AMCS Written Preliminary Exam Practice Problems
 Adapted from CIMS Written Preliminary Exams 1960-1986

Summer, 2008

1 Advanced Calculus

1. Show that, while both limits exist,

$$
\begin{equation*}
\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} \frac{x^{2}+y^{4}}{x^{2}+y^{2}} \neq \lim _{y \rightarrow 0} \lim _{x \rightarrow 0} \frac{x^{2}+y^{4}}{x^{2}+y^{2}} \tag{1}
\end{equation*}
$$

State and prove a sufficient condition on a function $f(x, y)$ defined in a neighborhood of $(0,0)$ so that

$$
\begin{equation*}
\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)=\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y) \tag{2}
\end{equation*}
$$

2. Show that the improper integral

$$
\begin{equation*}
I=\int_{0}^{\infty} \frac{1}{x} \sin \left(\frac{1}{x}\right) d x \tag{3}
\end{equation*}
$$

is convergent.
3. Prove that the equation

$$
\begin{equation*}
x=e^{-x} \tag{4}
\end{equation*}
$$

has precisely one root in the interval $[0,1]$.
4. Compute

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{k=1}^{n} \sqrt{n^{2}-k^{2}} \tag{5}
\end{equation*}
$$

5. Prove that

$$
\begin{equation*}
\log 2=1-\frac{1}{2}+\frac{1}{3}-\ldots \tag{6}
\end{equation*}
$$

6. Let $t(x)$ denote the polynomial of degree 2 consisting of the first three terms of the Taylor series expansion about $x=1$ of the function \sqrt{x}.
(a) Find $t(x)$.
(b) Find a positive number δ such that, for all x in the interval, $1 \leq x \leq 1+\delta$, the inequality

$$
\begin{equation*}
|\sqrt{x}-t(x)| \leq 10^{-2} \tag{7}
\end{equation*}
$$

holds.
7. Consider the equation $y e^{y}=x$.
(a) Sketch the of the solution $y=y(x)$.
(b) Calculate $\frac{d y}{d x}$ as a function of y.
(c) Give a method for computing the value of y so that $y e^{y}=1$.
8. Evaluate the following limits, justifying your answer:
(a) $\lim _{p \rightarrow \infty} \int_{0}^{1} e^{-p x}(\cos x)^{2} d x$
(b) $\lim _{t \rightarrow \infty}\left(t e^{t} \int_{t}^{\infty} \frac{e^{-s}}{s} d s\right)$
9. Suppose that $u(x, t)$ is continuous, together with its first and second partial derivatives; suppose that u and its first partial derivatives are periodic in x of period 1, and suppose that $u_{t t}=u_{x x}$. Prove that

$$
\begin{equation*}
E(t)=\frac{1}{2} \int_{0}^{1}\left(u_{t}^{2}(x, t)+u_{x}^{2}(x, t)\right) d x \tag{8}
\end{equation*}
$$

is a constant, independent of t.
10. Let f be a continuous function, which maps the closed, bounded interval $[a, b]$ to itself. For $a<x<b$ assume that f is differentiable and $\left|f^{\prime}(x)\right| \leq \theta$, where θ is a fixed number such that $0<\theta<1$. Choose $t_{1} \in[a, b]$ and define

$$
\begin{equation*}
t_{n+1}=f\left(t_{n}\right), \quad n=1,2, \ldots \tag{9}
\end{equation*}
$$

Prove that the sequence $<t_{n}>$ has a limit x^{*}, which satisfies $f\left(x^{*}\right)=x^{*}$.
11. Compute the following limits
(a) $\lim _{n \rightarrow \infty} \frac{(n+1)^{2} n!}{n^{n}}$
(b) $\lim _{x \rightarrow 0} \frac{x \sin x-x^{2}}{x^{3}}$.
12. Prove, justifying all steps that

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\left(x^{2}+\frac{a^{2}}{x^{2}}\right)} d x=\frac{e^{-2 a} \sqrt{\pi}}{2} . \tag{10}
\end{equation*}
$$

