AMCS Written Preliminary Exam Part II, April 28, 2016

- 1. Suppose that $\phi : \mathbb{R}^3 \to \mathbb{R}$ is a smooth, strictly positive function satisfying
 - $|\nabla \phi|^2 = 5\phi$.
 - $\Delta(\phi^2) = 15\phi$.

Evaluate the surface integral

(1)
$$\int_{S_1} \frac{\partial \phi}{\partial \boldsymbol{n}} dS$$

where S_1 is the unit sphere centered at the origin, dS is surface measure on the sphere, and $\frac{\partial \phi}{\partial n}$ is the directional derivative with respect to the unit outward normal vector along S_1 .

2. Show that there is a single valued, analytic function defined by the formula

$$f(z) = \sqrt{z^2 - 1},$$

in the set $\mathbb{C} \setminus [-1, 1]$, which takes positive real values on the ray $(0, \infty)$.

- 3. A real, $n \times n$ symmetric matrix, A, is positive definite if for any non-zero vector v we have $\langle Av, v \rangle > 0$. Let A and B be real, $n \times n$ symmetric, positive-definite matrices.
 - (a) Prove that aA + bB is positive-definite, where a, b are real positive numbers.
 - (b) Prove that A^{-1} is symmetric and positive-definite.
 - (c) Is *AB* always symmetric and positive-definite? Give a proof or counterexample.
 - (d) Show that the trace of *AB* is always positive. Hint: If $\{f_1, \ldots, f_n\}$ is any orthonormal basis for \mathbb{R}^n , then

(2)
$$\operatorname{tr}(AB) = \sum_{j=1}^{n} \langle ABf_j, f_j \rangle$$

4. Show that there is a constant *C* so that for any 4 real numbers x_1 , x_2 , x_3 , x_4 we have

(3)
$$x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_2x_3x_4 \le C(x_1^2 + x_2^2 + x_3^2 + x_4^2)^{\frac{3}{2}}.$$

what is the smallest value we can take for C?

- 5. Suppose that X_1 and X_2 are independent random variables, both of which have density p(x) on [0,1], where p is a continuous function. Which of the following statements are always true? Give a brief justification or counterexample in each case.
 - (a) $\operatorname{Prob}(X_1 + X_2 < t) < ct^2$ for some constant *c* and all $t \in [0, 2]$.
 - (b) $X_1 + X_2$ has a continuous density g and g(0) = 0.
 - (c) $E(X_1/X_2)$ is finite. (d) $EX_1^{-1/2}$ is finite.

 - (e) $Prob(X_1 X_2 = t) = 0$ for all *t*.

2