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1 Advanced Calculus

1. Show that, while both limits exist,

lim
x→0

lim
y→0

x2
+ y4

x2 + y2 6= lim
y→0

lim
x→0

x2
+ y4

x2 + y2 . (1)

State and prove a sufficient condition on a function f (x, y) defined in a neighbor-
hood of (0, 0) so that

lim
x→0

lim
y→0

f (x, y) = lim
y→0

lim
x→0

f (x, y) (2)

2. Show that the improper integral

I =

∞∫
0

1
x

sin
(

1
x

)
dx (3)

is convergent.

3. Prove that the equation
x = e−x (4)

has precisely one root in the interval [0, 1].
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4. Compute

lim
n→∞

1
n2

n∑
k=1

√
n2 − k2. (5)

5. Prove that
log 2 = 1 −

1
2

+
1
3

− . . . (6)

6. Let t (x) denote the polynomial of degree 2 consisting of the first three terms of the
Taylor series expansion about x = 1 of the function

√
x .

(a) Find t (x).

(b) Find a positive number δ such that, for all x in the interval, 1 ≤ x ≤ 1 + δ, the
inequality

|
√

x − t (x)| ≤ 10−2 (7)

holds.

7. Consider the equation yey
= x .

(a) Sketch the of the solution y = y(x).

(b) Calculate dy
dx as a function of y.

(c) Give a method for computing the value of y so that yey
= 1.

8. Evaluate the following limits, justifying your answer:

(a) limp→∞

1∫
0

e−px(cos x)2dx

(b) limt→∞

(
tet

∞∫
t

e−s

s ds
)

9. Suppose that u(x, t) is continuous, together with its first and second partial deriva-
tives; suppose that u and its first partial derivatives are periodic in x of period 1, and
suppose that ut t = uxx . Prove that

E(t) =
1
2

1∫
0

(u2
t (x, t) + u2

x(x, t))dx (8)

is a constant, independent of t.



10. Let f be a continuous function, which maps the closed, bounded interval [a, b] to
itself. For a < x < b assume that f is differentiable and | f ′(x)| ≤ θ, where θ is a
fixed number such that 0 < θ < 1. Choose t1 ∈ [a, b] and define

tn+1 = f (tn), n = 1, 2, . . . (9)

Prove that the sequence < tn > has a limit x∗, which satisfies f (x∗) = x∗.

11. Compute the following limits

(a) limn→∞
(n+1)2n!

nn

(b) limx→0
x sin x−x2

x3 .

12. Prove, justifying all steps that

∞∫
0

e
−

(
x2

+
a2

x2

)
dx =

e−2a√π

2
. (10)

You may use without proof that the formula is correct when a = 0.

13. Let f be defined in [0, 1] as follows: f (x) = 0 if x is irrational. If x = p/q, a
fraction in lowest terms, then f (x) = 1/q2. Show that f is continuous at x if and
only if x is irrational.

14. Determine whether each of the following series is absolutely convergent, condition-
ally convergent, or divergent:

(a)
∑

∞

n=1
(−1)n

n!

(b)
∑

∞

n=1
n(n+1)
(n+2)3

(c)
∑

∞

n=1

[(
1 +

1
n

)n
− e

]
15. (a) What does it mean for a function f (x) to be uniformly continuous on (−∞, ∞).

(b) Give an example to show that a function can be uniformly continuous on
(−∞, ∞) without being bounded.

(c) What can be said about the rate of growth, at infinity, of a uniformly continu-
ous?



16. Prove that

lim
λ→∞

2∫
1

cos λtdt

t
√

t − 1
= 0. (11)

17. Let f be continuous on the interval [1, ∞) and monotonically decreasing with
limx→∞ f (x) = 0. Prove that the series

∞∑
k=1

f (k) (12)

converges if and only if the integral

∞∫
1

f (x)dx (13)

converges. In the case of convergence which is larger?

18. Prove that

lim
ε→1−

(1 − ε)

∞∑
n=0

xnε
n

= x, (14)

if limn→∞ xn = x . Prove that the converse is, in general, false by considering the
sequence xn = (−1)n.

