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In observational studies, the causal effect of a treatment on the
distribution of outcomes is of interest beyond the average treatment
effect. Instrumental variable methods allow for causal inference by
controlling for unmeasured confounding. The existing nonparametric
method for estimating the effect of the treatment on the distribution
of outcomes for compliers has several drawbacks, such as producing
estimates that violate the non-decreasing and non-negative proper-
ties of cumulative distribution functions. In this paper, we propose
a novel nonparametric composite likelihood approach, referred to as
the binomial likelihood (BL) method, which overcomes the limitations
of the previous techniques and utilizes the advantage of likelihood
methods. We show the consistency of the maximum binomial like-
lihood (MBL) estimators and derive their asymptotic distributions.
Next, we develop a computationally efficient algorithm for comput-
ing the MBL estimates by combining the expectation-maximization
(EM) and the pool-adjacent-violators algorithms (PAVA). Moreover,
the BL method can be used to construct a binomial likelihood-ratio
test (BLRT) for the null hypothesis of no distributional treatment
effect. Asymptotic expansion of the BLRT test is derived and the
performance of the BL method is demonstrated in simulation stud-
ies. Finally, we apply our method to a study of the effect of Vietnam
veteran status on the distribution of civilian annual earnings.

1. Introduction. Randomized experiments are the gold standard for assessing the
effect of a treatment but often it is not practical or ethical to randomly assign a treat-
ment itself. However, in some settings, an encouragement to take the treatment can be
randomized (Holland, 1988). In other settings, no randomization is possible but there may
be a “natural experiment” such that some people are encouraged to receive the treatment
compared to others in a way that is effectively random (Angrist and Krueger, 2001). For
both of these settings, the instrumental variable (IV) method can be used to estimate the
causal effect of a treatment (Holland, 1988; Angrist, Imbens and Rubin, 1996). The IV
method is a method that controls for unmeasured confounders to make causal inferences
about the effect of a treatment. An IV is informally a variable that affects the treatment
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2 LEE ET AL.

but is independent of unmeasured confounders and only affects the outcome through af-
fecting the treatment (see Section 2.1 for a more precise definition). Under a monotonicity
assumption that the encouraging level of the IV never causes someone not to take the
treatment, the IV method identifies the treatment effect for compliers, those subjects who
would take the treatment if they received the encouraging level of the IV but would not
take the treatment if they did not receive the encouraging level (Angrist, Imbens and Ru-
bin, 1996). For several discussions of the IV method, see Abadie (2003), Angrist, Imbens
and Rubin (1996), Baiocchi, Cheng and Small (2014), Brookhart and Schneeweiss (2007),
Cheng, Qin and Zhang (2009), Hernan and Robins (2006), Ogburn, Rotnitzky and Robins
(2015) and Tan (2006).

Much of the literature on the treatment effect in instrumental variable models has focused
on estimating the average treatment effect for compliers. However, understanding the effect
of the treatment on the whole distribution of outcomes for the compliers, the distributional
treatment effect for compliers, is important for optimal individual decision-making and
for social welfare comparisons. Optimal individual decision-making requires computing the
expected utility of the treatments which requires knowing the whole distribution of the
outcomes under the treatments being compared rather than just the average outcomes
when the utility function is nonlinear (Karni, 2009). Social welfare comparisons require
integration of utility functions under the distribution of the outcome (say income), which
again requires knowing the effect of the treatment on the whole distribution of outcomes
(Abadie, 2002; Atkinson, 1970).

Abadie (2002) developed a nonparametric method for estimating the effect of treatment
on the cumulative distribution functions (CDFs) of the outcomes based on expanding the
conventional IV approach described in Imbens and Angrist (1994). These are essentially
plug-in estimates of the CDFs of the compliers. However, these estimates are not ‘proper’
CDFs, because they violate the monotonicity or the non-negativity conditions of CDFs. In
this paper, we develop a new nonparametric likelihood-based approach for estimating the
CDFs of the compliers, that enforces the estimated CDFs to be non-decreasing and non-
negative, and then construct a likelihood-ratio type test statistic for the null hypothesis of
no distributional treatment effect.

1.1. Summary of results. Nonparametric likelihood methods have been shown to have
appealing properties in many settings such as providing nonparametric inferences that
inherit some of the attractive properties of parametric likelihood (for example, automatic
determination of the shape of confidence regions) and straightforward interpretation of side
information expressed through constraints (Owen, 2001). However, the usual empirical
likelihood approach does not work for the IV model because there are infinitely many
solutions that maximize the likelihood. In this case, the usual nonparametric likelihood
method fails to produce a meaningful estimator (Geman and Hwang, 1982). We illustrate
this problem with an example in Section 2.3.

To circumvent this problem, we propose a novel nonparametric likelihood approach,
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which builds on the fact that the plug-in estimates identify the CDFs for the compli-
ers at any given point based on a binomially distributed random variable, which counts
the number of outcomes that are less than or equal to the value at the given point. Our
nonparametric likelihood multiplies together the pieces of the likelihood contributed by
these binomial random variables. This is a composite or “pseudo” likelihood rather than
a true likelihood because the binomial random variables are actually dependent, but are
treated as independent in the composite likelihood. Composite likelihood has been found
useful in a range of areas including problems in geo-statistics, spatial extremes, space-time
models, clustered data, longitudinal data, time series and statistical genetics, see Lindsay
(1988), Heagerty and Lele (1998), Varin, Reid and Firth (2011) and Larribe and Fearnhead
(2011). We call this composite nonparametric likelihood method, the binomial likelihood
(BL) method because it maximizes the average of the likelihood of the binomial random
variables at each point across all observation points. The maximum binomial likelihood
(MBL) estimates are obtained by maximizing the BL under the monotonicity and non-
negativity constraints. We derive the asymptotic properties of the MBL estimates, develop
efficient algorithms for computing them, construct new tests for detecting distributional ef-
fects, and evaluate their performances on real and synthetic data sets. The results obtained
are summarized below.

(1) We show that the MBL estimates are consistent and derive their asymptotic distri-
bution. In fact, the plug-in estimates and the MBL estimates asymptotically have
the same mean squared error (Theorem 3.2), and, hence, have the same limiting dis-
tribution. This makes the BL method useful both in theory and practice: it gives
‘proper’ estimates of the CDFs of compliers (satisfying the monotonicity and non-
decreasing conditions), while preserving the desirable asymptotic properties of the
plug-in estimates.

(2) We develop a computationally efficient algorithm for finding the MBL estimates (Sec-
tion 4) by combining the expectation-maximization (EM) and pool-adjacent-violators
algorithms (PAVA). The performance of the BL method is demonstrated in simulation
studies, which shows that the MBL estimators perform better than other estimators,
particularly when an IV is weak (weakly associated with the treatment).

(3) The BL method can be used to construct a binomial likelihood-ratio test (BLRT) for
the null hypothesis of no distributional treatment effect. We derive an asymptotic
expansion of the BLRT test (Theorem 6.1), relating it to the well-known Anderson-
Darling two-sample test statistic (Pettitt, 1976). Using this asymptotic expansion, we
derive a bootstrap procedure for implementing the BLRT test, and compare it with
previous methods. Our simulations show that the BLRT is much more powerful in
finite samples than tests which do not use the structure of the IV model (for example,
the two-sample Kolmogorov-Smirnov test of Abadie (2002)).

(4) We obtain the MBL estimates from a study of the effect of being a Vietnam War
veteran on future earnings, as studied by Angrist (1990) and Abadie (2002). To
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control for possible unmeasured confounders, Angrist (1990) proposed to use the
Vietnam era draft lottery as an IV. During the Vietnam era, men of military service
age were randomly assigned a draft lottery number and this draft lottery number was
used for prioritizing men for induction into the military. A low draft lottery number
makes a man more likely to serve, although some men with a low draft lottery number
did not have to serve (for example, if the person had an educational deferment or
failed a physical or mental aptitude test) and some men with a high draft lottery
number chose to voluntarily serve. Using the draft lottery number as an IV, we make
inferences about the distributional effect of Vietnam era military service on civilian
earnings in the late 1970s and early 1980s.

1.2. Organization. The rest of the article is organized as follows. Basic notation and
assumptions of the IV model are discussed in Section 2. We also discuss the existing plug-
in approach and the difficulty in applying the usual empirical likelihood to IV models.
In Section 3, we introduce the BL method and derive the asymptotic properties of the
MBL estimators. In Section 4, we develop an efficient algorithm for computing the MBL
estimates, and in Section 5, illustrate their performance in simulations. In Section 6, we
describe the BLRT for detecting distribution treatment effects, study its asymptotic prop-
erties, and compare its performance with other methods in numerical experiments. The
MBL method and the BLRT test are applied to the veterans data in Section 7. Section 8
concludes our findings. Proofs of the results are given in Appendix.

2. Framework and review. In this section the framework of instrumental variable
(IV) model is introduced and the existing methods are briefly reviewed. Notation and iden-
tification assumptions are discussed in Section 2.1. The existing approach of Abadie (2002)
for estimating the distributional treatment effect in IV models is reviewed, and the short-
comings of this method are addressed, in Section 2.2. The drawback of the usual empirical
likelihood approach for the IV models is discussed in Section 2.3. This, together with the
discussion in Section 2.2, motivates our new approach of constructing the nonparametric
binomial likelihood that will be introduced in Section 3.

2.1. Notation and assumptions. Let the subjects in the observational study be indexed
by [n] := {1, 2, . . . , n}. For a ∈ [n], Za denotes the binary instrumental variable, Da

the indicator variable for whether the subject a receives the treatment or not, and Ya
the outcome variable, which, for this paper, will be assumed to be continuous. Using the
potential outcome framework (Neyman, 1990; Rubin, 1974), define Da(0) as the value that
Da would be if Za were to be set to 0, and Da(1) as the value that Da would be if Za were
to be set to 1. Similarly, Ya(z, d) for (z, d) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, is the value that
the outcome Ya would be if Za = z and Da = d. For each subject a ∈ [n], the analyst can
only observe one of the two potential values Da(0) and Da(1), and one of the four potential



NONPARAMETRIC INFERENCE IN IV MODELS 5

Table 1
Compliance classes by the potential outcomes D1(0) and D1(1)

D1(0) = 0 D1(0) = 1

D1(1) = 0 Never-takers Defiers
D1(1) = 1 Compliers Always-takers

values Ya(0, 0), Ya(0, 1), Ya(1, 0), Ya(1, 1). The observed treatment Da is

Da = ZaDa(1) + (1− Za)Da(0).

Similarly, the observed outcome Ya can be expressed as Ya = ZaDa ·Ya(1, 1) +Za(1−Da) ·
Ya(1, 0) + (1−Za)Da · Ya(0, 1) + (1−Za)(1−Da) · Ya(0, 0). A subject’s compliance class is
determined by the combination of the potential treatment values Da(0) and Da(1), which
is denoted by Sa: Sa = always-taker (at) if Da(0) = Da(1) = 1; Sa = never-taker (nt) if
Da(0) = Da(1) = 0; Sa = complier (co) if Da(0) = 0, Da(1) = 1; and Sa = defier (de) if
Da(0) = 1, Da(1) = 0. This is summarized in Table 1.

For the rest of this article, the following standard identifying conditions are assumed. The
implications of these conditions are briefly explained in the paragraph below, see Angrist,
Imbens and Rubin (1996) for more details on these assumptions.

Assumption 1. Hereafter, the following identification conditions will be imposed on
the IV model:

(1) Stable Unit Treatment Value Assumption (SUTVA) (Rubin, 1986): The outcome
(treatment) for the individual a ∈ [n] is not affected by the values of the treatment
or instrument (instrument) for other individuals and the outcome (treatment) does
not depend on the way the treatment or instrument (instrument) is administered.

(2) The instrumental variable Za is independent of the potential outcomes Ya(z, d) and
potential treatment Da(z).

Za ⊥⊥ (Ya(0, 0), Ya(0, 1), Ya(1, 0), Ya(1, 1), Da(0), Da(1))

(3) Nonzero average causal effect of Za on Da: P(Da(1) = 1) > P(Da(0) = 1).
(4) Monotonicity: Da(1) ≥ Da(0).
(5) Exclusion restriction: Ya(0, d) = Ya(1, d), for d = 0 or 1.

