AMCS Written Preliminary Exam
 Part I, August 27, 2018

1. A subspace V of \mathbb{R}^{3} is spanned by the columns of

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-1 & 0 \\
1 & 1
\end{array}\right)
$$

(a) Apply the Gram-Schmidt process to find two orthonormal vectors u_{1} and u_{2} which also span V.
(b) Find an orthogonal matrix Q so that $Q Q^{T}$ is the matrix which orthogonally projects vectors onto V.
(c) Find the best possible (i.e., least squared error) solution to the linear system

$$
Q\binom{x}{y}=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)
$$

2. Find the Singular Value Decomposition (SVD) of the matrix:

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right)
$$

(a) Find the eigenvalues and unit length eigenvectors for $A^{T} A$ and $A A^{T}$. (What is the rank of A ?)
(b) Calculate the three matricies U, D, and V^{T} in the SVD and observe that $A=U D V^{T}$. Please explain clearly how you obtain these matrices.
3. (a) For any two positive real numbers a and b, prove that

$$
1+\ln a-\ln b \leq \frac{a}{b}
$$

(b) Assume that $\left\{x_{n}\right\}$ is a sequence of nonzero complex numbers satisfying that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left|\frac{x_{n+1}}{x_{n}}\right|=r<1
$$

Show that the series $\sum_{n=1}^{\infty} x_{n}$ must be absolutely convergent.
4. Suppose $\left\{a_{n}\right\}$ is a sequence of real numbers such that $\sum_{n=1}^{\infty}\left|a_{n}\right|<\infty$. Show that

$$
\lim _{r \rightarrow 1^{-}} \sum_{n=1}^{\infty} a_{n} r^{n}=\sum_{n=1}^{\infty} a_{n}
$$

5. Find all analytic functions on the disk $\{z \in \mathbb{C}:|z|<1\}$ which satisfy the functional equation

$$
f(i z)=(f(z))^{2}
$$

6. Calculate the following integral

$$
\int_{|z|=\rho} \frac{z+1}{z^{2}-2 z} d z
$$

both when $0<\rho<1$ and when $1<\rho<\infty$.
7. Suppose $\left\{x_{n}\right\}$ is a sequence of real numbers in $[0,1]$ which is randomly constructed according to the rule that given the values of x_{n-1}, x_{n} is uniformly distributed on the interval $\left[0, x_{n-1}\right]$. Compute the expected sum of the infinite series

$$
\sum_{n=1}^{\infty} x_{n}
$$

You may assume that this sum is finite with probability 1.

