AMCS Written Preliminary Exam Part I, May 1, 2017

1. Let $f(x)$ be a non-negative, monotone decreasing function for which the integral

$$
\int_{0}^{\infty} f(x) d x<\infty
$$

Prove that

$$
\lim _{x \rightarrow \infty} x f(x)=0
$$

2. Find three different Laurent expansion for function

$$
f(z)=\frac{1}{1+3 z+z^{2}}
$$

State where each expansion is valid.
3. Let A be the 9×9 matrix

$$
A=\left(\begin{array}{cccccc}
2 s & t & t & t & \cdots & t \\
t & 2 s & t & t & \cdots & t \\
t & t & 2 s & t & \cdots & t \\
\cdots & \cdots & & & \cdots & t \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
t & t & t & t & \cdots & 2 s
\end{array}\right)
$$

(All off-diagonal entries are t and all diagonal entries are $2 s$.) For which complex values of t and s is this matrix invertible?
4. Find the maximum of $x_{1}^{2} \cdot x_{2}^{2} \cdots x_{n}^{2}$ subject to the constraint

$$
x_{1}^{2}+\cdots+x_{n}^{2}=1 .
$$

From the solution to this problem prove that, for arbitrary positive real numbers r_{1}, \ldots, r_{n}, we have the inequality

$$
\left(r_{1} \cdots r_{n}\right)^{\frac{1}{n}} \leq \frac{r_{1}+\cdots+r_{n}}{n} .
$$

Prove this directly, without recourse to induction.
5. Suppose that A is an invertible $n \times n$ matrix with characteristic polynomial

$$
\operatorname{det}(A-\lambda \mathrm{Id})=\sum_{j=0}^{n} a_{j} \lambda^{j}
$$

What is the characteristic polynomial of A^{-1} ? If B is a 2×2 matrix with characteristic polynomial

$$
\operatorname{det}(B-\lambda \mathrm{Id})=\lambda^{2}-3 \lambda-3
$$

then what is the characteristic polynomial of $2 B-3 \mathrm{Id}$?
6. Let X and Y be independent, standard normal, random variables, that is, their joint density is

$$
p(x, y)=\frac{1}{2 \pi} e^{-\frac{x^{2}+y^{2}}{2}} .
$$

Give an expression for $\operatorname{Prob}(X+Y<-1)$ in terms of the normal CDF

$$
\Phi(x):=\int_{-\infty}^{x} \frac{e^{-\frac{t^{2}}{2}} d t}{\sqrt{2 \pi}} .
$$

7. A simple random walk is a particle moving, at each time step, either left or right by 1 unit, each with probability $1 / 2$. What is the average amount of time it takes a simple random walk, started at 1 , to hit the set $\{0,5\}$?
