AMCS Written Preliminary Exam Part II, April 30, 2015

1. For integers $1 \le q \le p$, let

(1)
$$a_n = \sum_{k=qn}^{pn+1} \frac{1}{k}$$

Prove that

(2)
$$\lim_{n \to \infty} a_n = \log\left(\frac{p}{q}\right).$$

2. Let f(z) be analytic in the whole complex and suppose that

$$|f(x+iy)| \le e^x$$

throughout the plane. What can we conclude about f(z)?

- 3. If X and Y are independent random variables, which are uniformly distributed in the interval [0,1], what is Prob(|X Y| > 1/2)?
- 4. Let A be a real 3×3 symmetric matrix with characteristic polynomial

(4)
$$\det(tI - A) = t^3 + at + b.$$

Give the characteristic polynomial for A^2 , expressing the coefficients in terms of *a* and *b*. Hint: Use the fact that if *B*, *C* are square matrices of the same size, then det(*BC*) = det *B* · det *C*.

5. Find the minimum distance between points on the ellipse

(5)
$$\frac{x^2}{4} + y^2 = 1,$$

and the straight line x + y = 4.

- 6. Suppose that A and B are real 2×2 matrices so that $A^k = 0$ for some integer 0 < k and $B^l = 0$ for some integer 0 < l. Is there necessarily an integer 0 < j so that $(AB)^j = 0$? You must justify your answer.
- 7. Consider the series

(6)
$$f(z) = \sum_{n=0}^{\infty} \cos(nz) z^n.$$

- (a) Describe the region in which this series converges.
- (b) What is the sum of the series.
- (c) Describe the analytic continuation of the function f(z) defined by the series.