You may use without proof that the formula is correct when $a=0$.
13. Let f be defined in $[0,1]$ as follows: $f(x)=0$ if x is irrational. If $x=p / q$, a fraction in lowest terms, then $f(x)=1 / q^{2}$. Show that f is continuous at x if and only if x is irrational.
14. Determine whether each of the following series is absolutely convergent, conditionally convergent, or divergent:
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!}$
(b) $\sum_{n=1}^{\infty} \frac{n(n+1)}{(n+2)^{3}}$
(c) $\sum_{n=1}^{\infty}\left[\left(1+\frac{1}{n}\right)^{n}-e\right]$
15. (a) What does it mean for a function $f(x)$ to be uniformly continuous on $(-\infty, \infty)$.
(b) Give an example to show that a function can be uniformly continuous on $(-\infty, \infty)$ without being bounded.
(c) What can be said about the rate of growth, at infinity, of a uniformly continuous?
16. Prove that

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \int_{1}^{2} \frac{\cos \lambda t d t}{t \sqrt{t-1}}=0 \tag{11}
\end{equation*}
$$

17. Let f be continuous on the interval $[1, \infty)$ and monotonically decreasing with $\lim _{x \rightarrow \infty} f(x)=0$. Prove that the series

$$
\begin{equation*}
\sum_{k=1}^{\infty} f(k) \tag{12}
\end{equation*}
$$

converges if and only if the integral

$$
\begin{equation*}
\int_{1}^{\infty} f(x) d x \tag{13}
\end{equation*}
$$

converges. In the case of convergence which is larger?
18. Prove that

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 1^{-}}(1-\epsilon) \sum_{n=0}^{\infty} x_{n} \epsilon^{n}=x \tag{14}
\end{equation*}
$$

if $\lim _{n \rightarrow \infty} x_{n}=x$. Prove that the converse is, in general, false by considering the sequence $x_{n}=(-1)^{n}$.
19. Check the following integrals and sums for convergence on divergence
(a) $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{2}}$
(b) $\sum_{n=1}^{\infty}\left[1-\frac{1}{n}\right]^{n^{2}}$
(c) $\int_{0}^{\infty} \frac{\sqrt{x}}{e^{x}-1} d x$
(d) $\int_{0}^{\infty} \frac{\sin x}{x^{2}} d x$
20. Introduce new coordinates into the positive quadrant $x>0, y>0$ be setting

$$
\begin{equation*}
\xi=x^{2} y \quad \eta=x y^{2} \tag{15}
\end{equation*}
$$

(a) Determine x and y as functions of ξ and η.
(b) Compute the Jacobian determinants

$$
A=\operatorname{det}\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \tag{16}\\
\frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta}
\end{array}\right] \quad B=\operatorname{det}\left[\begin{array}{ll}
\frac{\partial \xi}{\partial x} & \frac{\partial \xi}{\partial y} \\
\frac{\partial \eta}{\partial x} & \frac{\partial \eta}{\partial y}
\end{array}\right] .
$$

(c) Check that $A B=1$. Is this a general fact for such change of variable, or merely an accident in this case? Prove or disprove.
21. Compute the outward-pointing normal vector \boldsymbol{n} at a point (x, y) on the ellipse:

$$
\begin{equation*}
E=\left\{(x, y): \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\right\} . \tag{17}
\end{equation*}
$$

Verify, by direct computation, the correctness of the divergence theorem:

$$
\begin{equation*}
\iint_{\text {inside } E} \operatorname{div} X d A=\int_{E} X \cdot \boldsymbol{n} d l \tag{18}
\end{equation*}
$$

where $X=(y, x)$.
22. Show that there exist constants c_{1}, c_{2} such that, for all integers $N \geq 1$ we have that

$$
\begin{equation*}
\left|\sum_{n=1}^{N} \frac{1}{\sqrt{n}}-2 \sqrt{N}-c_{1}\right| \leq \frac{c_{2}}{\sqrt{N}} \tag{19}
\end{equation*}
$$