Assumption 1 enables the causal effect of the treatment for the subpopulation of the
compliers to be identified. The SUTVA allows us to use the notation Ya(z, d) (or Da(z)),
which means that the outcome (treatment) for individual a is not affected by the values
of the treatment and instrument (instrument) for other individuals. Condition (2) will
be satisfied if Za is randomized. Condition (3) requires Za to have some effect on the
average probability of treatment. Condition (4), the monotonicity assumption, means that
the possibility of Da(0) = 1, Da(1) = 0 is excluded, that is, there are no defiers (see Table
1). Condition (5) assures that any effect of Za on Ya must be through an effect of Za on Da.
Under this assumption, the potential outcome can be written as Ya(d), instead of Ya(z, d).
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2.1.1. The outcome CDFs of the compliance classes. Define the outcome CDFs of com-
pliers without treatment, never-takers, compliers with treatment, and always-takers respec-
tively:

F (0)
co (t) = E(1{Y1(0) ≤ t}|D1(1) = 1, D1(0) = 0),

Fnt(t) = E(1{Y1(0) ≤ t}|D1(1) = 0, D1(0) = 0),

F (1)
co (t) = E(1{Y1(1) ≤ t}|D1(1) = 1, D1(0) = 0),

Fat(t) = E(1{Y1(1) ≤ t}|D1(1) = 1, D1(0) = 1). (2.1)

Denote F (t) = (F
(0)
co (t), Fnt(t), F

(1)
co (t), Fat(t)), the vector of the above CDFs. Under As-

sumption 1, these distributions are identified such as

F (0)
co (t) =P(Y1 ≤ t|Z1 = 0, S1 = co),

Fnt(t) =P(Y1 ≤ t|Z1 = 0, S1 = nt),

F (1)
co (t) =P(Y1 ≤ t|Z1 = 1, S1 = co),

Fat(t) =P(Y1 ≤ t|Z1 = 1, S1 = at). (2.2)

Next, for u, v ∈ {0, 1}, define

Fuv(t) = P(Y1 ≤ t|Z1 = u,D1 = v). (2.3)

Note that

F00(t) = P(Y1 ≤ t|Z1 = 0, D1 = 0)

=
P(Y1 ≤ t, Z1 = 0, D1 = 0, S1 = co) + P(Y1 ≤ t, Z1 = 0, D1 = 0, S1 = nt)

P(Z1 = 0, D1 = 0)

= λ0P(Y1 ≤ t|Z1 = 0, S1 = co) + (1− λ0)P(Y1 ≤ t|Z1 = 0, S1 = nt)

= λ0F
(0)
co (t) + (1− λ0)Fnt(t). (2.4)

where λ0 = P(S1 = co|Z1 = 0, D1 = 0). Similarly, it follows that F01(t) = Fat(t), F10(t) =
Fnt(t), and

F11(t) = λ1F
(1)
co (t) + (1− λ1)Fat(t). (2.5)

where λ1 = P(S1 = co|Z1 = 1, D1 = 1).
Next, consider the (unknown) proportions of compliance classes φ = (φnt, φat), where

φat = P(S1 = at), φnt = P(S1 = nt), φco = P(S1 = co), (2.6)

with φco + φat + φnt = 1. For u, v ∈ {0, 1}, define nuv :=
∑n

a=1 1{Za = u,Da = v}. Then
limn→∞ nuv/n→ P(Z1 = u,D1 = v) := ηuv, for all u, v ∈ {0, 1}. From Assumption 1,

η00 = φ0(φco + φnt), η01 = φ0φat, η10 = φ1φnt, η11 = φ1(φco + φat) (2.7)
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where φ0 = P(Z1 = 0) and φ1 = 1− φ0 = P(Z1 = 1). Moreover,

λ0 =
φco

φco + φnt
, λ1 =

φco
φco + φat

. (2.8)

Finally, let H = η00F00 + η01F01 + η10F10 + η11F11, be the mixture distribution of the
{Fuv}u,v∈{0,1}. Note that in the IV model, data from the outcome variable Y1, Y2, . . . , Yn
are i.i.d. from H.

2.1.2. Parameter space. As discussed above, the IV model has three sets of parameters

(F ,φ, φ1): the vector of outcome CDFs F (t) = (F
(0)
co (t), Fnt(t), F

(1)
co (t), Fat(t)) (defined in

(2.1)), the proportion of the compliance classes φ (2.6), and φ1 = P(Z1 = 1).
In this section, we define the various spaces associated with these parameters. To this

end, denote by RR and [0, 1]R the sets of all functions from R → R and R → [0, 1],
respectively. Let the set of all non-decreasing functions from R → [0, 1] be I([0, 1]R), and
the set of distribution functions from R → [0, 1] be P([0, 1]R). Define the unrestricted
parameter space

ϑ =
{

(θ(0)
co , θnt, θ

(1)
co , θat) : θ(0)

co , θnt, θ
(1)
co , θat ∈ RR

}
. (2.9)

The restricted parameter space is the subset of ϑ where each θ
(0)
co , θnt, θ

(1)
co , θat is a distri-

bution function. Formally,

ϑ+ =
{

(θ(0)
co , θnt, θ

(1)
co , θat) : θ(0)

co , θnt, θ
(1)
co , θat ∈ P([0, 1]R)

}
. (2.10)

For the parameters φ = (φat, φnt), with φco = 1− φat − φnt, the unrestricted parameter
space is R2, and the restricted parameter space is [0, 1]2+ := {(x, y) ∈ [0, 1]2 : 0 ≤ x+y ≤ 1}.
Finally, for the parameter φ1 = P(Z1 = 1), the parameter space is [0, 1]. Therefore, the
complete parameter spaces for the IV model are the following:

– the unrestricted parameter space is ϑ× R2 × [0, 1],
– the restricted parameter space is ϑ+ × [0, 1]2+ × [0, 1].

2.2. Review of the existing nonparametric method. In this section we recall the existing
method of estimating (F ,φ, φ1). To begin with, note that φ0 and φ1 can be easily estimated
from the sample proportions as φ̆0 = n00+n01

n and φ̆1 = 1 − φ̆0. Similarly, η00, η01, η10, η11,
and hence φco, φat, φnt, can be estimated directly from the sample proportions as follows:

φ̆ = (φ̆at, φ̆nt)
′ =

(
n01

n00 + n01
,

n10

n10 + n11

)′
, (2.11)

and φ̆co := 1− φ̆at − φ̆nt. These estimators will be referred to as the plug-in estimators for
the compliance classes. The plug-in estimators are consistent and asymptotically Gaussian
around their true values, however, in finite samples, it has the following drawback:
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– The plug-in estimator φ̆co can be negative in the sample (whenever n01n10 ≤ n00n11).
To make it non-negative, we can truncate it to zero whenever φ̆co is negative, but, then
φ̆co, φ̆at, φ̆at do not add up to 1. Our BL method, proposed in Section 3, addresses
this issue, by providing the MBL estimators φ̂co, φ̂at, φ̂at which are non-negative and
add up to 1.

To estimate the outcome CDFs of the compliance classes, Abadie (2002) used the fol-
lowing formulas for the CDFs of the potential outcome for compliers under treatment and
control, which holds under Assumptions 1:

F (1)
co (t) =

E(1{Y1 ≤ t}D1|Z1 = 1)− E(1{Y1 ≤ t}D1|Z1 = 0)

E(D1|Z1 = 1)− E(D1|Z1 = 0)
, (2.12)

and

F (0)
co (t) =

E(1{Y1 ≤ t}(1−D1)|Z1 = 1)− E(1{Y1 ≤ t}(1−D1)|Z1 = 0)

E((1−D1)|Z1 = 1)− E((1−D1)|Z1 = 0)
. (2.13)

Abadie (2002) proposed substituting the sample means for the expectation in (2.12) and
(2.13), which gives

F̆ (0)
co (t) =

(φ̆co + φ̆nt)F 00(t)− φ̆ntF 10(t)

φ̆co
, F̆ (1)

co (t) =
(φ̆co + φ̆at)F 11(t)− φ̆atF 01(t)

φ̆co
, (2.14)

where φ̆co, φ̆nt, φ̆at are the plug-in estimators of the proportions of the compliance classes
(2.11), and, for u, v ∈ {0, 1},

F uv(t) =
1

nuv

n∑
a=1

1{Za = u,Da = v, Ya ≤ t}, (2.15)

is the empirical distribution of (2.3) based on the observed data. The plug-in estimators
in (2.14) can be written as

F̆ (0)
co (t) =

F 00(t)− (1− λ̆0)F 10(t)

λ̆0

, F̆ (1)
co (t) =

F 11(t)− (1− λ̆1)F 01(t)

λ̆1

,

where λ̆0 = φ̆co/(φ̆co + φ̆nt) and λ̆1 = φ̆co/(φ̆co + φ̆at) are the plug-in estimators of λ0 and
λ1 respectively. Other CDFs such as Fnt and Fat are equal to the empirical distributions
F̆at := F 01 and F̆nt := F 10. Finally, we create a vector of those nonparametric plug-in
estimators of the outcome CDFs,

F̆ (t) := (F̆ (0)
co (t), F̆nt(t), F̆

(1)
co (t), F̆at(t))

′. (2.16)

There are three problems with the nonparametric plug-in estimators which this paper
seeks to improve:
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Table 2
The structure of the data for the single consent design

Za Da Compliance Classes Distribution Count

0 0 Never-Takers/Compliers without treatment λ0F
(0)
co + (1− λ0)Fnt n00

1 0 Never-Takers Fnt n10

1 1 Compliers with treatment F
(1)
co n11

(1) The plug-in estimators F̆
(1)
co (t) and F̆

(0)
co (t) always violate the non-decreasing condition

of CDFs.
(2) The plug-in estimators may produce estimates which are outside of the interval [0,1].

This is called the violation of non-negativeness.
(3) Finally, the plug-in estimators can be highly unstable in the weak instrument setting

(meaning that the IV is only weakly associated with the treatment so that there are
a small proportion of compliers) because the denominators of both equations (2.12)
and (2.13) depend on the proportion of compliers in the entire population.

The three problems arise at the same time when the IV is weak or the sample size is
relatively small. The maximum binomial likelihood (MBL) method proposed in Section 3
overcomes these issues and has the appealing properties of likelihood methods.

2.3. Failure of usual nonparametric likelihood methods for the IV model. Usual non-
parametric likelihood methods, when they are applied to the IV model, are to maximize the
likelihood under Assumptions 1 and the assumption that the data is independent and iden-
tically distributed. No further assumptions about the distribution of the data are needed
(see Owen (2001) for a general discussion of nonparametric maximum likelihood). To see
that usual nonparametric likelihood methods do not work well for the IV model, we consider
the single consent design where the treatment is only available for encouraged subjects.
Consequently, there are only never-takers and compliers (Zelen, 1979), see Table 2. We also
assume that the proportion of compliers given Za = 0, P(Sa = co|Za = 0, Da = 0) = λ0,
and the probability of being assigned to no encouragement, P(Za = 0) = φ0 are known. We

will focus on estimating Fnt and F
(0)
co . The outcome distribution of compliers with treat-

ment F
(1)
co can be identified from the data Ya|Za = 1, Da = 1. Moreover, since the data

Ya|Za = 1, Da = 1 provide no information about the never-takers’ distribution or the com-
pliers without treatment distribution, we will ignore this part of the data in what follows.
As we ignore the data with Za = 1, Da = 1, Za = 1 automatically implies Za = 1, Da = 0.

Nonparametric maximum likelihood puts point masses at all observed values, Ya = ya
(Owen, 2001). Let dFnt(ya) = pa and dF

(0)
co (ya) = qa. Then, the log-likelihood function (up

to an additive constant) is given by

`(p, q) =

n∑
a=1

[1{Za = 1} log pa + 1{Za = 0} log(λ0qa + (1− λ0)pa)] .
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where p = (p1, . . . , pn), q = (q1, . . . , qn) and n = n00 + n10. Now, we need to solve the
following optimization problem;

maximize `(p, q) subject to
n∑
a=1

pa =
n∑
a=1

qa = 1.

It is easy to see that the solution for this optimization problem is any set of (pa, qa),
a ∈ [n] := {1, 2, . . . , n} that satisfies the following condition:

pa =
1

(1− λ0)(n10 + n00)
when Za = 1, λ0qa + (1− λ0)pa =

1

n10 + n00
when Za = 0.

(2.17)

Observe that there are infinitely many pairs of (p, q) which satisfy this condition: there
are 2n parameters to estimate, but there are only n equations in (2.17). To illustrate the
difficulties that arise, we consider a simple numerical example.

