AMCS Written Preliminary Exam Part I, August 28, 2013

1. Show that the sum

$$f(x) = \sum_{n=1}^{\infty} \sin\left(\frac{x}{n^2}\right)$$

exists for every $x \in [0, \frac{\pi}{2}]$, and that the function is continuous and monotone on this interval.

2. Let f and g be holomorphic functions on the unit disk so that

$$\operatorname{Re}(f(z)) = \operatorname{Re}(g(z))$$

for all z with $|z| < \frac{1}{2}$. Show that f - g is constant and purely imaginary on the unit disk.

3. Identify all the poles, zeros, removable singularities, and essential singularities of the function

$$f(z) = \frac{1}{z} \sin\left(\frac{\pi z}{1-z}\right)$$

Be sure to consider the behavior as $z \to \infty$.

4. Recall that f(x) = O(g(x)) as $x \to \infty$ means there is a constant C such that

$$|f(x)| \le C|g(x)|$$

for all sufficiently large x. Prove that

$$\sum_{k=1}^{n} \log k = n \log n - n + O(\log n).$$

- 5. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the operator such that $T(x_1, x_2) := (x_2, x_1)$.
 - (a) Show that T is self-adjoint with respect to the standard inner product on \mathbb{R}^2 .
 - (b) Consider a new inner product on \mathbb{R}^2 such that

$$\langle x, y \rangle = x_1 y_1 + \frac{1}{2} (x_1 y_2 + x_2 y_1) + \frac{1}{3} x_2 y_2.$$

Write the matrix of this inner product and compute the adjoint of T with respect to this new inner product (and note that $T^* \neq T$ in this case!).

(c) Let $\ell : \mathbb{R}^2 \to \mathbb{R}$ be the linear functional $\ell(x_1, x_2) = x_1$ Using the inner product from the part (b), find a vector v such that

$$\ell(x) = \langle x, v \rangle,$$

for all $x \in \mathbb{R}^2$.

- Let V be a complex vector space, with Hermitian inner product (z, w). Let T : V → V be a linear transformation. Show that T is self adjoint if and only if (Tz, z) is real for every z ∈ V.
- 7. What is the probability that a random permutation in S_4 (the permutation group on 4 elements) has no fixed points? (A fixed point of a permutation σ is a value of k for which $\sigma(k) = k$). For example, for n = 3 a permutation with no fixed point is

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}.$$