AMCS Written Preliminary Exam Part II, August 26, 2008

1. Prove that there exists a constant $C \in \mathbb{R}$ so that

$$
\sum_{k=1}^{N} \frac{1}{k}=\log N+C+O\left(\frac{1}{N}\right)
$$

2. For each $n \in \mathbb{N}$, show that there is a polynomial $T_{n}(x)$ so that

$$
T_{n}(\cos \theta)=\cos n \theta
$$

Prove that for $m \neq n$

$$
\int_{-1}^{1} \frac{T_{n}(x) T_{m}(x) d x}{\sqrt{1-x^{2}}}=0
$$

3. Suppose that f is an analytic function defined in $D_{1} \subset \mathbb{C}$, which defines a 1-1 map onto U. Show that

$$
\operatorname{Area}(U)=\iint_{D_{1}}\left|f^{\prime}(z)\right|^{2} d x d y
$$

4. True or false. Give your answer with a brief explanation. Here $f(z)$ is an entire function.
(a) If $f(x)=0$ for all real x in the interval $(0,1)$, then $f(z) \equiv 0$, for all complex z.
(b) If $f(x)$ is bounded for all real x, then f is a constant function.
(c) If $|f(z)| \rightarrow \infty$ as $|z| \rightarrow \infty$, then f is a polynomial.
(d) $\left|e^{z}\right| \leq e^{|z|}$ for all $z \in \mathbb{C}$.
5. Find the Jordan canonical form of

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 0 & 2 \\
0 & -1 & 3
\end{array}\right]
$$

6. Suppose that A is a real symmetric $n \times n$ matrix. Prove that all the eigenvalues of A are real, and that A has an orthonormal basis of eigenvectors.
7. Suppose that a data set $\left\{x_{n}: n=1, \ldots, N\right\}$, with $N=500,000$ has average

$$
\bar{x}=\frac{1}{N} \sum_{n=1}^{N} x_{n}=13.06
$$

and root mean square

$$
\sigma=\sqrt{\frac{1}{N} \sum_{n=1}^{N} x_{n}^{2}}=13.67
$$

Using this information, derive the best upper bound that you can, for the number of measurements that are greater than 17.1.

