AMCS Written Preliminary Exam
 Part I, May 2, 2019

1. Calculate the Jordan form of the following matrix:

$$
B=\left(\begin{array}{ccc}
4 & 2 & 1 \\
-2 & 0 & -1 \\
-1 & -1 & 1
\end{array}\right)
$$

For this problem you may assume that the following equation holds:

$$
\operatorname{det}(B-\lambda I)=(\lambda-2)^{2}(\lambda-1)
$$

(a) Find the algebraic and geometric multiplicities of both eigenvalues.
(b) Find the Jordan form J of B.
(c) Find an invertible matrix S so that $B=S J S^{-1}$. Be sure to clearly explain how you obtained the columns of this matrix.
2. Assume A is a symmetric $n \times n$ matrix with eigenvalues $1,2, \ldots, n$ and consider $y:[0, \infty) \rightarrow \mathbb{R}^{n}$ which satisfies the ODE

$$
\dot{y}(t)+A y(t)=0, \quad t>0
$$

(a) Compute the limit

$$
\lim _{t \rightarrow \infty} e^{t} y(t)
$$

(b) Provided $y(0) \neq 0$, show $y(t) \neq 0$ for all $t>0$ and compute

$$
\lim _{t \rightarrow \infty} \frac{A y(t) \cdot y(t)}{\|y(t)\|^{2}}
$$

3. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies

$$
f(t x)=t f(x)
$$

for each $x \in \mathbb{R}^{n}$ and $t \geq 0$.
(a) Assume that f is differentiable away from 0 , then verify that

$$
\nabla f(x) \cdot x=f(x)
$$

holds away from 0 .
(b) Show that if f is differentiable at $x=0$, then there is $a \in \mathbb{R}^{n}$ such that $f(x)=a \cdot x$ for all $x \in \mathbb{R}^{n}$.
4. Prove the summation by parts formula:

$$
\sum_{n=1}^{N} a_{n} b_{n}=a_{N} B_{N}-a_{1} B_{0}-\sum_{n=1}^{N-1}\left(a_{n+1}-a_{n}\right) B_{n}
$$

where $\left\{a_{n}\right\}_{n=1}^{N}$ and $\left\{b_{n}\right\}_{n=1}^{N}$ are any finite sequences of complex numbers and $\left\{B_{n}\right\}_{n=0}^{N}$ is any sequence satisfying $B_{n}-B_{n-1}=b_{n}$ for any $n=$ $1, \ldots, N$.
5. Identify all poles, zeros, removable singularities, and essential singularities of the function

$$
f(z)=\frac{z^{4}+1}{z^{2}-z} \sin \frac{\pi z^{2}}{z^{2}-1}
$$

Be sure to consider the point at infinity.
6. Show that $\int_{0}^{\infty} \frac{x^{\beta}}{(x+1)^{2}} d x=\frac{\pi \beta}{\sin \pi \beta}$ assuming that $0<\beta<1$.
7. Suppose U, V are two independent random variables which are uniformly distributed in the interval $(0,1)$. Find the joint distribution of the random variables X, Y defined via

$$
X:=\sqrt{-2 \ln U} \cos (2 \pi V) \quad \text { and } \quad Y:=\sqrt{-2 \ln U} \sin (2 \pi V)
$$

