be subsets of \mathbb{R}, such that for any $y \in B$ there exists a $x \in A$ with $x \leq y$. Show that

$$
\begin{equation*}
\inf A \leq \inf B \tag{1}
\end{equation*}
$$

2. Define the function

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{q} \text { if } x=\frac{p}{q} \text { with }(p, q)=1 \tag{2}\\
1 \text { if } x \notin \mathbb{Q} .
\end{array}\right.
$$

Is f Riemann integrable on $[0,1]$? Why or why not?
3. Show that the series

$$
\begin{equation*}
S=\sum_{j=1}^{\infty}(-1)^{n} \log \left(1+\frac{1}{n}\right) \tag{3}
\end{equation*}
$$

is convergent. If we let

$$
\begin{equation*}
S_{N}=\sum_{j=1}^{N}(-1)^{n} \log \left(1+\frac{1}{n}\right), \tag{4}
\end{equation*}
$$

then how large must N_{0} be so that $\left|S-S_{N}\right| \leq 10^{-4}$ if $N \geq N_{0}$.
4. Suppose that A is an $n \times n$ matrix and there exists a matrix B so that

$$
\begin{equation*}
A B=\mathrm{Id}, \tag{5}
\end{equation*}
$$

Prove that A is invertible and $B A=\mathrm{Id}$, as well.
5. Let A be the 3×3 matrix:

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & x \\
x & 0 & y
\end{array}\right]
$$

For which pairs (x, y) is the equation $A u=v$ solvable for any v ? When the equation is not solvable for some v, what is the condition for solvability?
6. A real valued \mathscr{C}^{2}-function u, defined in the unit disk, D_{1} is harmonic if it satisfies the partial differential equation $\partial_{x x} u+\partial_{y y} u=0$. Prove that a \mathscr{C}^{2}-function u defined in D_{1} is harmonic if and only if for each $(x, y) \in D_{1}$

$$
u(x, y)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(x+r \cos \theta, y+r \sin \theta) d \theta
$$

for sufficiently small positive r. Hint: Recall Green's formula: For a bounded region D with \mathscr{C}^{1} boundary, and a \mathscr{C}^{2} function v defined in \bar{D}, we have.

$$
\begin{equation*}
\int_{D} \Delta v d A=\int_{b D} \partial_{\nu} v d s \tag{7}
\end{equation*}
$$

Here v is the outer unit normal along $b D$.
7. Suppose that a fair coin is flipped $2 n$ times. What is the probability that you get an equal number of heads and tails?
8. Let $\left\{Y_{n}\right\}$ be independent random variables uniformly distributed in $[0,1]$. For $n \geq 1$, let $X_{n}=\exp \left(Y_{1}\right) \cdots \exp \left(Y_{n}\right)$. Compute $E\left[X_{n}\right]$.

