Name

AMCS Written Preliminary Exam
Part II, April 27, 2018

1. Suppose that \(\sum_{n=0}^{\infty} a_n (z - 1)^n \) is the power series expansion of the function
\[
f(z) = \frac{1}{\cos z}
\]
about the point \(z = 1 \). Does the series
\[
(1) \sum_{n=0}^{\infty} |a_n|
\]
converge or diverge? You must justify your answer.

2. Suppose that \(f(z) \) is an entire function such that \(|f(z)| \leq e^x \), for all \(z = x + iy \). What can be said about the function \(f(z) \)? You must prove your answer.

3. A real matrix \(A \) is skew symmetric if \(A^t = -A \).
 (a) Show that a \((2n+1) \times (2n+1) \) skew symmetric matrix has a non-trivial null-space.
 (b) Show that if \(\lambda \) is an eigenvalue of \(A \), then so is \(-\lambda\).
 (c) Show that the spectrum of \(A \) is purely imaginary, i.e., consists of numbers of the form \(\{i \lambda_j \} \) where the \(\lambda_j \in \mathbb{R} \).
 (d) Show that \(\det A \geq 0 \).

4. Suppose that \(A \) is a real, upper triangular matrix, with strictly positive diagonal entries. Prove that there is a real, upper triangular matrix, with strictly positive diagonal entries, \(B \), such that \(B^2 = A \). Hint: Use induction.

5. Evaluate the following limits and justify your answers:
 (a) \[
 \lim_{n \to \infty} \int_0^1 n e^{-nx} (\cos x)^2 \, dx.
 \]
 (b) \[
 \lim_{t \to \infty} \left[te^t \int_t^\infty \frac{e^{-s}}{s} \, ds \right].
 \]

6. Find a conformal map from the half disk
\[
D_1^+ = \{ z : |z| < 1 \text{ and } 0 < \text{Im } z \}
\]
to the unit disk, \(D_1 = \{ z : |z| < 1 \} \).
Two random points A and B are selected independently, and uniformly from the disk \{(x, y) : x^2 + y^2 < 1\}. A third random point C is selected uniformly from the larger disk \{(x, y) : x^2 + y^2 < 4\}, independently of A and B. What is the probability that the angle $\angle ACB$ is obtuse? Hint: First consider the answer for a fixed choice of A, B.