AMCS Written Preliminary Exam Part II, August 28, 2013

1. Compute the inverse of the following matrix

$$
\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 1 & 2 \\
2 & 0 & 0 & 1
\end{array}\right] .
$$

2. Consider the following sequence:

$$
0, \frac{1}{3}, \frac{2}{3}, 0, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, 0, \frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}, 0, \frac{1}{9}, \ldots
$$

For a natural number N, consider the first N terms of this sequence, and let I_{N} be the number of such terms which happen to fall within the interval $[a, b] \subset(0,1)$. Show

$$
\lim _{N \rightarrow \infty} \frac{I_{N}}{N}=b-a
$$

3. Show that

$$
\int_{0}^{\infty} \frac{\log x d x}{x^{2}+a^{2}}=\frac{\pi \log a}{2 a} \text { when } a>0 .
$$

4. Find a one-to-one conformal map from the strip

$$
S=\{z: 0<\operatorname{Im} z<\pi\}
$$

to the unit disk $D_{1}=\{z:|z|<1\}$.
5. Let p_{n} be the probability that $2 n$ independent fair coin flips result in precisely n HEADS. Find the constants b and c such that

$$
\lim _{n \rightarrow \infty} \frac{p_{n}}{b n^{c}}=1
$$

6. Prove that

$$
\lim _{N \rightarrow \infty} \sum_{k=0}^{\infty}\left(1+\frac{k}{N}\right)^{-N}=\frac{e}{e-1}
$$

Any interchange of limits must be carefully justified.
7. Suppose that A is a symmetric 3×3 matrix with positive entries, such that the sum of every row is 1 . Let $v=\left(1, \frac{1}{2}, \frac{1}{3}\right)$. What is

$$
\lim _{n \rightarrow \infty} A^{n} v ?
$$

