AMCS Written Preliminary Exam Part II, August 28, 2012

1. Show that the radius of convergence of the power series

(1)
$$\sum_{n=1}^{\infty} \frac{(-1)^n z^{n(2n+1)}}{n},$$

is 1, and discuss convergence at the points z = 1, -1 and *i*.

2. Find a conformal map from

(2)
$$D = \left\{ z : |z| < 1 \text{ and } 0 < \arg z < \frac{\pi}{2} \right\}$$

to the upper half plane $H_+ = \{z : \text{ Im } z > 0\}.$

3. Discuss the convergence properties of the following series:

(3)
$$\sum_{n=0}^{\infty} z^{n}$$
$$\sum_{n=1}^{\infty} \frac{z^{n}}{n^{\alpha}} \quad \text{for } \alpha > 0$$
$$\sum_{n=1}^{\infty} n^{\alpha} z^{n} \quad \text{for } \alpha > 0.$$

- 4. Let A_n be a sequence of square matrices converging to A. Give a proof or counterexample:
 - (a) If each A_n is singular, then A is singular.
 - (b) If each A_n is non-singular, then A is non-singular.
- 5. Let *A* and *B* be real symmetric matrices, with spectra:

(4)
$$\lambda_1(A) \leq \cdots \leq \lambda_n(A) \\ \lambda_1(B) \leq \cdots \leq \lambda_n(B).$$

Show that if $\langle Ax, x \rangle < \langle Bx, x \rangle$ for all non-zero $x \in \mathbb{R}^n$, then $\lambda_1(A) < \lambda_1(B)$, and $\lambda_n(A) < \lambda_n(B)$.

6. Suppose that $\{u_1, \ldots, u_n\}$ and $\{v_1, \ldots, v_n\}$ are orthonormal bases. Define the $n \times n$ matrix

(5)
$$A = \sum_{j=1}^{n} \mu_j v_j \otimes u_j^t,$$

where $\{\mu_j\}$ are complex numbers. Recall that $u \otimes v^t x \stackrel{d}{=} \langle x, v \rangle u$. What is determinant *A*?

 Suppose that φ(x) is a smooth function of compact support on R and, if Im z ≠ 0, define

(6)
$$f(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{\varphi(\zeta)d\zeta}{(\zeta - z)}.$$

Prove that, for each $x \in \mathbb{R}$, the limit

(7)
$$\lim_{\epsilon \to 0^+} [f(x+i\epsilon) - f(x-i\epsilon)]$$

exists, and compute what it is.

8. Suppose that X_1 and X_2 are independent random variables, uniformly distributed in [-1, 1]. What is the probability that (X_1, X_2) lies inside the unit circle centered at (0, 0).