Name

AMCS Written Preliminary Exam Part I, April 27, 2018

- 1. Prove that the equation $x = e^{-x}$ has exactly one root in the interval $0 \le x \le 1$.
- 2. Describe as completely as you can the set of all 2×2 -matrices, A, that satisfy the equation $A^2 = A$.
- 3. The second order Taylor series for $\sqrt{25 + x}$ is given by

1)
$$T_2(x) = 5 + \frac{x}{10} - \frac{x^2}{1000}$$

Give the best estimate you can for $|\sqrt{24} - T_2(-1)|$. Is the error,

$$\sqrt{24} - T_2(-1),$$

positive or negative?

(

4. Suppose that f(z) is an analytic function in $\{z : |z| \le 1\}$. Find the domain of analyticity of the function

(2)
$$F(z) = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)d\zeta}{\zeta^2 - z^2},$$

where $C = \{\zeta : |\zeta| = 1\}$. Compute F(z) throughout its domain of analyticity.

- 5. Let f be a C^2 -function defined on \mathbb{R} such that $f''(x) \ge 0$ for every x. Show that if f assumes its maximum value, then f is constant.
- 6. Let A and B be complex $n \times n$ matrices. Show that AB and BA have the same characteristic polynomials. Hint: This is easier if one of the matrices is invertible.

How is the spectrum of *AB* related to the spectrum of *BA*?

7. Let $\{X_n\}$ be IID geometric random variables with mean 4, that is, for $k \in \{1, 2, \dots, \}$,

(3)
$$\operatorname{Prob}(X_n = k) = \left(\frac{1}{4}\right) \left(\frac{3}{4}\right)^{k-1}$$

Let $S_n = \sum_{j=1}^n X_j$ denote the partial sums. Given a positive integer *n*, what is the probability of the event that $S_n = 10$? What is the probability of the event: "For some $n \in \mathbb{N}$, $S_n = 10$."?