Example 1. Suppose we have two observations (0.99, 1.99) with Za = 1, Da = 0
(from Fnt), and three observations (1, 2, 5) with Za = 0, Da = 0 (from the mixture of

λ0F
(0)
co +(1−λ0)Fnt with the known λ0 = 1/3). Since we assume λ0 = 1/3, we roughly expect

that two of the three subjects in the subpopulation Za = Da = 0 are never-takers and one
is a complier. As the observations (0.99, 1.99) in the subpopulation Za = 1, Da = 0 are from
Fnt, it seems natural to estimate that of the observations (1, 2, 5) in the subpopulation
Za = Da = 0, 1 and 2 are never-takers (since they are close to our never-takers’ outcomes

0.99 and 1.99) and the observation 5 is a complier (that is, F
(0)
co puts probability 1 on the

point mass 5). In other words, dFnt = (0.25, 0.25, 0.25, 0.25, 0) and dF
(0)
co = (0, 0, 0, 0, 1) on

(0.99, 1, 1.99, 2, 5) can be natural estimates. However, these estimates cannot be obtained
from equation (2.17) and in fact, one of infinitely many solutions to equation (2.17) is

dFnt = (0.3, 0, 0.3, 0.1, 0.3) and dF
(0)
co = (0, 0.6, 0, 0.4, 0) on (0.99, 1, 1.99, 2, 5), which

are much different from the natural estimates. This results from the fact that the usual
nonparametric maximum likelihood approach ignores the closeness between the observed
data points. The only notion of closeness it considers between two distributions is their
probability of giving exactly the same value.

For settings in which usual nonparametric likelihood methods do not produce a unique
estimate, Bickel et al. (1993) discuss three modifications: the method of sieves, the method
of regularization (most commonly, penalized maximum likelihood) and regularized maxi-
mum likelihood method. However, Bickel et al. (1993) point out that all the three methods
bring in additional choices that have to be made. For example, for the method of regular-
ization, the tuning parameter and the penalty functional must be specified. The selection
of the tuning parameter requires additional procedures such as cross-validation. In this
paper, we would like to consider a nonparametric maximum likelihood method which takes
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advantage of the identifiability without introducing choice parameters. Our proposed ap-
proach automatically selects locations where it puts point masses when estimating the
distribution.

3. The binomial likelihood method. In this section we describe the MBL estima-
tion method in IV models and study its properties: The method is described in Section
3.1 starting with introducing the concept of the binomial likelihood. Then, the asymptotic
properties of the MBL estimators are discussed in Section 3.2. The performance of the
MBL estimation method is evaluated with simulations in Section 5.

3.1. Binomial likelihood in IV models. Define θ : R→ [0, 1]4 such that

θ(t) = (θ(0)
co (t), θnt(t), θ

(1)
co (t), θat(t)),

where θ
(0)
co , θnt, θ

(1)
co , θat : R→ [0, 1] are functional variables representing the outcome CDFs

of compliers without treatment, never-takers, compliers with treatment, and always-takers,
respectively. Moreover, for u, v ∈ {0, 1}, replacing Fuv by θuv in (2.3) to emphasize the fact
that it is a variable,

θuv(t) = P(Y1 ≤ t|Z1 = u,D1 = v). (3.1)

Next, define χ = (χnt, χat) the variables corresponding to the proportions of never-takers
and always-takers. (The proportion of compliers is χco = 1−χnt−χat). Finally, denote by υ
the variable for the proportion of individuals receiving the instrument, that is, P(Z1 = 1).

Denote the data Dn := ((Y1, Z1, D1), (Y2, Z2, D2), . . . , (Yn, Zn, Dn))′. For u, v ∈ {0, 1}
denote the event Ka

uv := {Za = u,Da = v}. The probability P(Ka
uv) can be easily computed

in terms of the variables (χ, υ), as shown in (A.1). Then, given the data and u, v ∈ {0, 1},
we can define a two-point binomial likelihood function for the data points (Ya, Yb) as follows:

L
(u,v)
Ya,Yb

(θ,χ, υ|Dn) =


P(Ya ≤ Yb) on Ka

uv and {Ya ≤ Yb}
P(Ya > Yb) on Ka

uv and {Ya > Yb}
1 otherwise

=


P(Ka

uv) · θuv(Yb) on Ka
uv and {Ya ≤ Yb}

P(Ka
uv) · (1− θuv(Yb)) on Ka

uv and {Ya > Yb}
1 otherwise

, (3.2)

where the last step uses (3.1) above. One natural way to obtain a composite likelihood for
the IV model, is to combine (3.2) over u, v ∈ {0, 1} and all pairs a, b ∈ [n] := {1, 2, . . . , n}.
This essentially gives us the binomial likelihood, which we formally describe below:

– For every b ∈ [n], we combine (3.2) over u, v ∈ {0, 1} and a ∈ [n] to get the likelihood
function at the point Yb as follows:

LYb(θ,χ, υ|Dn) :=

n∏
a=1

∏
u,v∈{0,1}

L
(u,v)
Ya,Yb

(θ,χ, υ|Dn). (3.3)
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– Note that the contributions of the one-point likelihoods are, obviously, not indepen-
dent over b ∈ [n]. Nevertheless, pretending they are independent, we can combine
the one-point likelihoods over b ∈ [n], and obtain a ‘quasi-likelihood’ for IV model.
However, to avoid dealing with potentially vanishing probabilities in the boundary,
instead of taking the product over all b ∈ [n], we take the product a over truncated
set. To this end, fix 0 < κ < 1/2, and define the binomial likelihood (BL) function
for the IV model as:

Lκ(θ,χ, υ|Dn) =
∏
b∈Iκ

LY(b)
(θ,χ, υ|Dn), (3.4)

where Iκ := [dnκe, dn(1−κ)e] and Y(r) is the r-th order statistic of the set {Y1, Y2, . . . , Yn},
for r ∈ [n].

Remark 3.1. Note that the one-point log-likelihood functions (3.3) blow up for the
extreme order statistics. To avoid technicalities arising from this, we define the BL function
(3.4) over the central order statistics, that is, for b ∈ Iκ. Throughout the paper, κ will be
any small fixed constant, and the asymptotics will be in the regime where the sample
size n grows to infinity, keeping κ fixed. This estimates the CDFs of the compliance classes
accurately on the bulk of the support of H, the distribution function of the outcome variable
(see Theorem 3.2 for details). Hereafter, we omit dependence on κ in the BL functions, for
notational brevity.

Given the binomial likelihood function (3.4), we obtain the estimates of (θ,φ, φ1) by
maximizing it over their corresponding parameters spaces:

Definition 3.1. The maximum binomial likelihood (MBL) estimator of (θ,φ, φ1) is
defined as:

(F̂ , φ̂, φ̂1) := arg max
θ∈ϑ+,χ∈[0,1]2+,ϕ∈[0,1]

L(θ,χ, υ|Dn), (3.5)

where ϑ+ and [0, 1]+ are the restricted parameter spaces as defined in Section 2.1.2. Note

that (3.5) only defines F̂ = (F̂
(0)
co , F̂nt, F̂

(1)
co , F̂at)

′ at the knots {Y(b)}b∈Iκ . To ensure (3.5) is

well-defined, we extend F̂ between the knots by coordinate-wise right-continuous interpo-
lation, and extrapolating beyond the knots by to 0 and 1.

The intuitive rationale behind choosing the BL for estimating (F ,φ) is the following:
The nonparametric plug-in method uses equations (2.12) and (2.13) to estimate the CDFs
for compliers with and without treatment. The plug-in method identifies the CDFs for the
compliers at any given point using information on whether outcomes are less than or equal
to that point or not. The advantage of the binomial likelihood over the plug-in method
is that it ties together the information from equations (2.12) and (2.13), by averaging the
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likelihoods of these binomial random variables at each point (the one point likelihood-
functions) across all observed data points. In fact, maximizing the BL function over the
unrestricted parameter space ϑ × R2 (recall (2.9)) gives the plug-in estimates (F̆ , φ̆) (see
Lemma A.1 in Appendix A.2). Therefore, to get estimates of (F ,φ) satisfying the non-
negative and non-decreasing constraints, it is natural to maximize the BL function over
the restricted space, as in Definition 3.1.

The full expression of the BL function is long and unwieldy. However, we can re-write
this in a compact and instructive form, by grouping and re-arranging the terms. Define the
following quantities:

T
(n)
00 (θ(0)

co , θnt,χ) =
1

n

∑
b∈Iκ

n00

n

{
log (1− χat) + J(F 00(Y(b)),

χco
χco + χnt

θ(0)
co (Y(b)) +

χnt
χco + χnt

θnt(Y(b)))

}
,

T
(n)
10 (θnt,χ) =

1

n

∑
b∈Iκ

n10

n

{
logχnt + J(F 10(Y(b)), θnt(Y(b)))

}
,

T
(n)
01 (θat,χ) =

1

n

∑
b∈Iκ

n01

n

{
logχat + J(F 01(Y(b)), θat(Y(b)))

}
,

T
(n)
11 (θ(1)

co , θat,χ) =
1

n

∑
b∈Iκ

n11

n

{
log (1− χnt) + J(F 11(Y(b)),

χco
χco + χat

θ(1)
co (Y(b)) +

χat
χco + χat

θat(Y(b)))

}
,

where the function J(x, y) := x log y + (1− x) log(1− y). Finally, define

Mn(θ,χ) = T
(n)
00 (θ(0)

co , θnt,χ) + T
(n)
10 (θnt,χ) + T

(n)
01 (θat,χ) + T

(n)
11 (θ(1)

co , θat,χ). (3.6)

With these definitions, we have the following proposition, which follows by direct sub-
stitution. The proof is given in Appendix A.2.

Proposition 3.1. Let (F̂ , φ̂, φ̂1) be as defined in (3.5). Then

φ̂1 =
n10 + n11

n
. (3.7)

Moreover,

(F̂ , φ̂) = arg max
θ∈ϑ+,χ∈[0,1]2+

Mn(θ,χ), (3.8)

where Mn is as defined above in (3.6).

This proposition shows that the MBL estimate of φ1 is the proportion of individuals with
instrument (that is, Za = 1) in the observed sample. Furthermore, the MBL estimates
of F and φ can be obtained by maximizing the function Mn (defined above in (3.6)).
Hereafter, we refer to function Mn as the sample binomial log-likelihood or the sample
objective function.
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3.2. Theoretical results. In this section we discuss the asymptotic properties of the MBL
estimators (F̂ , φ̂), and how they compare with the plug-in estimators (F̆ , φ̆) (recall (2.14)
and (2.11)). We have the following assumption:

Assumption 2. Let φ = (φnt, φat) be as defined (2.6) and Fuv, for u, v ∈ {0, 1}, be as
in (2.4) and (2.5). Throughout the paper we assume the following:

(a) The proportion vector φ belongs to the interior of the parameter space [0, 1]2+.
(b) The CDFs {Fuv}u,v∈{0,1} are continuous, strictly increasing, and have the same support.
(c) There exists constants 0 < C1 ≤ C2 <∞ such that

C1|s− t| ≤ |Fuv(s)− Fuv(t)| ≤ C2|s− t|,

for all K ⊂ R compact, s, t ∈ K, and u, v ∈ {0, 1}.

In particular, Assumption 2 holds whenever the functions {Fuv}u,v∈{0,1} are differentiable
and the derivatives are uniformly bounded above and below, that is, C1 ≤ F ′uv(t) ≤ C2, for
all t ∈ K, and K ⊂ R compact. Under this assumption we show that the MBL estimators
and the plug-in estimators have mean squared error converging to zero, after rescaling by√
n. Recall that H :=

∑
u,v∈{0,1} ηuvFuv is the true population outcome distribution of the

outcome variable Y , and define Jκ = [H−1(κ), H−1(1− κ)].

Theorem 3.2. Fix 0 < κ < 1/2. Then the MBL estimators (F̂ , φ̂) (3.5) and the plug-in
estimators (F̆ , φ̆) (recall (2.14) and (2.11)), satisfy

1

n

∑
b∈Iκ

||
√
n{F̂ (Y(b))− F̆ (Y(b))}||22 = oP (1), (3.9)

and ˆ
Jκ

||
√
n{F̂ (t)− F̆ (t)}||22dH = oP (1), (3.10)

where the oP (1) term goes to zero as n→∞. Moreover, ||
√
n(φ̂− φ̆)||22 = oP (1).

