AMCS Written Preliminary Exam Part I, August 28, 2012

1. Let

(1)
$$f(x) = \begin{cases} (e^{x^2} - e^{-x^2}) \sin\left(\frac{1}{x^3}\right) & \text{for } x \neq 0\\ 0 & \text{for } x = 0 \end{cases}$$

Show that f is differentiable at 0 and compute f'(0).

- 2. Give an example of a Riemann integrable function with a countably infinite number of points of discontinuity.
- 3. For which real values of p is the following series convergent?

(2)
$$\sum_{n=2}^{\infty} \frac{1}{(n^2 \log n) \cdot (n^{\frac{1}{n}} - 1)^p}.$$

4. Suppose that A is an $n \times n$ matrix with a 1-dimensional null-space. Show that we can choose vectors u and v so that the linear transformation

$$B = A + u \otimes v$$

is invertible. Here $u \otimes v^t x \stackrel{d}{=} \langle x, v \rangle u$. What conditions must *u* and *v* satisfy for this to be true?

5. Let *A* be the $n \times n$ matrix:

$$A = \begin{bmatrix} 0 & 2 & \dots & 2 & 2 \\ 2 & 0 & \dots & 2 & 2 \\ \vdots & \ddots & \ddots & 0 & 2 \\ 2 & & \dots & 2 & 0 \end{bmatrix}$$

(0s along the diagonal and 2s everywhere else.) Compute the eigenvalues and eigenvectors of A.

6. A real valued \mathscr{C}^2 -function u, defined in the unit disk, is harmonic if it satisfies the partial differential equation $\partial_{xx}u + \partial_{yy}u = 0$. Show that every such function can expressed in the form

(4)
$$u(x, y) = f(x + iy) + \overline{f(x + iy)},$$

where f is an analytic function in the unit disk.

- 7. A fair coin is flipped until it comes up HEADS. If this occurs on the n^{th} flip, then you win $\left\{\left(\frac{2}{3}\right)^n\right\}$. What is your expected winnings?
- 8. Let $\{Y_n\}$ be independent random variables uniformly distributed in [0, 1]. For $n \ge 1$, let $X_n = Y_1 \cdots Y_n$, the products of the Y_i .
 - (a) Compute $E[X_n]$.
 - (b) What is the limit, as $n \to \infty$, of $\operatorname{Prob}(X_n > (0.4)^n)$?