AMCS Written Preliminary Exam Part II, April 28, 2016

1. Suppose that $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a smooth, strictly positive function satisfying

- $|\nabla \phi|^{2}=5 \phi$.
- $\Delta\left(\phi^{2}\right)=15 \phi$.

Evaluate the surface integral

$$
\begin{equation*}
\int_{S_{1}} \frac{\partial \phi}{\partial \boldsymbol{n}} d S \tag{1}
\end{equation*}
$$

where S_{1} is the unit sphere centered at the origin, $d S$ is surface measure on the sphere, and $\frac{\partial \phi}{\partial \boldsymbol{n}}$ is the directional derivative with respect to the unit outward normal vector along S_{1}.
2. Show that there is a single valued, analytic function defined by the formula

$$
f(z)=\sqrt{z^{2}-1}
$$

in the set $\mathbb{C} \backslash[-1,1]$, which takes positive real values on the ray $(0, \infty)$.
3. A real, $n \times n$ symmetric matrix, A, is positive definite if for any non-zero vector v we have $\langle A v, v\rangle>0$. Let A and B be real, $n \times n$ symmetric, positive-definite matrices.
(a) Prove that $a A+b B$ is positive-definite, where a, b are real positive numbers.
(b) Prove that A^{-1} is symmetric and positive-definite.
(c) Is $A B$ always symmetric and positive-definite? Give a proof or counterexample.
(d) Show that the trace of $A B$ is always positive. Hint: If $\left\{f_{1}, \ldots, f_{n}\right\}$ is any orthonormal basis for \mathbb{R}^{n}, then

$$
\operatorname{tr}(A B)=\sum_{j=1}^{n}\left\langle A B f_{j}, f_{j}\right\rangle
$$

4. Show that there is a constant C so that for any 4 real numbers $x_{1}, x_{2}, x_{3}, x_{4}$ we have

$$
\begin{equation*}
x_{1} x_{2} x_{3}+x_{1} x_{2} x_{4}+x_{1} x_{3} x_{4}+x_{2} x_{3} x_{4} \leq C\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)^{\frac{3}{2}} \tag{3}
\end{equation*}
$$

what is the smallest value we can take for C ?
5. Suppose that X_{1} and X_{2} are independent random variables, both of which have density $p(x)$ on [0,1], where p is a continuous function. Which of the following statements are always true? Give a brief justification or counterexample in each case.
(a) $\operatorname{Prob}\left(X_{1}+X_{2}<t\right)<c t^{2}$ for some constant c and all $t \in[0,2]$.
(b) $X_{1}+X_{2}$ has a continuous density g and $g(0)=0$.
(c) $E\left(X_{1} / X_{2}\right)$ is finite.
(d) $E X_{1}^{-1 / 2}$ is finite.
(e) $\operatorname{Prob}\left(X_{1}-X_{2}=t\right)=0$ for all t.

