## AMCS Written Preliminary Exam, I August 31, 2010

All work should go in the exam booklet, with your final answer clearly marked.

1. Choose a number $x_{0} \in[0, \pi)$ and define $x_{n+1}=\sin \left(x_{n}\right)$ for $n \in 0,1,2, \ldots$ Evaluate

$$
\begin{equation*}
L=\lim _{n \rightarrow \infty} x_{n} . \tag{1}
\end{equation*}
$$

You must prove your answer.
2. Suppose that $f$ is a real, continuously differentiable function on $[0,1]$ with $f(0)=$ $f(1)=0$, and

$$
\int_{0}^{1}[f(x)]^{2} d x=1
$$

Prove that

$$
\int_{0}^{1} x f(x) f^{\prime}(x) d x=-\frac{1}{2}
$$

and

$$
\frac{1}{4}<\int_{0}^{1} x^{2}[f(x)]^{2} d x \cdot \int_{0}^{1}\left[f^{\prime}(x)\right]^{2} d x
$$

3. Give a rigorous proof that the following limit exists:

$$
\lim _{R \rightarrow \infty} \int_{0}^{R} e^{i x^{2}} d x
$$

4. A rod of length 1 has endpoints constrained to lie on the positive $x$ and $y$ axes. With an initial of position of endpoints at $(0,0),(0,1)$, it slides continuously to the position $(1,0),(0,0)$ sweeping out a region in the positive quadrant. Determine the equation for the boundary of this region.
5. Suppose that $f(x)$ is on continuously differentiable function, with bounded derivative, defined on $[0,1]$ such that

$$
\lim _{x \rightarrow 1^{-}} f(x)-\lim _{x \rightarrow 0^{+}} f(x)=1
$$

The Fourier coefficients of $f$ are defined by

$$
\hat{f}(n)=\int_{0}^{1} f(x) e^{-2 \pi i n x} d x
$$

Prove that, as $n \rightarrow \pm \infty$, we have:

$$
\hat{f}(n)=\frac{i}{2 \pi n}+o\left(\frac{1}{n}\right) .
$$

6. If a real $n \times n$ matrix $A$ has rank $m$, then show that $A^{t} A$ also has rank $m$.
7. Let $A$ be a real $n \times n$ matrix, and define the inner product

$$
\langle x, y\rangle=\sum_{j=1}^{n} x_{j} y_{j}
$$

We say that $A$ is positive definite if $A=A^{t}$ and $\langle A x, x\rangle>0$ for any $x \neq 0$.
(a) Show that a positive definite matrix is invertible.
(b) Show that if $A$ is positive definite, then so is $A^{-1}$.
(c) Suppose that $A$ is not symmetric, but $\langle A x, x\rangle>0$ for any $x \neq 0$. Is $A$ necessarily invertible?