19. Check the following integrals and sums for convergence on divergence

(a)
∑

∞

n=2
1

n(log n)2

(b)
∑

∞

n=1
[
1 −

1
n

]n2

(c)
∞∫
0

√
x

ex−1dx

(d)
∞∫
0

sin x
x2 dx

20. Introduce new coordinates into the positive quadrant x > 0, y > 0 be setting

ξ = x2y η = xy2. (15)

(a) Determine x and y as functions of ξ and η.



(b) Compute the Jacobian determinants

A = det

[
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
B = det

[
∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

]
. (16)

(c) Check that AB = 1. Is this a general fact for such change of variable, or
merely an accident in this case? Prove or disprove.

21. Compute the outward-pointing normal vector n at a point (x, y) on the ellipse:

E = {(x, y) :
x2

a2 +
y2

b2 = 1}. (17)

Verify, by direct computation, the correctness of the divergence theorem:∫∫
inside E

divXd A =

∫
E

X · ndl, (18)

where X = (y, x).

22. Show that there exist constants c1, c2 such that, for all integers N ≥ 1 we have that∣∣∣∣∣
N∑

n=1

1
√

n
− 2

√
N − c1

∣∣∣∣∣ ≤
c2

√
N

. (19)

23. For

f (x) =

∞∑
n=1

nxn

1 − xn , (20)

prove that:

(a) The series converges for all x in the interval (−1, 1).

(b) For x ∈ [0, 1) we have that (1 − x)2 f (x) ≥ x .

24. Let f (x) be a real valued function with continuous derivatives on [0, 1]; such that
| f (1)| ≥ | f (0)|. Show that either there is an x ∈ (0, 1), such that f (x) and f ′(x)

have the same sign, or f (x) ≡ constant.

25. Find the shortest distance from the ellipse

x2

4
+ y2

= 1, (21)

to the straight line x + y = 4.



26. Show that for f (x) a continuous function on [0, 1] we have

lim
n→∞

√
n

1∫
0

f (x) dx
1 + nx2 =

π

2
f (0). (22)

2 Linear Algebra

1. Consider the system of linear equations

kx + y + z = 1

x + ky + z = 1

x + y + kz = 1.

(23)

Determine for which numbers k the system has (a) no solution, (b) a unique solution,
(c) more than one solution.

2. For each of the following conditions on a real square matrix ai j find a matching
condition on its eigenvalues:

(a) ai j = a j i (A) all non-zero eigenvalues are pure
imaginary

(b) det(ai j ) = 0 (B) all eigenvalues are zero
(c) ai j = 0 if i ≥ j (C) all eigenvalues are real
(d)

∑
j ai j a jk = δik (D) no eigenvalue is zero

(e) det(ai j ) 6= 0 (E) at least one eigenvalue is zero
(f) ai j = −a j i (F) each real negative eigenvalue is −1

3. Introduce a scalar product on the space of continuous, real valued functions defined
on [0, 1] by setting

〈 f, g〉 =

1∫
0

x f (x)g(x)dx . (24)

Find an orthonormal basis for the subspace spanned by 1, x, and x2.

4. Find an orthogonal transformation that reduces the quadratic form

q(x, y, z) = x2
− y2

+ z2
+ 2xy



to the form
Q(X, Y, Z) = aX2

+ bY 2
+ cZ2.

What are the values of a, b, c?

5. Suppose that A is an n × n matrix of complex numbers. Prove that is λ is an
eigenvalue of A2, then

√
λ or −

√
λ is an eigenvalue of A.

6. Let U be the subspace of R4 spanned by the vectors

a1 =(1, 1, 0, 0)

a2 =(0, 1, 1, 0)

a3 =(0, 0, 1, 1)

(25)

and let V be the subspace spanned by

b1 =(1, −1, 0, 0)

b2 =(0, 1, −1, 0)

b3 =(0, 0, 1, −1)

(26)

Determine the dimension of the intersection W = U ∩ V, and find bases of U and
V, parts of which are basis vectors for W.