23. For

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} \frac{n x^{n}}{1-x^{n}}, \tag{20}
\end{equation*}
$$

prove that:
(a) The series converges for all x in the interval $(-1,1)$.
(b) For $x \in[0,1)$ we have that $(1-x)^{2} f(x) \geq x$.
24. Let $f(x)$ be a real valued function with continuous derivatives on $[0,1]$; such that $|f(1)| \geq|f(0)|$. Show that either there is an $x \in(0,1)$, such that $f(x)$ and $f^{\prime}(x)$ have the same sign, or $f(x) \equiv$ constant.
25. Find the shortest distance from the ellipse

$$
\begin{equation*}
\frac{x^{2}}{4}+y^{2}=1 \tag{21}
\end{equation*}
$$

to the straight line $x+y=4$.
26. Show that for $f(x)$ a continuous function on $[0,1]$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sqrt{n} \int_{0}^{1} \frac{f(x) d x}{1+n x^{2}}=\frac{\pi}{2} f(0) \tag{22}
\end{equation*}
$$

2 Linear Algebra

1. Consider the system of linear equations

$$
\begin{align*}
& k x+y+z=1 \\
& x+k y+z=1 \tag{23}\\
& x+y+k z=1
\end{align*}
$$

Determine for which numbers k the system has (a) no solution, (b) a unique solution, (c) more than one solution.
2. For each of the following conditions on a real square matrix $a_{i j}$ find a matching condition on its eigenvalues:
\qquad (a) $a_{i j}=a_{j i}$
(A) all non-zero eigenvalues are pure imaginary
\qquad (b) $\operatorname{det}\left(a_{i j}\right)=0$
(B) all eigenvalues are zero
\qquad (c) $a_{i j}=0$ if $i \geq j$
(C) all eigenvalues are real
\qquad (d) $\sum_{j} a_{i j} a_{j k}=\delta_{i k}$
(D) no eigenvalue is zero
\qquad (e) $\operatorname{det}\left(a_{i j}\right) \neq 0$
(E) at least one eigenvalue is zero
\qquad (f) $a_{i j}=-a_{j i}$
(F) each real negative eigenvalue is -1
3. Introduce a scalar product on the space of continuous, real valued functions defined on [0,1] by setting

$$
\begin{equation*}
\langle f, g\rangle=\int_{0}^{1} x f(x) g(x) d x \tag{24}
\end{equation*}
$$

Find an orthonormal basis for the subspace spanned by $1, x$, and x^{2}.
4. Find an orthogonal transformation that reduces the quadratic form

$$
q(x, y, z)=x^{2}-y^{2}+z^{2}+2 x y
$$

to the form

$$
Q(X, Y, Z)=a X^{2}+b Y^{2}+c Z^{2}
$$

What are the values of a, b, c ?
5. Suppose that A is an $n \times n$ matrix of complex numbers. Prove that is λ is an eigenvalue of A^{2}, then $\sqrt{\lambda}$ or $-\sqrt{\lambda}$ is an eigenvalue of A.
6. Let U be the subspace of \mathbb{R}^{4} spanned by the vectors

$$
\begin{align*}
& a_{1}=(1,1,0,0) \\
& a_{2}=(0,1,1,0) \tag{25}\\
& a_{3}=(0,0,1,1)
\end{align*}
$$

and let V be the subspace spanned by

$$
\begin{align*}
& b_{1}=(1,-1,0,0) \\
& b_{2}=(0,1,-1,0) \tag{26}\\
& b_{3}=(0,0,1,-1)
\end{align*}
$$

Determine the dimension of the intersection $W=U \cap V$, and find bases of U and V, parts of which are basis vectors for W.
7. Find the inverse of the matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \tag{27}\\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

8. Let A be a 3×3 matrix such that $A^{2}=A$. Find all possible Jordan canonical forms for A.
9. Suppose that a square $n \times n$ matrix A commutes with all diagonal matrices. What can one say about the matrix A.
10. What is the dimension (over the real numbers) of all odd polynomials (i.e., $p(-x)=$ $-p(x)$) of degree at most 7 . Prove that if $a_{0}, a_{1}, b_{0}, b_{1}$ are arbitrary real numbers, then there exists a unique such polynomial $p(x)$ satisfying

$$
\begin{array}{ll}
p(1)=a_{0} & \frac{d p}{d x}(1)=a_{1} \tag{28}\\
p(2)=b_{0} & \frac{d p}{d x}(2)=b_{1} .
\end{array}
$$

