AMCS Written Preliminary Exam Part I, April 30, 2015

1. Let x_{0} be a positive real number; we define a sequence of real numbers by setting:

$$
x_{n+1}=x_{n}+\frac{16-x_{n}^{4}}{4 x_{n}^{3}}
$$

Show that the sequence converges to 2 .
2. Show that

$$
\begin{equation*}
\cos x \geq 1-\frac{x^{2}}{2} \tag{1}
\end{equation*}
$$

3. Evaluate the contour integral

$$
\begin{equation*}
I=\int_{0}^{2 \pi} \frac{d \theta}{4+\cos \theta} \tag{2}
\end{equation*}
$$

4. What are the singularities of the function

$$
\begin{equation*}
f(z)=\frac{z e^{\frac{1}{(1-z)^{2}}}}{\sin \pi z} ? \tag{3}
\end{equation*}
$$

Label each as a pole, removable singularity, or essential singularity. Remember the "point at infinity."
5. Let $(x(y), y(t))$ be a solution to the system of ordinary differential equations

$$
\begin{align*}
\dot{x}(t) & =-x(t)-y(t) \\
\dot{y}(t) & =-y(t)+x(t) . \tag{4}
\end{align*}
$$

Prove that $\lim _{t \rightarrow \infty}(x(t), y(t))=(0,0)$.
6. For what values of a is the following matrix positive definite

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 5 & a \\
1 & a & 2
\end{array}\right) ?
$$

7. Suppose that we flip a fair coin n times. Show that
(a) For any $0<\epsilon$, show that the expected value of $(1+\epsilon)^{\# \text { TAILS }}$ equals $\left(1+\frac{\epsilon}{2}\right)^{n}$.
(b) Use Chebyshev's inequality to conclude that the probability of producing more than $\frac{2 n}{3}$ TAILS tends to zero exponentially as $n \rightarrow \infty$.
