AMCS Written Preliminary Exam Part I, April 27, 2018

1. Prove that the equation $x=e^{-x}$ has exactly one root in the interval $0 \leq$ $x \leq 1$.
2. Describe as completely as you can the set of all 2×2-matrices, A, that satisfy the equation $A^{2}=A$.
3. The second order Taylor series for $\sqrt{25+x}$ is given by

$$
\begin{equation*}
T_{2}(x)=5+\frac{x}{10}-\frac{x^{2}}{1000} \tag{1}
\end{equation*}
$$

Give the best estimate you can for $\left|\sqrt{24}-T_{2}(-1)\right|$. Is the error,

$$
\sqrt{24}-T_{2}(-1)
$$

positive or negative?
4. Suppose that $f(z)$ is an analytic function in $\{z:|z| \leq 1\}$. Find the domain of analyticity of the function

$$
\begin{equation*}
F(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta) d \zeta}{\zeta^{2}-z^{2}} \tag{2}
\end{equation*}
$$

where $C=\{\zeta:|\zeta|=1\}$. Compute $F(z)$ throughout its domain of analyticity.
5. Let f be a \mathcal{C}^{2}-function defined on \mathbb{R} such that $f^{\prime \prime}(x) \geq 0$ for every x. Show that if f assumes its maximum value, then f is constant.
6. Let A and B be complex $n \times n$ matrices. Show that $A B$ and $B A$ have the same characteristic polynomials. Hint: This is easier if one of the matrices is invertible.
How is the spectrum of $A B$ related to the spectrum of $B A$?
7. Let $\left\{X_{n}\right\}$ be IID geometric random variables with mean 4 , that is, for $k \in$ $\{1,2, \ldots$,$\} ,$

$$
\begin{equation*}
\operatorname{Prob}\left(X_{n}=k\right)=\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)^{k-1} \tag{3}
\end{equation*}
$$

Let $S_{n}=\sum_{j=1}^{n} X_{j}$ denote the partial sums. Given a positive integer n, what is the probability of the event that $S_{n}=10$? What is the probability of the event: "For some $n \in \mathbb{N}, S_{n}=10$."?