11. Determine the eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{ccc}
1 & 0 & -2 \tag{29}\\
0 & 0 & 0 \\
-2 & 0 & 4
\end{array}\right)
$$

12. Let A be a real symmetric matrix and form the matrix

$$
\begin{equation*}
R(z)=(z \operatorname{Id}-A)^{-1} \tag{30}
\end{equation*}
$$

for complex values of z, whenever it is defined. Prove: The elements of $R(z)$ are quotients of two polynomials in z whose denominators have zeros of at most first order.
13. Consider the vector space of functions of the form

$$
\begin{equation*}
p(t)=a+b \cos t+c \sin t \text { where } a, b, c \in \mathbb{R}, \tag{31}
\end{equation*}
$$

with the norm

$$
\begin{equation*}
N(p)=\sqrt{a^{2}+\frac{1}{2}\left(b^{2}+c^{2}\right)} . \tag{32}
\end{equation*}
$$

Define the linear transformation $T p(t)=p(t+\alpha)$, where α is a given real number. Show that the transformation T is orthogonal and compute its eigenvalues.
14. Suppose that A is a non-singular linear transformation of an n-dimensional linear space into itself. Show that there exists some polynomial $c_{0}+c_{1} z+\cdots+c_{k} z^{k}$ so that

$$
\begin{equation*}
A^{-1}=c_{0} \mathrm{Id}+c_{1} A+\cdots+c_{k} A^{k} \tag{33}
\end{equation*}
$$

15. In \mathbb{R}^{3} suppose that the plane Q goes through the points

$$
\begin{equation*}
(0,0,0) \quad(1,2,3) \quad(-1,0,1) \tag{34}
\end{equation*}
$$

Let P be the plane parallel to Q which goes through the point $(3,7,-9)$. Find the distance of the plane P to the origin.
16. (a) What does it mean to say that n vectors r_{1}, \ldots, r_{n} are linearly independent?
(b) Are the vectors $(1,1,1),(1,0,1),(0,1,0)$ linearly independent?
(c) Are the vectors $(1,2,3),(3,1,2),(2,3,1)$ linearly independent?
17. Suppose that V is a vector space over the real numbers. What does it mean to say that "the dimension of V is n"? If V is also a vector space over the complex numbers, how is the dimension of V as a real vector space related to its dimension as a complex vector space. Give an example of a vector space that is both a real and a complex vector space.
18. Suppose A is a positive definite, real symmetric matrix. That is, the quadratic form

$$
\begin{equation*}
Q(x)=\langle A x, x\rangle \tag{35}
\end{equation*}
$$

is positive definite. Prove the Schwarz inequality:

$$
\begin{equation*}
\langle A x, y\rangle^{2} \leq\langle A x, x\rangle\langle A y, y\rangle . \tag{36}
\end{equation*}
$$

19. Let A and B be two $n \times n$ matrices. Prove that the eigenvalues of $A B$ are the same as the eigenvalues of $B A$.
20. Sum the infinite series

$$
A=\sum_{n=0}^{\infty} \frac{1}{n!}\left(\begin{array}{ll}
2 & 1 \tag{37}\\
0 & 2
\end{array}\right)^{n}
$$

Note that

$$
\left(\begin{array}{ll}
2 & 1 \tag{38}\\
0 & 2
\end{array}\right)=2\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

