AMCS Written Preliminary Exam Part I, April 28, 2016

1. Show that

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{1}{(\log n)^{\log n}} \tag{1}
\end{equation*}
$$

is a convergent sum, whereas

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{1}{n \log n \log \log n} \tag{2}
\end{equation*}
$$

is divergent.
2. Show that the following limit exists

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \sum_{j=1}^{N} \frac{(-1)^{j+1}}{j} \tag{3}
\end{equation*}
$$

Prove that this limit equals $\log 2$.
3. Evaluate the following limit

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{c-i t}^{c+i t} \frac{e^{a z} d z}{z^{2}} \tag{4}
\end{equation*}
$$

Here a is a real number and c is a positive real number. Note that you need to carefully consider the consequences of the sign of a.
4. Map the semi-circle $D_{+}=\left\{(x, y): x^{2}+y^{2}<1,0 \leq y\right\}$ conformally onto the upper half plane. Choose the map that carries $z=-1$ to 0 .
5. Consider the following systems of linear equations:

$$
\left(\begin{array}{ccc}
\lambda & 1 & 1 \tag{5}\\
1 & \lambda & 1 \\
1 & 1 & \lambda
\end{array}\right)=\left(\begin{array}{c}
1 \\
1 \\
\mu
\end{array}\right)
$$

(a) Determine all pairs (λ, μ) for which the equation has a unique solution.
(b) Determine all pairs (λ, μ) for which the equation has no solution.
6. For each $n=1,2,3, \ldots$ show that there is a unique polynomial $b_{n}(x)$ that satisfies the equation

$$
\begin{equation*}
\int_{x}^{x+1} b_{n}(t) d t=x^{n} \tag{6}
\end{equation*}
$$

Find $b_{1}(x)$, and $b_{2}(x)$. Hint: Existence and uniqueness are proved used different arguments.
7. A stick of length 1 is broken into three pieces "randomly." Give a precise definition for this and, with your definition, compute the probability that these pieces are the edges of a triangle.