The proof of Theorem 3.2 is given in Appendix B. The main technical step in the proof
is to show that the difference between the values of the objective function Mn evaluated
at the MBL estimators (F̂ , φ̂) and at the plug-in estimators (F̆ , φ̆) is small, that is,

Mn(F̆ , φ̆)−Mn(F̂ , φ̂) = oP (1/n). (3.11)

To show this, we consider F̃ := (F̃
(0)
co (t), F̃at(t), F̃nt(t), F̃

(0)
co (t)) that is the least-square

projection of F̆ onto the space of distributions functions (see Definition B.1). This can
be computed using the PAVA algorithm (Appendix E.1), and the closed form expression
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for F̃ is well-known, see, for instance, Robertson, Wright and Dykstra (1988). Then using
standard concentration inequalities, we can show that∑

b∈Iκ

(
F̃ (u)
co (Y(b))− F̆ (u)

co (Y(b))
)2

= oP (n−
1
4 ) (3.12)

for u ∈ {0, 1}; this result might be of independent interest. The result of (3.12), together
with the definition of Mn implies (3.11) (Proposition B.1). The proof of Theorem 3.2
can then be completed by a Taylor-series approximation of the objective function Mn

(Lemma B.5). However, since the number of parameters grow with the sample size and
the proportion of the compliance classes are unknown, the remainder terms have to be
carefully analyzed.

As the plug-in estimators (F̆ , φ̆) are consistent estimators of (F ,φ), Theorem 3.2 implies
that the MBL estimators are also consistent, that is,

ˆ
Jκ

||F̂ (t)− F (t)||22dH = oP (1).

Moreover, the plug-in estimators and the MBL estimators have the same limiting distri-
bution, which can be derived using the Brownian bridge approximation of the empirical
distribution functions. This is derived in Corollary B.2 in Appendix B.3.

Remark 3.2. The proof of Theorem 3.2 can be easily modified to show finite dimen-
sional convergence, that is, for every s ≥ 1 and given t1 < t2 · · · < ts,

(||
√
n(F̂ (ta)− F̆ (ta))||22)a∈[s] = oP (1).

This would imply that the finite dimensional distributions of the plug-in estimate process√
n(F̆ (t) − F (t)) and the MBL estimate process

√
n(F̂ (t) − F (t)) are asymptotically the

same. We present this result in terms of the mean-squared error as in (3.10), because it
emerges naturally from the asymptotics of the BL function, and can be directly applied to
the analysis of the binomial likelihood ratio test that is introduced in Section 6.

4. Computation of the MBL estimate. There are no closed form solutions to the
MBL estimators. However, they can be computed efficiently by using a combination of
the expectation-maximization (EM) algorithm and the pool-adjacent-violator algorithm
(PAVA). The procedure begins by computing the complete data binomial likelihood which
encodes the information of the unobserved compliance class membership. Then the com-
plete data binomial likelihood is maximized using the EM algorithm. However, since the
true parameters F (Y(b))b∈Iκ need to satisfy the non-decreasing condition, the maximization
step in the EM algorithm is implemented using the PAVA algorithm, which enforces the
monotonicity condition. We call this combined algorithm the EM-PAVA algorithm.
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To begin with, we introduce the complete data Dn including the compliance class mem-
bership S, Dn := ((Y1, Z1, D1, S1), (Y2, Z2, D2, S2), . . . , (Yn, Zn, Dn, Sn))′. The variable Sa
is co if a is a complier. Similarly, Sa = nt if a is a never-taker and Sa = at if the subject a
is an always-taker.

Note that if Za and Sa are known, thenDa is definitely determined, for example, if Za = 0
and Sa = co, then Da = 0. For u ∈ {0, 1}, denote the event Ka

u,s := {Za = u, Sa = s},
where s ∈ {co, at, nt}. As in (3.2), given the complete data, we can define a two-point
complete likelihood function for the data points (Ya, Yb) as follows:

L
(u,s)
Ya,Yb

(θ,χ, υ|Dn) =


P(Ya ≤ Yb) on Ka

u,s and {Ya ≤ Yb}
P(Ya > Yb) on Ka

u,s and {Ya > Yb}
1 otherwise

=


P(Ka

u,s) · P(Ya ≤ Y(b)|Ka
u,s) on Ka

u,s and {Ya ≤ Yb}
P(Ka

u,s) · P(Ya > Y(b)|Ka
u,s) on Ka

u,s and {Ya > Yb}
1 otherwise.

(4.1)

As in (3.4), this can be combined over a, b, u and s to get the complete binomial likelihood.

L(θ,χ, υ|Dn) :=
∏
b∈Iκ

n∏
a=1

∏
s∈{co,at,nt}

∏
u∈{0,1}

L
(u,s)
Ya,Yb

(θ,χ, υ|Dn). (4.2)

It is easy to see that

P(Ya ≤ t|Ka
u,co) = θ(u)

co , P(Ya ≤ t|Ka
u,nt) = θnt, P(Ya ≤ t|Ka

u,at) = θat, (4.3)

and

P(Ka
u,s) =


υu(1− υ)1−uχco if s = co
υu(1− υ)1−uχat if s = at
υu(1− υ)1−uχnt if s = nt.

(4.4)

Using this (4.2) can be computed as function of θ,χ, υ, and, as in the proof of Proposition
3.1 (see Appendix A.2), the dependence on υ in the complete data likelihood is separable,
that is,

logL(θ,χ, υ|Dn) = `(υ) + logL(θ,χ|Dn) (4.5)

where `(υ) = |Iκ| {(n00 + n01) log(1− υ) + (n10 + n11) log υ}, and logL(θ,χ|Dn) does not
depend on υ. Hereafter, we will refer to logL(θ,χ|Dn) as the complete data binomial
log-likelihood. This can now be used to devise a EM-type algorithm for computing the
MBL estimates: Initialize θ(0),χ(0) to some random values that lie in the parameter space
ϑ+× [0, 1]2+. Given the estimates θ(m),χ(m) at the m-th step of the iteration, the (m+1)-th
step is as follows:
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– (Expectation Step) The expectation step of the (m+ 1)-th iteration of the algorithm
is as follows: We denote the outputs of the m-th iteration as

θ̂(m) = (θ
(0)
co,(m),θnt,(m),θ

(1)
co,(m),θat,(m))

and χ̂(m) = (χnt,(m), χat,(m)). Given these outputs and the observed data Dn =
((Y1, Z1, D1), (Y2, Z2, D2), . . . , (Yn, Zn, Dn))′, the expected complete binomial log-likelihood
given Dn is

Qm(θ,χ|θ̂(m), χ̂(m)) := Eθ̂(m),χ̂(m)

(
logL(θ,χ|Dn) | Dn

)
. (4.6)

This can be easily calculated (see Lemma E.1 in Appendix E.2.1 for details).
– (Maximization Step) To begin with, define

(θ̆(m+1), χ̂(m+1)) = arg max
θ∈ϑ,χ∈R2

Qm(θ,χ|θ̂(m), χ̂(m)). (4.7)

Note that

θ̆(m+1) =


θ̆

(0)
co,(m+1)

θ̆nt,(m+1)

θ̆
(1)
co,(m+1)

θ̆at,(m+1).


where θ̆

(0)
co,(m+1) = (θ̆

(0)
co,(m+1)(Y(b)))b∈Iκ , and similarly for θ̆nt,(m+1), θ̆

(1)
co,(m+1), and

θ̆at,(m+1).

Observe that (θ̆(m+1), χ̂(m+1)) is the unrestricted maximizer of Qm(θ,χ|θ̂(m), χ̂(m)).
Hence, it can easily computed by solving the first-order conditions by taking the
gradient of the Qm(θ,χ|θ(m), χ̂(m)) with respect to (θ(Y(b)))b∈Iκ and χ, and equating
it to zero. The estimates can be found in Lemma E.3. Moreover, Lemma E.3 also

shows that χ̂(m+1) = (χ̂
(m+1)
nt , χ̂

(m+1)
at )′ is actually in the restricted space [0, 1]2+, that

is, χ̂
(m+1)
nt , χ̂

(m+1)
at ∈ [0, 1] and 0 ≤ χ(m+1)

nt + χ
(m+1)
at ≤ 1. This implies

(θ̆(m+1), χ̂(m+1)) = arg max
θ∈ϑ,χ∈[0,1]2

Qm(θ,χ|θ̂(m), χ̂(m))

= arg max
θ∈ϑ,χ∈[0,1]2+

Qm(θ,χ|θ̂(m), χ̂(m)). (4.8)

However, in general, θ̆(m+1) /∈ ϑ+, because θ̆(m+1) may not satisfy the non-decreasing
condition of distribution functions. To ensure the monotonicity constraint we apply
the PAVA algorithm (refer to Appendix E.1 for more details on the PAVA algorithm)
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to the estimate θ̆(m) as follows:1

θ̂(m+1) := PAVAw


θ̆

(0)
co,(m+1)

θ̆nt,(m+1)

θ̆
(1)
co,(m+1)

θ̆at,(m+1)

 (4.9)

where the PAVA operation is applied coordinate-wise and the weight vector isw(m+1) =

(w
(0)
co,(m+1),wnt,(m+1),w

(1)
co,(m+1),wat,(m+1))

′ with weights as defined in (E.7) in Ap-
pendix E.2.2.

The following result shows that the output of the PAVA algorithm with the weights as
above, indeed maximize the expected complete data log-likelihood under the non-decreasing
condition:

Proposition 4.1. Let θ̆(m) be as defined in (4.7). Then

(θ̂(m+1), χ̂(m+1)) = arg max
θ∈ϑ+,χ∈[0,1]2+

Qm(θ,χ|θ̂(m), χ̂(m)),

where θ̂(m+1) is defined above in (4.9).

The proof of the above result is given in Appendix E.2.2. To summarize, the maxi-
mization step can be completed by using the following two step procedure: (1) obtain
(θ̆(m+1), χ̂(m+1)) by maximizingQm(θ,χ|θ̂(m), χ̂(m)) over the unrestricted parameter spaces

and (2) obtain (θ̂(m+1), χ̂(m+1)) by applying the PAVA to (θ̆(m+1), χ̂(m+1)).
The entire expectation and maximization steps are repeated until the values converge.

5. Simulation. In this section we conduct a simulation study to evaluate the perfor-
mance of our proposed MBL estimation method. We consider three different methods to
estimate the outcome CDFs for compliers; the MBL method, the plug-in estimation method
described in Section 2.2 and a parametric normal mixture method of Imbens and Rubin
(1997). The parametric normal mixture model assumes that all outcome distributions for
compliance classes have normal distributions. Then, using the EM algorithm, it estimates
the means and the variances of the outcome distributions. Specifically, we consider two
simulation scenarios: (1) normal mixture models and (2) gamma mixture models.

Moreover, in each scenario, we consider two more factors that can affect the performance
of these three methods. First, we consider whether there is any effect of the treatment for

compliers, that is, whether the outcome distributions of F
(0)
co and F

(1)
co are the same or not

1Recall that PAVA algorithm takes input a vector u = (u1, . . . , un)′ and an a weight vector w =
(w1, . . . , wn)′, and returns another vector PAVAw(u) := (û1, . . . , ûn)′ which minimizes

∑n
i=1 wi(ui − vi)

2,
under the constraint that v1 ≤ v2 ≤ · · · ≤ vn.
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Table 3
Normal Mixture. The average performance comparison between the MBL method, the plug-in method and
the parametric normal mixture method when the true distributions are normal; L2 dist. means the average

discrepancy from the true CDF.

MBL Plug-in Parametric

Causal
effect IV Z L2 dist. SE L2 dist. SE L2 dist. SE

No Strong Z = 0 0.0030 0.0028 0.0031 0.0029 0.0016 0.0023
No Strong Z = 1 0.0030 0.0028 0.0031 0.0029 0.0016 0.0023

Some Strong Z = 0 0.0030 0.0030 0.0031 0.0031 0.0017 0.0026
Some Strong Z = 1 0.0030 0.0028 0.0031 0.0029 0.0017 0.0025

No Weak Z = 0 0.0287 0.0307 0.0951 0.7838 0.0182 0.0287
No Weak Z = 1 0.0274 0.0312 0.0934 0.8526 0.0188 0.0312

Some Weak Z = 0 0.0277 0.0288 0.0764 0.5993 0.0176 0.0269
Some Weak Z = 1 0.0301 0.0343 0.0773 0.3546 0.0184 0.0272

the same. Second, we consider whether the IV is strong or weak. The strength of an IV
is how strongly the IV is associated with the treatment. One common definition of a weak
IV is that the first stage F -statistic when the treatment is regressed on the IV is less than
10 (Stock, Wright and Yogo, 2002). We consider a strong IV setting where the proportions
of subpopulations (co, nt, at) is (1/3, 1/3, 1/3) (average first stage F -statistic≈124) and
a weak IV setting where proportions of (co, nt, at) = (0.10, 0.45, 0.45) (average first stage
F -statistic≈10).

