AMCS Written Preliminary Exam Part II, April 30, 2015

1. For integers $1 \leq q \leq p$, let

$$
\begin{equation*}
a_{n}=\sum_{k=q n}^{p n+1} \frac{1}{k} . \tag{1}
\end{equation*}
$$

Prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n}=\log \left(\frac{p}{q}\right) \tag{2}
\end{equation*}
$$

2. Let $f(z)$ be analytic in the whole complex and suppose that

$$
\begin{equation*}
|f(x+i y)| \leq e^{x} \tag{3}
\end{equation*}
$$

throughout the plane. What can we conclude about $f(z)$?
3. If X and Y are independent random variables, which are uniformly distributed in the interval $[0,1]$, what is $\operatorname{Prob}(|X-Y|>1 / 2)$?
4. Let A be a real 3×3 symmetric matrix with characteristic polynomial

$$
\begin{equation*}
\operatorname{det}(t I-A)=t^{3}+a t+b \tag{4}
\end{equation*}
$$

Give the characteristic polynomial for A^{2}, expressing the coefficients in terms of a and b. Hint: Use the fact that if B, C are square matrices of the same size, then $\operatorname{det}(B C)=\operatorname{det} B \cdot \operatorname{det} C$.
5. Find the minimum distance between points on the ellipse

$$
\begin{equation*}
\frac{x^{2}}{4}+y^{2}=1 \tag{5}
\end{equation*}
$$

and the straight line $x+y=4$.
6. Suppose that A and B are real 2×2 matrices so that $A^{k}=0$ for some integer $0<k$ and $B^{l}=0$ for some integer $0<l$. Is there necessarily an integer $0<j$ so that $(A B)^{j}=0$? You must justify your answer.
7. Consider the series

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} \cos (n z) z^{n} \tag{6}
\end{equation*}
$$

(a) Describe the region in which this series converges.
(b) What is the sum of the series.
(c) Describe the analytic continuation of the function $f(z)$ defined by the series.

