AMCS Written Preliminary Exam Part I, August 28, 2017

1. Prove that

$$
\begin{equation*}
\log 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots \tag{1}
\end{equation*}
$$

2. Suppose that $f(z)$ is an analytic function in $D_{R}=\{z:|z|<R\}$ such that $|f(z)|<M$ for $z \in D_{R}$, and $f(0)=1$. Find a number $0<\rho<R$, such that $f(z) \neq 0$ for any z with $|z| \leq \rho$.
3. There is an orthognal transformation O of \mathbb{R}^{3} that transforms the quadratic form

$$
\begin{equation*}
q(x, y, z)=2 x y+2 x z+2 y z \tag{2}
\end{equation*}
$$

to the quadratic form

$$
\begin{equation*}
Q(X, Y, Z)=\lambda_{1} X^{2}+\lambda_{2} Y^{2}+\lambda_{3} Z^{2} \tag{3}
\end{equation*}
$$

here (X, Y, Z) are the transformed variables. What are the values of $\lambda_{1}, \lambda_{2}, \lambda_{3}$.
4. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ and c be positive numbers with $c>n$. Use Lagrange multipliers to show that the minimum value of

$$
f(x)=\sum_{j=1}^{n} \frac{a_{j}}{x_{j}}
$$

on the set

$$
S=\left\{0 \leq x_{j} \leq 1: \sum_{j=1}^{n} \frac{1}{1-x_{j}}=c\right\}
$$

is

$$
\sum_{j=1}^{n} a_{j}+\frac{1}{c-n}\left(\sum_{j=1}^{n} a_{j}^{\frac{1}{2}}\right)^{2}
$$

5. Suppose that $g(z)$ is an entire function that never vanishes. What are all the possible values of the integrals

$$
\int_{C} \frac{1}{z g(z)} d z
$$

where C is any smooth curve that does not pass through 0 and goes from $z=1$ to $z=z_{0}$.
6. In a set of 4000 independent fair coin flips, what is the probability of getting 3000 or more HEADS? Please answer to within a factor of 10 . The following common logarithms are accurate to roughly one part in 4000: $\log 2=0.301, \log 3=0.477$.
7. Let A be a non-singular square matrix $(\operatorname{det} A \neq 0)$. Show that there is a polynomial, $p(\lambda)=c_{k} \lambda^{k}+\cdots+c_{1} \lambda+c_{0}$ such that

$$
\begin{equation*}
A^{-1}=c_{0} \mathrm{Id}+c_{1} A+\cdots+c_{k} A^{k} \tag{8}
\end{equation*}
$$