Every simulation is repeated for 10,000 times with the sample size n = 1000, and the
performance of estimating the true CDFs is compared in terms of the average discrepancy,
where measurement of the discrepancy between the estimated and the true CDFs is defined
by L2 distance, that is, if the true CDF is F and our estimated CDF is F̂ , the L2 distance
is

L2(F, F̂ ) =

ˆ
(F (x)− F̂ (x))2dF (x). (5.1)

Example 2. (Normal Mixture) For the case that there is no causal effect of Z1 on Y1

for the compliers we consider

F (0)
co = F (1)

co ∼ N(0, 42), Fnt ∼ N(2, 42), Fat ∼ N(−2, 42),

and for the case that there is some effect of Z1 on Y1 we consider

F (0)
co ∼ N(1, 42), F (1)

co ∼ N(−1, 42), Fnt ∼ N(2, 42), Fat ∼ N(−2, 42).

Table 3 shows simulation results for the normal mixture case. It is shown that the average
performance of the MBL method is better than that of the plug-in estimation method in all
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Fig 1: A simulation result for the MBL estimate and the plug-in estimate when the IV is
weak.

cases, and it is not much different from the average performance of the parametric normal
mixture method that assumes the correct parametric distributions. All three method are
greatly affected by the IV being weak. In particular, the plug-in method is more sensitive to
the IV being weak; the plug-in estimation method and the MBL method perform similarly
when the IV is strong but the MBL method is much better than the plug-in estimation
method when the IV is weak. Figure 1 shows the comparison between the plug-in estimate
and the MBL estimate when the IV is weak for a randomly selected simulation. Even
when n = 1000 is comparatively large, the plug-in estimate is significantly fluctuating. The
BL estimate, the staircase-like solid curve, is much smoother and closer to the true CDF
than the plug-in estimate, the dashed curve. Moreover, the plug-in estimate violates the
non-decreasing condition for a CDF while the MBL estimate respects the non-decreasing
condition.

The above example shows that, under the normal assumption, the normal parametric
mixture method is, as expected, the best method of the three methods. However, the
assumption of normality is a strong assumption. If normality does not hold, then the
normal parametric method is no longer the best, as illustrated in the following example:

Example 3. (Gamma Mixture) Let Γ(α, β) be a Gamma distribution with shape α
and rate β. For the case that there is no causal effect of Z1 on Y1 for the compliers we
consider

F (0)
co = F (1)

co ∼ Γ(1.2, 1), Fnt ∼ N(1, 1), Fat ∼ N(1.4, 1),
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Table 4
Gamma Mixture case. The average performance comparison between the MBL method, the plug-in

estimation method and the parametric normal mixture method when the true distributions are non-normal;
L2 dist. means the average discrepancy from the true CDF.

MBL Plug-in Parametric

Causal
effect IV Z L2 dist. SE L2 dist. SE L2 dist. SE

No Strong Z = 0 0.0030 0.0029 0.0031 0.0030 0.0054 0.0128
No Strong Z = 1 0.0029 0.0029 0.0030 0.0030 0.0061 0.0172

Some Strong Z = 0 0.0029 0.0027 0.0030 0.0028 0.0148 0.0443
Some Strong Z = 1 0.0028 0.0027 0.0029 0.0027 0.0198 0.0608

No Weak Z = 0 0.0290 0.0310 0.1048 0.9679 0.0888 0.1239
No Weak Z = 1 0.0271 0.0312 0.1116 1.6740 0.0753 0.1266

Some Weak Z = 0 0.0280 0.0294 0.0523 0.1292 0.0711 0.1173
Some Weak Z = 1 0.0271 0.0285 0.0508 0.1039 0.1047 0.1371

and for the case that there is some effect of Z1 on Y1 we consider that

F (0)
co ∼ Γ(1.1, 1), F (1)

co ∼ Γ(1.3, 1), Fnt ∼ N(1, 1), Fat ∼ N(1.4, 1).

The results are summarized in Table 4. It shows that the MBL method is the dominant
method in all scenarios considered when normality is not satisfied. Though the plug-in
estimation method has a similar performance in the strong IV setting, it is much worse
than the MBL method in the weak IV setting as in the normal mixture model setting. Also,
the parametric normal mixture method has significantly increased average discrepancies
with large standard errors.

The above examples show that MBL method is robust to any distribution assumption
and is the least sensitive to the IV being weak.

6. Testing for distributional treatment effect. A central question in many obser-
vational studies is to understand if the treatment has any effect on the distribution of an
outcome. Under the IV assumptions, this corresponds to testing whether the treatment has
any effect on the outcome distribution for compliers. The null hypothesis can be formulated
by as follows:

H0 : F (0)
co (t) = F (1)

co (t), for all t ∈ R. (6.1)

The MBL method can be used to construct a likelihood-ratio type test statistic in a sim-
ilar way that the maximum likelihood estimation method can be extended to constructing
a likelihood ratio test. We take the difference in two binomial log-likelihood values; one is

obtained with the constraint F
(0)
co = F

(1)
co and the other is obtained without this constraint.

This gives a new test for detecting the distributional treatment effect (6.1), and hereafter,
we call it the binomial likelihood ratio test (BLRT), which is described in Section 6.2.
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Before introducing the BLRT, we will quickly review the existing method for testing
(6.1) from Abadie (2002).

6.1. Existing approach. The existing approach for testing (6.1) is based on the following
observation, which is obtained by taking the difference of (2.12) and (2.13):

F (0)
co (t)− F (1)

co (t) = K · (F0(t)− F1(t)), (6.2)

where F0(t) = P(Y1 ≤ t|Z1 = 0), F1(t) = P(Y1 ≤ t|Z1 = 1), and K = 1/(E(D1|Z1 =
1)− E(D1|Z1 = 0)) <∞.

This implies that the null hypothesis of no distributional treatment effect is the same as
the testing F0 = F1. Note that the distributions F0 and F1 can be estimated directly by
their corresponding empirical distribution functions:

F 0(t) =

∑n
b=1 1{Yb ≤ t, Zb = 0}∑n

b=1 1{Zb = 0}
and F 1(t) =

∑n
b=1 1{Yb ≤ t, Zb = 1}∑n

b=1 1{Zb = 1}
.

Therefore, Abadie (2002) proposed using the well-known Kolmogorov-Smirnov test statistic

TKS := sup
t∈R
|F 0(t)− F 1(t)|,

for testing (6.1). In other words, the test proposed by Abadie (2002) is the KS test of
whether the distribution of the Z1 = 0 group is the same as the distribution of the Z1 = 1
group. The KS test does not make any use of the structure of the IV model. Also, it does

not require accurate estimation of the two distributions F
(0)
co and F

(1)
co , which often leads

to a comparatively low power when sample size is not large. Furthermore, when an IV is
weak (that is, the proportion of compliers φco is small), the power of the KS test gets worse

because the KS test reduces the difference between F
(0)
co and F

(1)
co by a factor 1/K from

(6.2).

6.2. Binomial likelihood ratio test. The MBL estimators of the true CDFs F , can be
obtained by maximizing the binomial log-likelihood Mn over the restricted parameter space
as introduced in Section 3. The same maximizing scheme can be used to estimate the

outcome CDFs under the null by imposing an additional restriction of F
(0)
co = F

(1)
co over

the restricted null parameter space that is defined as

ϑ+,0 =
{

(θco, θnt, θat) : θco, θnt, θat ∈ P([0, 1]R)
}
, (6.3)

where P([0, 1]R) is the set of distribution functions from R→ [0, 1].
Now, the BLRT statistic is obtained by taking the difference of the binomial log-

likelihoods under the null and the alternative:

Tn := max
θ∈ϑ+

Mn(θ, φ̆)− max
θ∈ϑ+,0

Mn(θ, φ̆), (6.4)
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where ϑ+ and ϑ+,0 are the restricted parameter space the restricted null parameter space,
defined in (2.10) and (6.3), respectively. Note that, unlike in Section 3, we estimate the
proportion of the compliance classes φ by the plug-in estimates φ̆, instead of maximizing
the binomial log-likelihood for the parameter φ. Both the approaches have very similar
finite sample performances, since φ̆ ∈ [0, 1]2+ with probability 1, and using φ̆ simplifies the
asymptotic analysis of the BLRT.

Theorem 6.1. Let Tn be the BLRT statistic as defined in (6.4). Then, for 0 < κ < 1/2
fixed,

Tn =
1

n

∑
b∈Iκ

(F̆
(0)
co (Y(b))− F̆

(1)
co (Y(b)))

2∑
u,v∈{0,1}

1
λ̆2
uv

n
nuv

F uv(Y(b))(1− F uv(Y(b)))
+ oP (1), (6.5)

where λ̆00 = λ̆0, λ̆01 = λ̆1

1−λ̆1
, λ̆10 = λ̆0

1−λ̆0
, and λ̆11 = λ̆1.

The above theorem gives an asymptotically equivalent representation of the BLRT statis-
tic, which can be used to devise a bootstrap strategy for simulating the null distribution
of BLRT statistic and constructing the rejection region. To this end, define

ψ̂ = (ψ̂co, ψ̂nt, ψ̂at)
′ := arg max

ψ∈ϑ+,0

Mn(ψ, φ̆).

Let B be the number of bootstrap samples. For 1 ≤ t ≤ B, we have the following steps:

• Fix Z(t) = Z = (Z1, Z2, . . . , Zn)′ and sample the compliance class membership S(t) =

(S
(t)
1 , S

(t)
2 , . . . , S

(t)
n )′ based on the estimated proportions φ̆. Then, determine D(t) =

(D
(t)
1 , D

(t)
2 , . . . , D

(t)
n )′ based on Z(t) and S(t). For example, if Z

(t)
a = 1 and S

(t)
a = nt,

then D
(t)
a = 0.

• From the MBL estimate ψ̂ under the null, take a sample of Y (t) = (Y
(t)

1 , Y
(t)

2 , . . . , Y
(t)
n )′

based on D(t) and S(t). For example, if D
(t)
a = 0 and S

(t)
a = nt, then Y

(t)
a is a random

sample from the estimated distribution function ψ̂nt.
• Repeat the two steps above for 1 ≤ t ≤ B. Then use the bootstrapped samples
{(Z(t),D(t),Y (t))}1≤t≤B for simulating the asymptotic null distribution of Tn using
the expression on the RHS of (6.5).

The statistic on the RHS of (6.5) takes the form a two-sample Anderson-Darling test

(Pettitt, 1976) based on the plug-in estimators F̆
(0)
co and F̆

(1)
co , conditioning on (Z,D) and

truncated by the interval [κ, 1 − κ].2 We elaborate on this connection in the following
remark:

2Given i.i.d. samples from two distributions F and G of sizes n and m respectively, the two-
sample Anderson-Darling test (Pettitt, 1976) for testing the null hypothesis H0 : F = G, is Amn =´ (Fm(t)−Gn(t))2

HN (t)(1−HN (t))
dHN (t), where Fm and Gn are the empirical distributions of F and G, respectively, and

HN = m
N
Fm + n

N
Gn.
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Remark 6.1. Recall that H = η00F00 + η01F01 + η10F10 + η11F11. Now, referring to
(D.15), we have

nVar(F̆ (0)
co (t)− F̆ (1)

co (t)|(Z,D)) =
∑

u,v∈{0,1}

1

λ̆2
uv

n

nuv
Fuv(t)(1− Fuv(t)).

