AMCS Written Preliminary Exam Part I, August 29, 2016

1. For which values of x is the following series convergent

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\cos (n x)}{n} ? \tag{1}
\end{equation*}
$$

How about

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\cos (n x)}{n^{\frac{1}{4}}} ? \tag{2}
\end{equation*}
$$

2. Let $f(z)$ be analytic in $|z|<1$ and suppose that $f(0)=0$. Prove that

$$
\begin{equation*}
G(z)=\sum_{n=1}^{\infty} f\left(z^{n}\right) \tag{3}
\end{equation*}
$$

is also analytic in $|z|<1$. You can use the fact that a uniformly convergent sequence of analytic functions has an analytic limit. If the limit $G(z)$ is constant, then what can you say about f ? You must justify your answer.
3. Let V be an $(n+1)$-dimensional real vector space of real valued functions defined on the interval $[0,1]$. Show that if $0 \leq x_{1}<\cdots<x_{n} \leq 1$ are arbitrary, then there is a function $f \in V$ such that

$$
f\left(x_{i}\right)=0 \text { for } i=1, \ldots, n
$$

4. Suppose that $\left(a_{i j}\right)$ is a positive definite, symmetric $n \times n$ matrix, that is

$$
\begin{equation*}
A(u)=\sum_{i, j=1}^{n} a_{i j} u_{i} u_{j} \geq 0 \tag{5}
\end{equation*}
$$

and $A(u)=0$ only if $u=0$. Suppose that $\left(f_{1}, \ldots, f_{n}\right) \neq(0, \ldots, 0)$ is real vector. Show that the function

$$
\begin{equation*}
G(u)=A(u)+\sum_{j=1}^{n} f_{j} u_{j} \tag{6}
\end{equation*}
$$

attains its minimum value. Show that this minimum value is negative and find equations to determine the vector u where this value is attained. What is the minimum value?
5. Let \mathscr{P}_{n} denote the vector space of polynomials of degree at most n. Prove that, for each n, the differential operator

$$
\begin{equation*}
L=x(1-x) \partial_{x}^{2}+\frac{1}{2} x \partial_{x} \tag{7}
\end{equation*}
$$

maps \mathscr{P}_{n} to \mathscr{P}_{n}, Show that, for each $n, L: \mathscr{P}_{n} \rightarrow \mathscr{P}_{n}$ is diagonalizable and find its spectrum. Hint: Consider the operator $-x^{2} \partial_{x}^{2}+\frac{1}{2} x \partial_{x}$.
6. Suppose that two buses arrive independently at a bus stop so that, for $0 \leq t$, the arrival times satisfy
(8) $\operatorname{Prob}(t \leq X<t+d t)=\lambda e^{-\lambda t} d t$ and $\operatorname{Prob}(t \leq Y<t+d t)=\mu e^{-\mu t} d t$, where λ and μ are positive constants. What is the

$$
\operatorname{Prob}(\min \{X, Y\})<T ?
$$

7. A fair coin is flipped repeatedly. What is the expected value for the number of flips needed to first see two HEADS in a row? Hint: Write formulas for the expected values conditional on the outcome of the last flip.