7. Find the inverse of the matrix

A =


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 . (27)

8. Let A be a 3 × 3 matrix such that A2
= A. Find all possible Jordan canonical forms

for A.

9. Suppose that a square n × n matrix A commutes with all diagonal matrices. What
can one say about the matrix A.

10. What is the dimension (over the real numbers) of all odd polynomials (i.e., p(−x) =

−p(x)) of degree at most 7. Prove that if a0, a1, b0, b1 are arbitrary real numbers,
then there exists a unique such polynomial p(x) satisfying

p(1) = a0
dp
dx

(1) = a1

p(2) = b0
dp
dx

(2) = b1.

(28)



11. Determine the eigenvalues and eigenvectors of the matrix

A =

 1 0 −2
0 0 0

−2 0 4

 . (29)

12. Let A be a real symmetric matrix and form the matrix

R(z) = (z Id −A)−1 (30)

for complex values of z, whenever it is defined. Prove: The elements of R(z) are
quotients of two polynomials in z whose denominators have zeros of at most first
order.

13. Consider the vector space of functions of the form

p(t) = a + b cos t + c sin t where a, b, c ∈ R, (31)

with the norm

N (p) =

√
a2 +

1
2
(b2 + c2). (32)

Define the linear transformation T p(t) = p(t + α), where α is a given real number.
Show that the transformation T is orthogonal and compute its eigenvalues.

14. Suppose that A is a non-singular linear transformation of an n-dimensional linear
space into itself. Show that there exists some polynomial c0 + c1z + · · · + ckzk so
that

A−1
= c0 Id +c1 A + · · · + ck Ak . (33)

15. In R3 suppose that the plane Q goes through the points

(0, 0, 0) (1, 2, 3) (−1, 0, 1). (34)

Let P be the plane parallel to Q which goes through the point (3, 7, −9). Find the
distance of the plane P to the origin.

16. (a) What does it mean to say that n vectors r1, . . . , rn are linearly independent?

(b) Are the vectors (1, 1, 1), (1, 0, 1), (0, 1, 0) linearly independent?

(c) Are the vectors (1, 2, 3), (3, 1, 2), (2, 3, 1) linearly independent?



17. Suppose that V is a vector space over the real numbers. What does it mean to
say that “the dimension of V is n”? If V is also a vector space over the complex
numbers, how is the dimension of V as a real vector space related to its dimension
as a complex vector space. Give an example of a vector space that is both a real and
a complex vector space.

18. Suppose A is a positive definite, real symmetric matrix. That is, the quadratic form

Q(x) = 〈Ax, x〉 (35)

is positive definite. Prove the Schwarz inequality:

〈Ax, y〉
2

≤ 〈Ax, x〉〈Ay, y〉. (36)

19. Let A and B be two n × n matrices. Prove that the eigenvalues of AB are the same
as the eigenvalues of B A.

20. Sum the infinite series

A =

∞∑
n=0

1
n!

(
2 1
0 2

)n

. (37)

Note that (
2 1
0 2

)
= 2

(
1 0
0 1

)
+

(
0 1
0 0

)
. (38)

21. Find the minimal polynomial of the matrix (ai j ) when the matrix elements ai j have
the form ai j = uiv j . Note: You must state precisely any standard theorem you use.

22. Suppose that A is a Hermitian symmetric n × n matrix of complex numbers all of
whose eigenvalues lie inside the interval (−1, 1). Prove that the matrix A3

+ Id is
positive definite.

23. If all the main diagonal entries of a symmetric matrix are all positive, can all the
eigenvalues be negative? (Give a reason for you answer).

24. Determine the eigenvalues and corresponding eigenvectors of the matrix A

A =

(
4 1
9 −4

)
. (39)

Compute

A99
(

5
−15

)
. (40)



25. Determine the values of x such that if

A =

(
x x − 1

x + 1 x

)
, (41)

then there exists a diagonal matrix D and a non-singular matrix B with

B−1 AB = D. (42)

In such cases find B and D.

3 Complex Analysis

1. Suppose that
∑

∞

n=0 an(z − 1)n is the power series of the function 1
cos z about the

point z = 1. Does the series
∑

∞

n=0 |an| converge or diverge? Justify your answer.