Then by the Riemann sum approximation, (6.5) can be re-written as

Tn =

ˆ
Jκ

(F̆
(0)
co (t)− F̆ (1)

co )2

Var(F̆
(0)
co (t)− F̆ (0)

co (t)|(Z,D))
dH(t) + oP (1), (6.6)

Now, let ∆n(t) := E(F̆
(0)
co (t) − F̆ (1)

co (t)|(Z,D)), the conditional mean of the numerator in

(6.6). Recalling the definitions of the plug-in estimators F̆
(0)
co and F̆

(1)
co from (2.14), and

noting that E(F uv(t)|(Z,D)) = Fuv(t), for u, v ∈ {0, 1}, it follows that

∆n(t) =
1

λ̆0

F00(t)− 1− λ̆0

λ̆0

F10(t) +
1− λ̆1

λ̆1

F01(t)− 1

λ̆1

F11(t)

=
λ0

λ̆0

F (0)
co (t) +

(
λ̆0 − λ0

λ̆0

)
Fnt(t) +

(
λ1 − λ̆1

λ̆1

)
Fat(t)−

λ1

λ̆1

F (1)
co (t). (6.7)

Now, since
√
n(λ̆0 − λ0, λ̆1 − λ1) has a limiting normal distribution, an application of

the Delta theorem shows that
√
n∆n(t) also converges to a normal distribution. Using this

combined with Theorem 6.1 and Lemma B.7, it is possible to derive the limiting distribution
of the BLRT. However, in general, the limiting distribution is quite complicated, and for
constructing the rejection region, it is more instructive to deal to with (6.5). However, in
some special cases, the asymptotic null distribution of the test statistic can be simplified:

• Assume that λ0 and λ1 are known, that is, λ̆0 = λ0 and λ̆1 = λ1. Then, under the

null F
(0)
co (t) = F

(1)
co (t) = Fco(t), (6.7) gives E(F̆

(0)
co (t) − F̆

(1)
co (t)|(Z,D)) = 0. Then

from Lemma B.7,
√
n(F̆

(0)
co (t)− F̆ (1)

co (t))⇒ G(t), where

G(t) =
1

λ00

B00(F00(t))
√
η00

− 1

λ10

B10(F10(t))
√
η10

+
1

λ01

B01(F01(t))
√
η01

− 1

λ11

B11(F11(t))
√
η11

,

for independent Brownian bridges B00, B01, B10, B11, and λ00 = λ0, λ01 = λ1
1−λ1

,

λ10 = λ0
1−λ0

, and λ11 = λ1. Then by Donsker’s invariance, under the null hypothesis
H0,

Tn
D→
ˆ
Jκ

G(t)2

Var(G(t))
dH(t). (6.8)
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• Assume that Fuv = F , for all u, v ∈ {0, 1}. In this case, (6.8) simplifies even further:
Chasing definitions it is easy to check that

∑
u,v

1
λ2
uvηuv

= 1
φ2
coφ0(1−φ0)

. Then G(t) ⇒
1

φco
√
φ0(1−φ0)

B(F (t)), where B is the standard Brownian bridge. This gives, under

H0,

Tn
D→
ˆ F−1(1−κ)

F−1(κ)

B(F (t))2

Var(F (t))
dF (t)

=

ˆ F−1(1−κ)

F−1(κ)

B(F (t))2

F (t)(1− F (t))
dF (t)

=

ˆ 1−κ

κ

B(t)2

t(1− t)
dt, (6.9)

which is the limiting distribution of the two-sample Anderson-Darling test (Pettitt,
1976) truncated to the interval [κ, 1− κ].

6.3. Simulation. To assess the performance of the proposed BLRT, we compare it to
the KS test in Abadie (2002) in a simulation study. Furthermore, the BLRT is compared
with the approximated version of the BLRT and the Anderson-Darling (AD) test. The
approximated version uses the RHS in (6.5) while the BLRT uses the statistic Tn (6.4).
The distributions of never-takers and always-takers were fixed as Fnt ∼ N(−1, 1) and

Fat ∼ N(1, 1). Two simulation settings were considered. First, F
(0)
co and F

(1)
co have normal

distributions with different means when the proportion of compliers φc is 1/3 (i.e., a strong
IV). Second, the same scenario is considered except for the proportion φc = 0.1 (i.e., a
weak IV). To obtain p-values, the resampling method described in the previous section is
considered. For each simulation data, B = 2000 resamples were used to approximate the
null distribution and obtain the p-value. Size and power of the tests were computed by
repeating the experiment over 2000 simulated datasets .

Table 5 shows simulated size and power of the four considered tests. The first row of the
table shows that the simulated sizes of the tests are approximately equal to the nominal
significance level α = 0.05, which implies that all the tests found the correct size. For power
comparisons, there are three main findings. First, the exact BLRT is the most powerful in
every simulation scenario. When an IV is weak such as φc = 0.1, the BLRT significantly
outperforms the KS test. Second, the approximated BLRT, KS and AD tests have similar
performances although the approximated BLRT has slightly better power than the other
two tests have. Finally, as n increases, the performance gap between the exact BLRT
and the approximated BLRT gets narrower. Figure 2 represents the simulation results for
n = 300 in the two settings graphically. The left panel represents the plot of the power
versus the size of the additive effect of treatment when φc = 1/3. It is shown that the BLRT
detects the additive treatment effect better than the other tests. The gain of the BLRT
test over the KS test is even greater when φc is smaller (that is, a weaker IV) as shown
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Table 5
Size and power of test with a significance level 0.05.

N(−µ, 1) vs. N(µ, 1)

n µ IV BLRT BLRT Approx. KS AD

Size 300 0 Strong 0.051 0.049 0.048 0.050

Power 300 0.1 0.083 0.071 0.073 0.069
300 0.2 0.184 0.152 0.148 0.148
300 0.3 0.350 0.305 0.280 0.294
300 0.4 0.511 0.456 0.430 0.446
300 0.5 0.705 0.649 0.615 0.631
300 0.6 0.830 0.790 0.764 0.780
300 0.7 0.927 0.898 0.867 0.888
300 0.8 0.965 0.945 0.929 0.938
300 0.9 0.983 0.971 0.962 0.969
300 1.0 0.992 0.987 0.980 0.985

1000 0.2 0.430 0.407 0.397 0.398
2000 0.2 0.728 0.719 0.701 0.713

Size 300 0 Weak 0.044 0.048 0.048 0.047

Power 300 0.1 0.058 0.053 0.050 0.054
300 0.2 0.079 0.060 0.066 0.062
300 0.3 0.098 0.073 0.075 0.072
300 0.4 0.121 0.086 0.086 0.084
300 0.5 0.160 0.116 0.108 0.108
300 0.6 0.182 0.136 0.129 0.128
300 0.7 0.215 0.172 0.162 0.166
300 0.8 0.267 0.211 0.197 0.204
300 0.9 0.280 0.230 0.212 0.216
300 1.0 0.324 0.270 0.236 0.260

in the right-hand panel. In summary, in the simulation setting considered, the BLRT test
dominates the KS test.

7. The effect of Vietnam era military service on future earnings. We consider
the sample of 11,637 white men, born in 1950-1953, from the March Current Population
Surveys of 1979 and 1981-1985 as in Angrist (1990). An indicator of draft-eligibility based
on the Vietnam draft lottery outcome (men with lottery number below the ceiling are
referred to here as “draft-eligible”) is the instrumental variable. Also, veteran status is the
non-randomized treatment variable and annual earning (in 1978 dollars) is the outcome
variable. These three variables are available for every individual in the sample. More details
are provided in Angrist (1990).

Figure 3 shows the estimated CDFs of veterans and non-veterans for compliers. The left
plot is the plug-in method described in Section 2.2 and the right one is derived from the
MBL method. In addition to the estimates of the CDFs, 95% confidence bands are included
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Fig 2: Power of the BLRT, approximated BLRT, KS and AD tests. Power is calculated
given a significance level α = 0.05. Left: strong IV and Right: weak IV.

in the right plot (Appendix F). In both of the plots, we see that veterans’ estimated CDF
is almost always above the non-veterans’ estimated CDF. The gap between the two CDFs
is wide at a small earning range but decreases until earnings of $35,000. The MBL method
improves two features of the plug-in method in this example. The MBL estimates for
compliers do not violate the non-decreasing and non-negative conditions. The improvement
leads to much smoother CDFs. From satisfying the non-decreasing condition, an additional
useful feature of the MBL method is obtained. There is a unique value of estimated earnings
corresponding to a specific quantile level. This feature can be useful for those who want
to estimate the treatment effect at a certain quantile level using the estimated CDFs. A
unique estimate might not be obtained in the plug-in method because of the fluctuation
of the CDF - if there are multiple values that correspond to the same quantile level, then
we cannot acquire the corresponding quantile to estimate the causal treatment effect for
compliers of the quantile level. For instance, it is derived from the MBL method that the
effect of veteran status is estimated to have a negative impact of $2,514 on earnings for
compliers when comparing the medians of veterans versus non-veterans. However, from the
plug-in method, there are two earnings values that correspond to the value 0.5 of veteran
CDF, making it unclear how to compare the medians of the two CDFs.

Using the BLRT described in Section 6, we conduct the hypothesis test of no distri-

butional treatment effect, F
(0)
co = F

(1)
co . Both the proposed BLRT statistic Tn and the KS

statistic TKS are considered. Table 6 reports p-values for the two tests of equality. From
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Fig 3: Estimated CDFs of Potential Earnings for Compliers: the CDFs from the plug-in
method and the CDFs with 95% confidence bands (CB) from the MBL method.

Table 6
Tests on distributional effect of veteran status on annual earnings. BLRT represents the binomial

likelihood ratio test and KS represents the Kolmogorov-Smirnov test.

BLRT KS

p-value 0.2485 0.1035

the resampling scheme described in Section 6, the p-value of the BLRT is computed by
2000 times bootstrap resampling (B = 2000). For both tests, we cannot reject equality of
distributions at a significance level α = 0.05.

8. Summary. In this paper, we introduced the notion of binomial likelihood, obtained
by integrating the individual likelihoods at all observations, for estimating the distributional
treatment effect for the compliers. The MBL estimator maintains the non-decreasingness
and non-negativeness properties of the distribution functions, which have not been achieved
for nonparametric IV estimation before, while preserving the desirable large-sample prop-
erties of the plug-in estimates. We also showed that the strength of the MBL method over
existing methods is particularly pronounced in the weak IV setting. The MBL estimators
can be computed efficiently using a combination of the EM algorithm and pool-adjacent-
violator algorithm (PAVA).

Furthermore, we proposed a binomial likelihood ratio test (BLRT) for testing the equal-
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ity of the compliers’ distributions in IV models, and derived its large sample properties.
It is shown with simulations that the BLRT is the most powerful to detect distributional
changes, among the considered tests. The dominance of the BLRT is emphasized in finite
samples with a weak IV. In large samples, the approximated BLRT is an useful alternative.

Acknowledgement: BBB thanks Abhishek Chakrabortty and Shirshendu Ganguly for helpful
discussions.
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APPENDIX A: PRELIMINARIES

In this section we collect some basic inequalities and properties of the objective function
Mn (3.6).

A.1. Basic inequalities. We begin with a few preliminary observations which will
be used later in our proofs:

Observation A.1. Fix a ∈ [0, 1]. Then for every x ∈ [0, 1], J(a, x) = a log x + (1 −
a) log(1− x) ≤ a log a+ (1− a) log(1− a) := I(a).

Proof. The inequality is trivially satisfied when a ∈ {0, 1}. Therefore, assume that
a ∈ (0, 1), and define a random variable W which takes values x

a and 1−x
1−a with probabilities

a and 1 − a, respectively. Note that EW = 1. Then by Jensen’s inequality, E(logW ) =
a log x

a + (1− a) log 1−x
1−a ≤ logEW = 0, which completes the proof of the result.

Observation A.2. Fix a ∈ [0, 1]. Then for every x ∈ [0, 1], a log x
a + (1− a) log 1−x

1−a ≤
−1

2(x− a)2.

Proof. For a given a ∈ (0, 1), let fa(x) = a log x
a + (1 − a) log 1−x

1−a . By a second order

Taylor expansion around the point a, fa(x) = 1
2(x− a)2f ′′a (γx,a) where γx,a ∈ [x∧ a, x∨ a]3

and f ′′a (x) = − a
x2 − 1−a

(1−x)2 . Note that, for a ∈ (0, 1) fixed, the function f ′′a (x) is convex. It

is easy to check that the minimum is attained at x0 = ( a
1−a)

1
3 , and f ′′a (x) ≥ f ′′a (x0) > 1.

This implies, fa(x) ≤ −1
2(x− a)2.

