AMCS Written Preliminary Exam Part I, August 26, 2008

1. Prove that the sum

$$
\sum_{n=1}^{\infty} \frac{e^{2 \pi i n x}}{n}
$$

converges for any $x \notin \mathbb{Z}$.
2. Suppose that D is a bounded region in \mathbb{R}^{2} with a piecewise C^{1}-boundary. If D is contained in a disk of radius R, then prove the estimate

$$
\left|\oint_{\partial D} x d y\right| \leq \pi R^{2} .
$$

In this integral ∂D is oriented as the boundary of D. When is this an equality?
3. Prove: If f is a bounded increasing function defined on $(0,1)$, then f has at most countably many points of discontinuity.
4. Find a conformal map from the semi-circle,

$$
\{z: \operatorname{Im} z>0 \text { and }|z|<1\}
$$

onto the upper half plane

$$
\{z: \operatorname{Im} z>0\} .
$$

5. Let

$$
f(z)=\frac{1}{1-z}+\frac{z}{2-z}
$$

Find the Laurent expansions of f valid in
(a) $1<|z|<2$
(b) $2<|z|$.
6. Let A be the $n \times n$ matrix:

$$
A=\left[\begin{array}{ccccc}
2 & 1 & \ldots & 1 & 1 \\
1 & 2 & \ldots & 1 & 1 \\
\vdots & \ddots & \ddots & 2 & 1 \\
1 & & \ldots & 1 & 2
\end{array}\right]
$$

(2 s along the diagonal and 1 s everywhere else.) Compute the determinant of A.
7. Let \mathscr{P}_{n} denote the polynomials of degree at most n. The first derivative defines a linear map from \mathscr{P}_{n} to itself:

$$
D: p \longrightarrow \frac{d p}{d x}
$$

Find the matrix representation of D with respect to the standard basis of monomials $\left\{x^{n}, x^{n-1}, \ldots, x, 1\right\}$. What is the Jordan canonical form of D ? Hint: This question can be answered with very little computation.
8. A fair coin is flipped until it comes up HEADS. If this occurs on the $n^{\text {th }}$ flip, then you win $\$\left(\frac{3}{2}\right)^{n}$. What is your expected winnings?

