AMCS Written Preliminary Exam Part I, August 28, 2013

1. Show that the sum

$$
f(x)=\sum_{n=1}^{\infty} \sin \left(\frac{x}{n^{2}}\right)
$$

exists for every $x \in\left[0, \frac{\pi}{2}\right]$, and that the function is continuous and monotone on this interval.
2. Let f and g be holomorphic functions on the unit disk so that

$$
\operatorname{Re}(f(z))=\operatorname{Re}(g(z))
$$

for all z with $|z|<\frac{1}{2}$. Show that $f-g$ is constant and purely imaginary on the unit disk.
3. Identify all the poles, zeros, removable singularities, and essential singularities of the function

$$
f(z)=\frac{1}{z} \sin \left(\frac{\pi z}{1-z}\right)
$$

Be sure to consider the behavior as $z \rightarrow \infty$.
4. Recall that $f(x)=O(g(x))$ as $x \rightarrow \infty$ means there is a constant C such that

$$
|f(x)| \leq C|g(x)|
$$

for all suffficiently large x. Prove that

$$
\sum_{k=1}^{n} \log k=n \log n-n+O(\log n) .
$$

5. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the operator such that $T\left(x_{1}, x_{2}\right):=\left(x_{2}, x_{1}\right)$.
(a) Show that T is self-adjoint with respect to the standard inner product on \mathbb{R}^{2}.
(b) Consider a new inner product on \mathbb{R}^{2} such that

$$
\langle x, y\rangle=x_{1} y_{1}+\frac{1}{2}\left(x_{1} y_{2}+x_{2} y_{1}\right)+\frac{1}{3} x_{2} y_{2} .
$$

Write the matrix of this inner product and compute the adjoint of T with respect to this new inner product (and note that $T^{*} \neq T$ in this case!).
(c) Let $\ell: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the linear functional $\ell\left(x_{1}, x_{2}\right)=x_{1}$ Using the inner product from the part (b), find a vector v such that

$$
\ell(x)=\langle x, v\rangle,
$$

for all $x \in \mathbb{R}^{2}$.
6. Let V be a complex vector space, with Hermitian inner product $\langle z, w\rangle$. Let $T: V \rightarrow V$ be a linear transformation. Show that T is self adjoint if and only if $\langle T z, z\rangle$ is real for every $z \in V$.
7. What is the probability that a random permutation in S_{4} (the permutation group on 4 elements) has no fixed points? (A fixed point of a permutation σ is a value of k for which $\sigma(k)=k$). For example, for $n=3$ a permutation with no fixed point is

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) .
$$