Observation A.3. Fix 0 < t < 1. Suppose Y1, Y2, . . . , Yn are i.i.d. samples from the
distribution H = η00F00 + η01F01 + η10F10 + η11F11. Then, for u, v ∈ {0, 1}

Fuv(Ydnte)
P−→ H−1

uv (t),

where Huv(t) = η00(F00 ◦F−1
uv )(t)+η01(F01 ◦F−1

uv )(t)+η10(F10 ◦F−1
uv )(t)+η11(F11 ◦F−1

uv )(t).

Proof. Without of generality, take u = 0 and v = 0. Then the distribution of

W1 := F00(Y1), W2 := F00(Y2), . . . , Wn := F00(Yn)

are i.i.d. samples with distribution function H00(t) = η00t + η01(F01 ◦ F−1
00 )(t) + η10(F10 ◦

F−1
00 )(t) + η11(F11 ◦ F−1

00 )(t). This implies, for any 0 < t < 1, F00(Y(dnte)) = W(dnte)
P−→

H−1
00 (t), where the last step uses the convergence of sample quantiles to the corresponding

population quantiles (Walker, 1968, Theorem 1).

3For a, b ∈ R, define a ∧ b = min{a, b} and a ∨ b = max{a, b}.
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A.2. Understanding the objective functions. In this section we discuss properties
of the sample objective function Mn (3.6). We begin with the proof of Proposition 3.1.

A.2.1. Proof of Proposition 3.1. To begin recall the definition of Ka
uv = {Za = u,Da =

v}. By (2.7), for all a ∈ [n],

P(Ka
uv) := ηuv =


(1− υ)(1− χat) for u = 0, v = 0,

(1− υ)χat for u = 0, v = 1,
υχnt for u = 1, v = 0,

υ(1− χnt) for u = 1, v = 1.

(A.1)

Next, define the two-point functions Suv(s, t), for u, v ∈ {0, 1}, as follows:

S00(s, t) := 1{Ka
00} log {1− χat}

+ 1{Ka
00, s ≤ t} log

{
1− χnt − χat

1− χat
θ(0)
co (t) +

χnt
1− χat

θnt(t)

}
,

+ 1{Ka
00, s > t} log

{
1− χnt − χat

1− χat
(1− θ(0)

co (t)) +
χnt

1− χat
(1− θnt(t))

}
,

S01(s, t) := 1{Ka
01} logχat + 1{Ka

01, s ≤ t} log θat(t) + 1{Ka
01, s > t} log(1− θat(t)),

S10(s, t) := 1{Ka
10} logχnt + 1{Ka

10, s ≤ t} log θnt(t) + 1{Ka
10, s > t} log(1− θnt(t)),

S11(s, t) := 1{Ka
11} log {1− χnt}

+ 1{Ka
11, s ≤ t} log

{
1− χnt − χat

1− χnt
θ(1)
co (t) +

χat
1− χnt

θat(t)

}
+ 1{Ka

11, s > t} log

{
1− χnt − χat

1− χnt
(1− θ(1)

co (t)) +
χat

1− χnt
(1− θat(t))

}
. (A.2)

With (A.1) and (A.2), the binomial log-likelihood (3.4) can be re-written as follows:

1

n2
logL(θ,χ, υ|D) = `(υ) +

1

n2

∑
b∈Iκ

∑
a∈[n]

∑
u,v∈{0,1}

Suv(Ya, Y(b)), (A.3)

where `(υ) = 1
n2 |Iκ| {(n00 + n01) log(1− υ) + (n10 + n11) log υ}. Note that the second-term

in the RHS of (A.3) above does not depend on υ. Hence,

φ̂1 := arg max
υ∈[0,1]

`(υ) =
n10 + n11

n
,

showing (3.7).
It remains to show (3.8). To this end, it suffices to show that

Mn(θ,χ) =
1

n2

∑
b∈Iκ

∑
a∈[n]

∑
u,v∈{0,1}

Suv(Ya, Y(b)). (A.4)
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To this end, define θ00(t) = 1−χnt−χat
1−χat θ

(0)
co (t) + χnt

1−χat θnt(t). Then

1

n

n∑
a=1

S00(Ya, Y(b))

=
n00

n

[
log {1− χat}+ F 00(Y(b)) log θ00(Y(b)) + (1− F 00(Y(b))) log(1− θ00(Y(b)))

]
=
n00

n

[
log {1− χat}+ J(F 00(Y(b)), θ00(Y(b)))

]
, (A.5)

where J(x, y) := x log y+(1−x) log(1−y). Similarly, denoting θ11(t) := 1−χnt−χat
1−χnt θ

(1)
co (t)+

χat
1−χnt θat(t) gives,

1

n

n∑
a=1

S11(Ya, Y(b))

=
n11

n

[
log {1− χnt}+ F 11(Y(b)) log θ11(Y(b)) + (1− F 11(Y(b))) log(1− θ11(Y(b)))

]
=
n11

n

[
log {1− χnt}+ J(F 11(Y(b)), θ11(Y(b)))

]
. (A.6)

Similarly,

1

n

n∑
a=1

S01(Ya, Y(b)) =
n01

n

[
logχat + J(F 01(Y(b)), θat(Y(b)))

]
, (A.7)

and

1

n

n∑
a=1

S10(Ya, Y(b)) =
n10

n

[
logχnt + J(F 10(Y(b)), θnt(Y(b)))

]
. (A.8)

Averaging (A.5), (A.6), and (A.7), and (A.8) over b ∈ Iκ, gives (A.4), which implies (3.8).

A.2.2. Unrestricted maximization of the sample objective function. Here we show that
maximizing the sample objective function Mn (recall (3.6)) over the unrestricted parameter
space gives the plug-in estimates (2.11) and (2.14), justifying the choice of Mn as an
approximate surrogate for the actual likelihood. As a consequence, it follows that the plug-
in and the MBL estimates of the compliance classes are equal with probability 1.

Lemma A.1. Let φ̂ be the MBL estimator and φ̆ the plug-in estimator (2.11). Then

arg max
θ∈ϑ,χ∈R2

Mn(θ,χ) = (Ğ, φ̆), (A.9)

where Ğ ∈ F̆ := {Ğ ∈ ϑ : Ğ(Y(b)) = F̆ (Y(b)) for b ∈ Iκ}.
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Proof. Define n00 + n01 = n0 and n10 + n11 = n1. Then by Observation A.1,

M(θ,χ) ≤ 1

n

∑
b∈Iκ

n0

n
I

(
n10

n1

)
+
n1

n
I

(
n01

n0

)
+

∑
u,v∈{0,1}

nuv
n
I(F uv(Y(b)))

 .

Moreover, the equality is attained when
θ00(Y(b))

θ10(Y(b))

θ01(Y(b))

θ11(Y(b))

 =


F 00(Y(b))

F 10(Y(b))

F 01(Y(b))

F 11(Y(b)))


for b ∈ Iκ and (χnt, χat) = (n10/n1, n01/n0) = (φ̆nt, φ̆at). This implies that the equality
is attained when (χnt, χat) = (φ̆nt, φ̆at) and θat(Y(b)) = F 01(Y(b)) = F̆at(Y(b)), θnt(Y(b)) =

F 10(Y(b)) = F̆at(Y(b)) and

θ(0)
co (Y(b)) =

F 00(Y(b))− φ̆nt
φ̆co+φ̆nt

F 10(Y(b))

φ̆co
φ̆co+φ̆nt

= F̆ (0)
co (Y(b)) (A.10)

θ(1)
co (Y(b)) =

F 11(Y(b))− φ̆at
φ̆co+φ̆at

F 01(Y(b))

φ̆co
φ̆co+φ̆at

= F̆ (1)
co (Y(b)) (A.11)

for b ∈ Iκ. This completes the proof of (A.9).

APPENDIX B: PROOF OF THEOREM 3.2

In this section we prove Theorem 3.2, which shows that the plug-in estimator F̆ and the
MBL estimator F̂ have the same limiting distribution.

B.1. Comparing the (sample) objective functions. From Lemma A.1, we know
that Mn(F̆ , φ̆)−Mn(F̂ , φ̂) ≥ 0. One of the main steps towards the proof of (3.9), is show
that this difference is small, more precisely,

Mn(F̆ , φ̆)−Mn(F̂ , φ̂) = oP (n−
5
4 ). (B.1)

To this end, we have the following definition:

Definition B.1. Define F̃ = (F̃
(0)
co , F̃nt, F̃

(1)
co , F̃at)

′ ∈ P([0, 1]R)4, as follows:

F̃nt := F̆10 = F 10 and F̃at := F̆01 = F 01,
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are the corresponding empirical distribution functions, and

F̃ (0)
co := arg min

θ∈P([0,1]R)

∑
b∈Iκ

(F̆ (0)
co (Y(b))− θ(Y(b)))

2,

F̃ (1)
co := arg min

θ∈P([0,1]R)

∑
b∈Iκ

(F̆ (1)
co (Y(b))− θ(Y(b)))

2. (B.2)

Note that this only defines F̃
(0)
co and F̃

(1)
co at the knots {Y(b)}b∈Iκ . To ensure (B.2) is well-

defined we extend F̃
(0)
co and F̃

(1)
co between the knots by right-continuous interpolation, and

extrapolate it beyond the knots to 0 and 1. Moreover, define

F̃00 := λ̆0F̃
(0)
co + (1− λ̆0)F̃nt,

F̃11 := λ̆1F̃
(1)
co + (1− λ̆1)F̃at, (B.3)

and F̃10 := F̃nt and F̃01 := F̃at.

Note, since φ is in the interior of [0, 1]2+, which is an open subset of R2, there exists
an ε > 0 such that B(φ, ε) = {χ ∈ R2 : ||χ − φ||2 < ε} ⊂ [0, 1]2+. Moreover, there exists

n ≥ N(ε, δ) such that P(φ̆ /∈ B(φ, ε)) < δ. Therefore, P(φ̆ not in the interior of [0, 1]2+) ≤
P(φ̆ /∈ B(φ, ε)) < δ. To this end, let

B1 =
{
φ̆ is in the interior of [0, 1]2+

}⋂{
F̆ is coordinate-wise in the interior of R[0,1])

}
.

From the discussion above it is clear that the P(Bc
1)→ 0. Therefore, for the remainder of

this section all events will be on the set B1.
To begin with this gives,

Mn(F̂ , φ̂) ≥Mn(F̃ , φ̆),

since (F̃ , φ̂) ∈ ϑ+ × [0, 1]2+ and (F̂ , φ̂) maximizes Mn over ϑ+ × [0, 1]2+, by definition.
Therefore, to show (B.1) it suffices to prove that

Mn(F̆ , φ̆)−Mn(F̃ , φ̆) = oP (n−
5
4 ). (B.4)

Observation B.1. Let F̆ be the plug-in estimator (2.14) and F̃ as defined in Definition
B.1. Then

Mn(F̆ , φ̆)−Mn(F̃ , φ̆) = OP (1)

 1

n

∑
u∈{0,1}

∑
b∈Iκ

(F̆ (u)
co (Y(b))− F̆ (u)

co (Y(b)))
2

 ,
whenever |F̃uu(Y(dnκe))− F uu(Y(dnκe))| = oP (1) and |F̃uu(Y(dn(1−κ)e))− F uu(Y(dn(1−κ)e))| =
oP (1).
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Proof. Recall the definition of (3.6). Then

Mn(F̆ ,φ̆)−Mn(F̃ , φ̆)

=
1

n

∑
u,v∈{0,1}

nuv
n

(J(F uv, F̆uv)− J(F uv, F̃uv))

=
1

n

∑
u∈{0,1}

nuu
n

(J(F uu, F̆uu)− J(F uu, F̃uu)) (since F̃10 = F̆10 and F̃01 = F̆01)

=
1

n

∑
u∈{0,1}

nuu
n

(
J(F uu, F uu)− J(F uu, F̃uu)

)
=

1

n

∑
u∈{0,1}

nuu
n

∑
b∈Iκ

Tu(Y(b)), (B.5)

where

Tu(Y(b)) := F uu(Y(b)) log
F uu(Y(b))

F̃uu(Y(b))
+ (1− F uu(Y(b))) log

1− F uu(Y(b))

1− F̃uu(Y(b))
.

Now, a two-term Taylor expansion of the function fa(x) := −a log x
a − (1 − a) log 1−x

1−a ,
at x = a, gives

Tu(Y(b)) =
(F̃uu(Y(b))− F uu(Y(b)))

2

2

{
F uu(Y(b))

(ωuu(Y(b)))2
−

1− F uu(Y(b))

(1− ωuu(Y(b)))2

}
, (B.6)

and ωuu(Y(b)) ∈ [F uu(Y(b)) ∧ F̃uu(Y(b)), F̃uu(Y(b)) ∨ F uu(Y(b))].

