AMCS Written Preliminary Exam Part II, August 28, 2012

1. Show that the radius of convergence of the power series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n} z^{n(2 n+1)}}{n} \tag{1}
\end{equation*}
$$

is 1 , and discuss convergence at the points $z=1,-1$ and i.
2. Find a conformal map from

$$
\begin{equation*}
D=\left\{z:|z|<1 \text { and } 0<\arg z<\frac{\pi}{2}\right\} \tag{2}
\end{equation*}
$$

to the upper half plane $H_{+}=\{z: \operatorname{Im} z>0\}$.
3. Discuss the convergence properties of the following series:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} z^{n} \\
& \sum_{n=1}^{\infty} \frac{z^{n}}{n^{\alpha}} \quad \text { for } \alpha>0 \\
& \sum_{n=1}^{\infty} n^{\alpha} z^{n} \quad \text { for } \alpha>0 .
\end{aligned}
$$

4. Let A_{n} be a sequence of square matrices converging to A. Give a proof or counterexample:
(a) If each A_{n} is singular, then A is singular.
(b) If each A_{n} is non-singular, then A is non-singular.
5. Let A and B be real symmetric matrices, with spectra:

$$
\begin{align*}
& \lambda_{1}(A) \leq \cdots \leq \lambda_{n}(A) \\
& \lambda_{1}(B) \leq \cdots \leq \lambda_{n}(B) . \tag{4}
\end{align*}
$$

Show that if $\langle A x, x\rangle<\langle B x, x\rangle$ for all non-zero $x \in \mathbb{R}^{n}$, then $\lambda_{1}(A)<$ $\lambda_{1}(B)$, and $\lambda_{n}(A)<\lambda_{n}(B)$.
6. Suppose that $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{n}\right\}$ are orthonormal bases. Define the $n \times n$ matrix

$$
\begin{equation*}
A=\sum_{j=1}^{n} \mu_{j} v_{j} \otimes u_{j}^{t} \tag{5}
\end{equation*}
$$

where $\left\{\mu_{j}\right\}$ are complex numbers. Recall that $u \otimes v^{t} x \stackrel{d}{=}\langle x, v\rangle u$. What is determinant A ?
7. Suppose that $\varphi(x)$ is a smooth function of compact support on \mathbb{R} and, if $\operatorname{Im} z \neq 0$, define

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{\varphi(\xi) d \xi}{(\xi-z)} \tag{6}
\end{equation*}
$$

Prove that, for each $x \in \mathbb{R}$, the limit

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0^{+}}[f(x+i \epsilon)-f(x-i \epsilon)] \tag{7}
\end{equation*}
$$

exists, and compute what it is.
8. Suppose that X_{1} and X_{2} are independent random variables, uniformly distributed in $[-1,1]$. What is the probability that $\left(X_{1}, X_{2}\right)$ lies inside the unit circle centered at $(0,0)$.