2. (a) Is ex(cos y + i sin y) an analytic function of z = x + iy?

(b) Is ex(sin y + i cos y) an analytic function of z = x + iy?

(c) Is ex sin y the real part of an analytic function of z = x + iy?

Justify your answers.

3. Using the calculus of residues, evaluate the integral

∞∫
−∞

dx
(x2 + 1)3 . (43)

4. Map the semi-circle |z| < 1, Im z > 0, conformally onto the first quadrant, Re w >

0, Im w > 0. Is the mapping w = w(z) unique?

5. What is the dimension of the space of homogeneous polynomials in x, y, of degree
n, which satisfy

∂2 Pn

∂x2 +
∂2 Pn

∂y2 = 0? (44)

6. Find a region in the complex plane where the function ez2
assumes every non-zero,

complex value exactly once.



7. Find three power or Laurent series expansions for

f (z) =
1

z2 − 1
(45)

such that every point except z = ±1 is a point of absolute convergence for at least
one of these series.

8. Evaluate the integrals

(a)

∞∫
−∞

ei xdx
1 + x2 , (b) lim

a→∞

a∫
−a

dx
1 + x

. (46)

9. Let f (z) be analytic in |z| < 1.1, and assume that | f (z)| ≤ 1 on |z| = 1. Prove that

f (z) + 8z2
− 2 = 0 (47)

has two roots in the unit circle.

10. Suppose that f (z) is an entire function and | f (z)| ≤ ex (z = x + iy) throughout the
complex plane. What can be said about f (z)?

11. Find a holomorphic function w = f (z) mapping the sector | arg z| < α < π

conformally onto the unit circle |w| < 1. Describe the behavior of f (z) near z = 0.

12. Let
∑

∞

n=0 anzn,
∑

∞

n=0 bnzn have radii of convergence ra, rb. What can be said
about the radii of convergence of the series

(a)
∞∑

n=0

(an + bn)zn, (b)
∞∑

n=0

anbnzn? (48)

13. Let f (z) = z +
∑

∞

n=2 anzn have a positive radius of convergence. Does there exist
a series g(z) = z +

∑
∞

n=2 bnzn, satisfying

f (g(z)) = z? (49)

Does this series have a positive radius of convergence? Are the coefficients {bn}

uniquely determined?



14. How many roots does the equation

1
2

ez
+ z4

+ 1 = 0 (50)

have in the left half plane Re z < 0?

15. For each condition below give an example of a function analytic in 0 < |z| < 1 that:

(a) Has a simple pole at z = 0 and vanishes at z =
1
2 .

(b) Has an essential singularity at z = 0 and a pole of order at z = 1.

(c) Has a removable singularity at z = 0 and an essential singularity at z = i.

16. Suppose that F is analytic in |z| < 10 and Im F(eiθ ) = sin θ, for θ ∈ R. Find F in
|z| < 10 and justify your answer.

17. Where does the series
∞∑

n=1

zn

n(n + 1)
(51)

converge? Why? Express this sum in terms of elementary functions.

18. Represent all complex values of (−1)i and (1 + i)
2
3 in the form a + bi.

19. State the argument principle. Use it to prove the fundamental theorem of algebra: A
polynomial of degree exactly n > 0 has n complex roots, counted with multiplicity.

20. Find a function that conformally maps the interior of the unit disk onto the strip
−π < Im w < π, so that z = 0 goes into w = 1.

21. Find the radii of convergence of the the following series, justifying your answers

(a)
∑

∞

n=1(n
−1z)n

(b)
∑

∞

n=1(nz)n

(c)
∑

∞

n=1

(
z log n

n

)n

22. Show that if | f (z)| < M on |z| = 1 and f (z) = z2g(z), then

| f (z)| ≤
M
4

for |z| ≤
1
2
. (52)

Here f (z) and g(z) are analytic in |z| ≤ 1.



23. (a) What is the angle between the curves Re(z3) = 1 and Re(z3) = Im(z3)?

(b) What is the angle between the curves Re(z3) = 0 and Re(z3) = Im(z3)?

