AMCS Written Preliminary Exam, I August 25, 2009

All work should go in the exam booklet, with your final answer clearly marked.

1. Prove that for all $n \in \mathbb{N}, n \geq 1$,

$$
\frac{1}{2} \leq \sum_{k=1}^{n} \frac{1}{k}-\ln (n) \leq \frac{3}{2}
$$

2. Define a function on the real line by

$$
f(x)=\left\{\begin{array}{l}
\sqrt{x} \text { for } x \geq 0 \\
0 \text { for } x<0
\end{array}\right.
$$

Using the $\epsilon-\delta$-definition of continuity, prove that f is continuous at $x=0$.
Is f uniformly continuous on \mathbb{R} ? You must prove your answer.
3. Is there a smooth, non-zero 2π-periodic function f, with support of f contained in an interval $[a, b] \subset[0,2 \pi]$, such that $b-a<2 \pi$ and only finitely many Fourier coefficients of f,

$$
\hat{f}(n)=\int_{0}^{2 \pi} f(x) e^{-i n x} d x
$$

are non-zero? Explain your answer.
4. Consider the function $f(x)$ defined on $[0,1]$ by

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{q} \text { if } x=\frac{p}{q}, \text { with }(p, q)=1, \\
1 \text { if } x \notin \mathbb{Q} \cap[0,1] .
\end{array}\right.
$$

Is f a Riemann integrable function? You must prove your answer.
5. The Fibonnaci sequence is defined by the conditions $f_{0}=0, f_{1}=1$ and $f_{n+2}=f_{n}+f_{n+1}$. The recurrence relation can be rewritten as

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\binom{f_{n}}{f_{n+1}}=\binom{f_{n+1}}{f_{n+2}}
$$

Use this relation to show that there is a C so that, for all $n \in \mathbb{N}$, we have:

$$
f_{n} \leq C\left(\frac{1+\sqrt{5}}{2}\right)^{n}
$$

6. Let $\boldsymbol{a}, \boldsymbol{b}$ be vectors in \mathbb{R}^{3}. The vector cross product defines a linear transformation of $M_{\boldsymbol{a}}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, M_{\boldsymbol{a}} \boldsymbol{b}=\boldsymbol{a} \times \boldsymbol{b}$, where

$$
\boldsymbol{a} \times \boldsymbol{b} \stackrel{d}{=} \operatorname{det}\left(\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right) .
$$

What is the matrix of $M_{\boldsymbol{a}}$ with respect to the standard basis? Prove that for any three vectors, $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$, we have

$$
\left\langle M_{\boldsymbol{a}} \boldsymbol{b}, \boldsymbol{c}\right\rangle=-\left\langle\boldsymbol{b}, M_{\boldsymbol{a}} \boldsymbol{c}\right\rangle .
$$

What are the eigenvalues of the matrix M_{a} ?