21. Find the minimal polynomial of the matrix $\left(a_{i j}\right)$ when the matrix elements $a_{i j}$ have the form $a_{i j}=u_{i} v_{j}$. Note: You must state precisely any standard theorem you use.
22. Suppose that A is a Hermitian symmetric $n \times n$ matrix of complex numbers all of whose eigenvalues lie inside the interval $(-1,1)$. Prove that the matrix $A^{3}+\mathrm{Id}$ is positive definite.
23. If all the main diagonal entries of a symmetric matrix are all positive, can all the eigenvalues be negative? (Give a reason for you answer).
24. Determine the eigenvalues and corresponding eigenvectors of the matrix A

$$
A=\left(\begin{array}{cc}
4 & 1 \tag{39}\\
9 & -4
\end{array}\right)
$$

Compute

$$
\begin{equation*}
A^{99}\binom{5}{-15} . \tag{40}
\end{equation*}
$$

25. Determine the values of x such that if

$$
A=\left(\begin{array}{cc}
x & x-1 \tag{41}\\
x+1 & x
\end{array}\right)
$$

then there exists a diagonal matrix D and a non-singular matrix B with

$$
\begin{equation*}
B^{-1} A B=D \tag{42}
\end{equation*}
$$

In such cases find B and D.

3 Complex Analysis

1. Suppose that $\sum_{n=0}^{\infty} a_{n}(z-1)^{n}$ is the power series of the function $\frac{1}{\cos z}$ about the point $z=1$. Does the series $\sum_{n=0}^{\infty}\left|a_{n}\right|$ converge or diverge? Justify your answer.
2. (a) Is $e^{x}(\cos y+i \sin y)$ an analytic function of $z=x+i y$?
(b) Is $e^{x}(\sin y+i \cos y)$ an analytic function of $z=x+i y$?
(c) Is $e^{x} \sin y$ the real part of an analytic function of $z=x+i y$?

Justify your answers.
3. Using the calculus of residues, evaluate the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{3}} \tag{43}
\end{equation*}
$$

4. Map the semi-circle $|z|<1, \operatorname{Im} z>0$, conformally onto the first quadrant, $\operatorname{Re} w>$ $0, \operatorname{Im} w>0$. Is the mapping $w=w(z)$ unique?
5. What is the dimension of the space of homogeneous polynomials in x, y, of degree n, which satisfy

$$
\begin{equation*}
\frac{\partial^{2} P_{n}}{\partial x^{2}}+\frac{\partial^{2} P_{n}}{\partial y^{2}}=0 ? \tag{44}
\end{equation*}
$$

6. Find a region in the complex plane where the function $e^{z^{2}}$ assumes every non-zero, complex value exactly once.
7. Find three power or Laurent series expansions for

$$
\begin{equation*}
f(z)=\frac{1}{z^{2}-1} \tag{45}
\end{equation*}
$$

such that every point except $z= \pm 1$ is a point of absolute convergence for at least one of these series.
8. Evaluate the integrals

$$
\begin{equation*}
\text { (a) } \int_{-\infty}^{\infty} \frac{e^{i x} d x}{1+x^{2}}, \quad \text { (b) } \lim _{a \rightarrow \infty} \int_{-a}^{a} \frac{d x}{1+x} \text {. } \tag{46}
\end{equation*}
$$

9. Let $f(z)$ be analytic in $|z|<1.1$, and assume that $|f(z)| \leq 1$ on $|z|=1$. Prove that

$$
\begin{equation*}
f(z)+8 z^{2}-2=0 \tag{47}
\end{equation*}
$$

has two roots in the unit circle.
10. Suppose that $f(z)$ is an entire function and $|f(z)| \leq e^{x}(z=x+i y)$ throughout the complex plane. What can be said about $f(z)$?
11. Find a holomorphic function $w=f(z)$ mapping the sector $|\arg z|<\alpha<\pi$ conformally onto the unit circle $|w|<1$. Describe the behavior of $f(z)$ near $z=0$.
12. Let $\sum_{n=0}^{\infty} a_{n} z^{n}, \sum_{n=0}^{\infty} b_{n} z^{n}$ have radii of convergence r_{a}, r_{b}. What can be said about the radii of convergence of the series
(a) $\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) z^{n}$,
(b) $\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}$?
13. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ have a positive radius of convergence. Does there exist a series $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$, satisfying