24. Suppose that f (z) is an entire function in the plane satisfying

| f (z)| ≤ M(1 + |z|)n. (53)

Prove that f is a polynomial of degree at most n.

25. Consider the power series expansion

f (z) =
sinh z

2 cosh z − 1
=

∞∑
n=0

βnzn, (54)

in a neighborhood of z = 0. Find lim supn→∞ |βn|
1
n . Compute the first three terms

of the Laurent expansion of 1/ f (z) about z = 0.

4 Discrete Math (adapted from D’Angelo and West, Mathematical Thinking)

1. Let < an > be a sequence satisfying an = 2an−1 + 3an−2 for n ≥ 3.

(a) Given that a1, a2 are odd integers, prove that an is odd for all n ∈ N.

(b) Given that a1 = a2 = 1, prove that an =
1
2(3n−1

− (−1)n), for all n ∈ N.

2. Let N = {1, 2, 3, . . . , n}. Show that N has as many subsets with an even number of
elements as subsets with an odd number of elements.

3. A fair coin is flipped exactly 2n times. Compute the probability of obtaining exactly
n heads. Evaluate the formual for n = 10.

4. We roll a six sided die three times. Determine the probability that the sum of the
values rolled equals eleven.

5. Compute the probability that a random five-card hand has the following:

(a) At least three cards with the same rank.

(b) At least two cards with the same rank.



6. Let X1, X2, X3 be independent random variables, each taking values in the set
{1, 2, . . . , n}, with each value equally probable. Compute the probability that X1 +

X2 + X3 ≤ 6, given that X1 + X2 ≥ 4.

7. Suppose that Mary and Jim and n other people stand in a line in random order. For
each k with 0 ≤ k ≤ n find the probability that exactly k people stand between
Mary and Jim.

8. Suppose that X is a random variable that takes values in {1, . . . , n}. Prove that

E(X) =

n∑
k=1

P(X ≥ k). (55)

9. The Vandermonde convolution theorem states that for any three nonnegative integers
n, m, k,

k∑
j=0

(
n
j

)(
m

k − j

)
x=

(
n + m

k

)
. (56)

Prove (56) by either

(A) using the following generating function identity for the binomial coefficients

k∑
j=0

(
n
j

)
= (1 + x)n, (57)

or

(B) by combinatorial reasoning, using the fact that
(n

j

)
equals the number of j-

element subsets of a set of n different objects.

10. A wheel of fortune has the integers from 1 to 25 placed on it in a random manner.
Show that regardless of how the numbers are positioned on the wheel, there are three
adjacent numbers whose sum is at least 39.

11. Use mathematical induction to prove that the following identity holds for any posi-
tive integer n.

n∑
k=1

k3
=

n2(n + 1)2

4
. (58)



12. Determine the number of positive integers n, 1 ≤ N ≤ 2000, that are

a) not divisible by 2, 3, or 5.

b) not divisible by 2, 3, or 5, but are divisible by 7.

13. Determine how many integer solutions there are to

x1 + x2 + x3 + x4 = 19, (59)

if 0 ≤ xi < 12 for 1 ≤ i ≤ 4.

14. A palindrome of a positive integer n is a composition of n (a representation of n
as a sum of positive integers), which reads the same backwards as forwards. For
example, there are 4 palindromes of 5, namely

5

1 + 3 + 1

2 + 1 + 2

1 + 1 + 1 + 1 + 1.

If pn denotes the number of palindromes of n, prove that pn = 2pn−2.

15. Suppose that X is a random variable with mean E(X) = X̄ and variance σ =

E(|X − X̄ |
2). Prove Chebyshev’s inequality:

Prob{|X − X̄ | ≥ t} ≤
σ 2

t2 . (60)

16. Let X denote the outcome of flipping a fair coin, with X = 1 if the coin comes up
heads and X = 0 for tails. If X1, X2, . . . are the outcomes of independent tosses of
the coin, show that

Prob{X1 + · · · + X N = j} =

(
N
j

)
1

2N . (61)

What are E(X1 + · · · + X N ) and Var(X1 + · · · + X N )?


