
AMCS Written Preliminary Exam
Part I, August 28, 2017
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2. Suppose that f .z/ is an analytic function in DR D fz W jzj < Rg such that
jf .z/j < M for z 2 DR; and f .0/ D 1: Find a number 0 < � < R; such
that f .z/ ¤ 0 for any z with jzj � �:

3. There is an orthognal transformation O of R3 that transforms the quadratic
form
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to the quadratic form
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here .X; Y;Z/ are the transformed variables. What are the values of �1; �2; �3:

4. Let fa1; : : : ; ang and c be positive numbers with c > n: Use Lagrange
multipliers to show that the minimum value of
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5. Suppose that g.z/ is an entire function that never vanishes. What are all the
possible values of the integrals
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where C is any smooth curve that does not pass through 0 and goes from
z D 1 to z D z0:

6. In a set of 4000 independent fair coin flips, what is the probability of get-
ting 3000 or more HEADS? Please answer to within a factor of 10. The
following common logarithms are accurate to roughly one part in 4000:
log 2 D 0:301; log 3 D 0:477:
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7. Let A be a non-singular square matrix (detA ¤ 0). Show that there is a
polynomial, p.�/ D ck�

k C � � � C c1�C c0 such that
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