$$
\begin{equation*}
f(g(z))=z ? \tag{49}
\end{equation*}
$$

Does this series have a positive radius of convergence? Are the coefficients $\left\{b_{n}\right\}$ uniquely determined?
14. How many roots does the equation

$$
\begin{equation*}
\frac{1}{2} e^{z}+z^{4}+1=0 \tag{50}
\end{equation*}
$$

have in the left half plane $\operatorname{Re} z<0$?
15. For each condition below give an example of a function analytic in $0<|z|<1$ that:
(a) Has a simple pole at $z=0$ and vanishes at $z=\frac{1}{2}$.
(b) Has an essential singularity at $z=0$ and a pole of order at $z=1$.
(c) Has a removable singularity at $z=0$ and an essential singularity at $z=i$.
16. Suppose that F is analytic in $|z|<10$ and $\operatorname{Im} F\left(e^{i \theta}\right)=\sin \theta$, for $\theta \in \mathbb{R}$. Find F in $|z|<10$ and justify your answer.
17. Where does the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{z^{n}}{n(n+1)} \tag{51}
\end{equation*}
$$

converge? Why? Express this sum in terms of elementary functions.
18. Represent all complex values of $(-1)^{i}$ and $(1+i)^{\frac{2}{3}}$ in the form $a+b i$.
19. State the argument principle. Use it to prove the fundamental theorem of algebra: A polynomial of degree exactly $n>0$ has n complex roots, counted with multiplicity.
20. Find a function that conformally maps the interior of the unit disk onto the strip $-\pi<\operatorname{Im} w<\pi$, so that $z=0$ goes into $w=1$.
21. Find the radii of convergence of the the following series, justifying your answers
(a) $\sum_{n=1}^{\infty}\left(n^{-1} z\right)^{n}$
(b) $\sum_{n=1}^{\infty}(n z)^{n}$
(c) $\sum_{n=1}^{\infty}\left(\frac{z \log n}{n}\right)^{n}$
22. Show that if $|f(z)|<M$ on $|z|=1$ and $f(z)=z^{2} g(z)$, then

$$
\begin{equation*}
|f(z)| \leq \frac{M}{4} \text { for }|z| \leq \frac{1}{2} . \tag{52}
\end{equation*}
$$

Here $f(z)$ and $g(z)$ are analytic in $|z| \leq 1$.
23. (a) What is the angle between the curves $\operatorname{Re}\left(z^{3}\right)=1$ and $\operatorname{Re}\left(z^{3}\right)=\operatorname{Im}\left(z^{3}\right)$?
(b) What is the angle between the curves $\operatorname{Re}\left(z^{3}\right)=0$ and $\operatorname{Re}\left(z^{3}\right)=\operatorname{Im}\left(z^{3}\right)$?
24. Suppose that $f(z)$ is an entire function in the plane satisfying

$$
\begin{equation*}
|f(z)| \leq M(1+|z|)^{n} \tag{53}
\end{equation*}
$$

Prove that f is a polynomial of degree at most n.
25. Consider the power series expansion

$$
\begin{equation*}
f(z)=\frac{\sinh z}{2 \cosh z-1}=\sum_{n=0}^{\infty} \beta_{n} z^{n} \tag{54}
\end{equation*}
$$

in a neighborhood of $z=0$. Find $\lim \sup _{n \rightarrow \infty}\left|\beta_{n}\right|^{\frac{1}{n}}$. Compute the first three terms of the Laurent expansion of $1 / f(z)$ about $z=0$.

4 Discrete Math (adapted from D'Angelo and West, Mathematical Thinking)

1. Let $<a_{n}>$ be a sequence satisfying $a_{n}=2 a_{n-1}+3 a_{n-2}$ for $n \geq 3$.
(a) Given that a_{1}, a_{2} are odd integers, prove that a_{n} is odd for all $n \in \mathbb{N}$.
(b) Given that $a_{1}=a_{2}=1$, prove that $a_{n}=\frac{1}{2}\left(3^{n-1}-(-1)^{n}\right)$, for all $n \in \mathbb{N}$.
2. Let $N=\{1,2,3, \ldots, n\}$. Show that N has as many subsets with an even number of elements as subsets with an odd number of elements.
3. A fair coin is flipped exactly $2 n$ times. Compute the probability of obtaining exactly n heads. Evaluate the formual for $n=10$.
4. We roll a six sided die three times. Determine the probability that the sum of the values rolled equals eleven.
5. Compute the probability that a random five-card hand has the following:
(a) At least three cards with the same rank.
(b) At least two cards with the same rank.
6. Let X_{1}, X_{2}, X_{3} be independent random variables, each taking values in the set $\{1,2, \ldots, n\}$, with each value equally probable. Compute the probability that $X_{1}+$ $X_{2}+X_{3} \leq 6$, given that $X_{1}+X_{2} \geq 4$.
7. Suppose that Mary and Jim and n other people stand in a line in random order. For each k with $0 \leq k \leq n$ find the probability that exactly k people stand between Mary and Jim.
8. Suppose that X is a random variable that takes values in $\{1, \ldots, n\}$. Prove that

$$
\begin{equation*}
E(X)=\sum_{k=1}^{n} P(X \geq k) \tag{55}
\end{equation*}
$$

9. The Vandermonde convolution theorem states that for any three nonnegative integers n, m, k,

$$
\begin{equation*}
\sum_{j=0}^{k}\binom{n}{j}\binom{m}{k-j} x=\binom{n+m}{k} \tag{56}
\end{equation*}
$$

Prove (56) by either
(A) using the following generating function identity for the binomial coefficients

$$
\begin{equation*}
\sum_{j=0}^{k}\binom{n}{j}=(1+x)^{n} \tag{57}
\end{equation*}
$$

or
(B) by combinatorial reasoning, using the fact that $\binom{n}{j}$ equals the number of j element subsets of a set of n different objects.
10. A wheel of fortune has the integers from 1 to 25 placed on it in a random manner. Show that regardless of how the numbers are positioned on the wheel, there are three adjacent numbers whose sum is at least 39 .
11. Use mathematical induction to prove that the following identity holds for any positive integer n.

$$
\begin{equation*}
\sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4} \tag{58}
\end{equation*}
$$

12. Determine the number of positive integers $n, 1 \leq N \leq 2000$, that are
a) not divisible by 2,3 , or 5 .
b) not divisible by 2,3 , or 5 , but are divisible by 7 .
13. Determine how many integer solutions there are to

$$
\begin{equation*}
x_{1}+x_{2}+x_{3}+x_{4}=19 \tag{59}
\end{equation*}
$$

if $0 \leq x_{i}<12$ for $1 \leq i \leq 4$.
14. A palindrome of a positive integer n is a composition of n (a representation of n as a sum of positive integers), which reads the same backwards as forwards. For example, there are 4 palindromes of 5 , namely

$$
\begin{array}{r}
5 \\
1+3+1 \\
2+1+2 \\
1+1+1+1+1
\end{array}
$$

If p_{n} denotes the number of palindromes of n, prove that $p_{n}=2 p_{n-2}$.
15. Suppose that X is a random variable with mean $E(X)=\bar{X}$ and variance $\sigma=$ $E\left(|X-\bar{X}|^{2}\right)$. Prove Chebyshev's inequality:

$$
\begin{equation*}
\operatorname{Prob}\{|X-\bar{X}| \geq t\} \leq \frac{\sigma^{2}}{t^{2}} \tag{60}
\end{equation*}
$$

16. Let X denote the outcome of flipping a fair coin, with $X=1$ if the coin comes up heads and $X=0$ for tails. If X_{1}, X_{2}, \ldots are the outcomes of independent tosses of the coin, show that

$$
\begin{equation*}
\operatorname{Prob}\left\{X_{1}+\cdots+X_{N}=j\right\}=\binom{N}{j} \frac{1}{2^{N}} \tag{61}
\end{equation*}
$$

What are $E\left(X_{1}+\cdots+X_{N}\right)$ and $\operatorname{Var}\left(X_{1}+\cdots+X_{N}\right)$?