Note that ωuu(Y(b)) ≥ F uu(Y(dnκe)) ∧ F̃uu(Y(dnκe)) and F uu(Y(b)) ≤ F uu(Y(dn(1−κ)e)).
Therefore,

F uu(Y(b))

(ωuu(Y(b)))2
≤

F uu(Y(dn(1−κ)e))

F uu(Y(nκ)) ∧ F̃uu(Y(nκ))
= OP (1),

since F uu(Y(dnκe))
P→ H−1

uu (κ), F uu(Y(dn(1−κ)e))
P→ H−1

uu (1− κ) using Observation A.3, and

|F̃uu(Y(dnκe))− F uu(Y(dnκe))| = oP (1) by assumption. Similarly,

1− F uu(Y(b))

(1− ωuu(Y(b)))2
= OP (1).

Therefore,

∑
b∈Iκ

|Tu(Y(b))| ≤
∑
b∈Iκ

(F̃uu(Y(b))− F uu(Y(b)))
2

2

{
F uu(Y(b))

(ωuu(Y(b)))2
+

1− F uu(Y(b))

(1− ωuu(Y(b)))2

}
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= OP (1)
∑
b∈Iκ

(F̃uu(Y(b))− F uu(Y(b)))
2

= OP (1)
∑
b∈Iκ

(F̃ (u)
co (Y(b))− F̆ (u)

co (Y(b)))
2, (B.7)

where the last step uses F̃00 = λ̆0F̃
(0)
co + (1 − λ̆0)F̃nt, F 00 = λ̆0F̆

(0)
co + (1 − λ̆0)F̆nt, and

F̃nt = F̆nt, and similarly for F̃11 and F 11.

Therefore, to show that Mn(F̆ , φ̆)−Mn(F̃ , φ̆) = oP (1/n), it suffices to show that∑
b∈Iκ

(F̃ (u)
co (Y(b))− F̆ (u)

co (Y(b)))
2 = oP (1),

for u ∈ {0, 1}. This is the content of the following proposition, gives an error rate of

oP (n−
1
4 ).

Proposition B.1. For u ∈ {0, 1},∑
b∈Iκ

(
F̃ (u)
co (Y(b))− F̆ (u)

co (Y(b))
)2

= oP (n−
1
4 ). (B.8)

This implies, Mn(F̆ , φ̆)−Mn(F̂ , φ̂) = oP (n−
5
4 ).

B.1.1. Proof of Proposition B.1. To begin with, note that (B.8) implies

|F̃uu(Y(dnκe))− F uu(Y(dnκe))| = oP (1), |F̃uu(Y(dn(1−κ)e))− F uu(Y(dn(1−κ)e))| = oP (1).

Therefore, using Observation B.1 gives Mn(F̆ , φ̆) −Mn(F̃ , φ̆) = oP (n−
5
4 ), which implies

Mn(F̆ , φ̆)−Mn(F̂ , φ̂) = oP (n−
5
4 ), from (B.4). Therefore, the rest of this section is devoted

to the proof of (B.8).
We will prove the result for u = 0. The other case for u = 1 can be done similarly.

To begin with note that on the event B1, |F̆ (0)
co (t)| ∈ [0, 1] for all t ∈ R, and, therefore,

maximum in (B.2) can be taken over I([0, 1]R), the set of increasing functions from R →
[0, 1]. Then the well-know result of Robertson, Wright and Dykstra (1988) gives

F̃ (0)
co (Y(b)) = min

`≥b
max
k≤b

∑`
i=k F̆

(0)
co (Y(i))

`− k + 1
(B.9)

Now, define f(k, `) :=
∑`
i=k F̆

(0)
co (Y(i))

`−k+1 − F̆ (0)
co (Y(b)). We will use the following lemma.
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Lemma B.1. Let b ∈ Iκ. For any function f : [n] × [n] → R, the following inequality
holds (

min
`≥b

max
k≤b

f(k, `)

)2

≤
(

max
k≤b

f+(k, b)

)2

+

(
max
`≥b

f−(b, `)

)2

, (B.10)

where f+ := max(f, 0) and f− := (−f)+.

Proof. We have

min
`≥b

max
k≤b

f(k, `) ≤ max
k≤b

f(k, b) ≤ max
k≤b

f+(k, b).

Similarly,

min
`≥b

max
k≤b

f(k, `) ≥ min
`≥b

f(b, `) = −max
`≥b
−f(b, `) ≥ −max

`≥b
f−(b, `)

Therefore, the lemma follows.

To prove (B.8), we have to show PB1

(∑
b∈Iκ(F̃

(0)
co (Y(b))− F̆

(0)
co (Y(b)))

2 > δn−
1
4

)
= o(1),

for any δ > 0, where PB1(·) = P(· ∩B1). To begin with, by the triangle inequality and
Lemma B.1, we get

PB1

∑
b∈Iκ

(
F̃ (0)
co (Y(b))− F̆ (0)

co (Y(b))
)2

> δn−
1
4


≤
∑
b∈Iκ

PB1

((
F̃ (0)
co (Y(b))− F̆ (0)

co (Y(b))
)2

> δn−
5
4

)

=
∑
b∈Iκ

PB1

((
min
`≥b

max
k≤b

f(k, `)

)2

> δn−
5
4

)

≤
∑
b∈Iκ

PB1

((
max
k≤b

f+(k, b)

)2

>
δn−

5
4

2

)
+
∑
b∈Iκ

PB1

((
max
`≥b

f−(b, `)

)2

>
δn−

5
4

2

)

≤
∑
b∈Iκ

PB1

(
max
k≤b

f+(k, b) > δ0n
− 5

8

)
+
∑
b∈Iκ

PB1

(
max
`≥b

f−(b, `) > δ0n
− 5

8

)
, (B.11)

where δ0 =
√
δ/2.

Lemma B.2. Let ε = δ0/n
5/8. Then for any b ∈ Iκ,

PB1

(
max

`∈[b,dn(1−κ)e]
f−(b, `) ≥ ε

)
≤
dn(1−κ)e∑
`=b

PB1

(
F̆ (0)
co (Y(b))− F̆ (0)

co (Y(`)) ≥ ε
)
. (B.12)
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Similarly,

PB1

(
max

k∈[dnκe,b]
f+(k, b) ≥ ε

)
≤

b∑
k=dnκe

PB1

(
F̆ (0)
co (Y(k))− F̆ (0)

co (Y(b)) ≥ ε
)
. (B.13)

Proof. Note that

f−(b, `) = max(0, F̆ (0)
co (Y(b))−

F̆
(0)
co (Y(b)) + · · ·+ F̆

(0)
co (Y(`))

`− b+ 1
) = max

(
0,

∑`
i=b(F̆

(0)
co (Y(b))− F̆

(0)
co (Y(i)))

`− b+ 1

)
.

Then

PB1

(
max

`∈[b,dn(1−κ)e]
f−(b, `) ≤ ε

)
PB1

(
max

`∈[b,dn(1−κ)e]

∑`
i=b(F̆

(0)
co (Y(b))− F̆

(0)
co (Y(i)))

`− b+ 1
≤ ε

)

= PB1

(
1

2

b+1∑
i=b

(F̆ (0)
co (Y(b))− F̆ (0)

co (Y(i))) ≤ ε, . . . ,
∑n

i=b F̆
(0)
co (Y(b))− F̆

(0)
co (Y(i)))

n− b+ 1
≤ ε

)
≥ PB1

(
F̆ (0)
co (Y(b))− F̆ (0)

co (Y(b+1)) ≤ 2ε, . . . , F̆ (0)
co (Y(b))− F̆ (0)

co (Y(dn(1−κ)e) ≤ ε
)

≥ PB1

(
F̆ (0)
co (Y(b))− F̆ (0)

co (Y(b+1)) ≤ ε, . . . , F̆ (0)
co (Y(b))− F̆ (0)

co (Y(dn(1−κ)e)) ≤ ε
)

= PB1

(
max

`∈[b,dn(1−κ)e]
(F̆ (0)

co (Y(b))− F̆ (0)
co (Y(`)) ≤ ε

)
.

The above inequality and a union bound implies (B.12).
Similarly,

PB1

(
max

k∈[dnκe,b]
f+(k, b) ≤ ε

)
PB1

(
max

k∈[dnκe,b]

∑b
i=k(F̆

(0)
co (Y(k))− F̆

(0)
co (Y(b)))

b− k + 1
≤ ε

)

= PB1

1

2

b∑
i=b−1

(F̆ (0)
co (Y(i))− F̆ (0)

co (Y(b))) ≤ ε, . . . ,
∑b

i=dnκe F̆
(0)
co (Y(b))− F̆

(0)
co (Y(i)))

b
≤ ε


≥ PB1

(
F̆ (0)
co (Y(b−1))− F̆ (0)

co (Y(b)) ≤ 2ε, . . . , F̆ (0)
co (Y(dnκe))− F̆ (0)

co (Y(b) ≤ ε
)

= PB1

(
max

k∈[dnκe,b]
(F̆ (0)

co (Y(k))− F̆ (0)
co (Y(b)) ≤ ε

)
.

This implies (B.13) by a union bound.
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In light of (B.11) and above lemma, to prove Proposition B.1, we need bounds on the

upper tail of the difference F̆
(0)
co (Y(b)) − F̆

(0)
co (Y(`)), for ` ≥ b and lower tail of F̆

(0)
co (Y(k)) −

F̆
(0)
co (Y(b)), for k ≤ b. To this end, let η̆uv = nuv/n, for {u, v} ∈ {0, 1}, and η̆− = minu,v η̆uv.

Lemma B.3. Let ε = δ0/n
5/8. Then for any b ∈ Iκ, such that

dn(1−κ)e∑
`=b

PB1

(
F̆ (0)
co (Y(b))− F̆ (0)

co (Y(`)) ≥ ε|(Z,D)
)
≤ O(1/n3) + 2n exp

{
−
η̆

3/2
− λ̆3

0δ
2
0

√
n

48 log n

}
,

(B.14)

where the constant in the O(1/n3)-term is non-random. Similarly,

b∑
k=dnκe

PB1

(
F̆ (1)
co (Y(k))− F̆ (1)

co (Y(b)) ≥ ε|(Z,D)
)
≤ O(1/n3) + 2n exp

{
−
η̆

3/2
− λ̆3

0δ
2
0

√
n

48 log n

}
.

(B.15)

The proof of the above lemma is given below. Using this, the proof of Proposition B.1
can be easily completed as follows: Note that

n2 exp

{
−
η̆

3/2
− λ̆3

0δ
2
0

√
n

48 log n

}
D→ 0, E

(
n2 exp

{
−
η̆

3/2
− λ̆3

0δ
2
0

√
n

48 log n

})
→ 0,

by the dominated convergence theorem. Then first taking expectation over Z,D gives

dn(1−κ)e∑
`=b

PB1

(
F̆ (0)
co (Y(b))− F̆ (0)

co (Y(`)) ≥ ε
)
≤ O(1/n3) + 2nE exp

{
−
η̆

3/2
− λ̆3

0δ
2
0

√
n

48 log n

}
.

(B.16)

Therefore, from (B.13),

PB1

(
max

k∈[dnκe,b]
f+(k, b) > δ0n

− 5
8

)
≤ O(1/n2) + 2n2E exp

{
−
η̆

3/2
− λ̆3

0δ
2
0

√
n

48 log n

}
→ 0. (B.17)

Similarly, from (B.12) and (B.15), it can be shown that

PB1

(
max

k∈[b,dn(1−κ)e]
f−(k, b) > δ0n

− 5
8

)
→ 0. (B.18)

Adding (B.17) and (B.18) and using (B.11), completes the proof of (B.8), since P(Bc
1)→ 0.
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Proof of Lemma B.3 Throughout the proof, all events will be conditional of (Z,D),
and, for notational brevity, we will omit the conditioning event in all the expressions. Let

L = H−1(κ)− 1 and R = H−1(1− κ) + 1,

and let B2 be the event that {Y(dnκe), Y(dn(1−κ)e),∈ [L,R]}. Using EY(dnκe) → H−1(κ),
E(Y(dnκe)−EY(dnκe))

6 = O(1/n3) (see Sen (1959)), and the Chebyshev’s inequality it follows
that

P(Y(dnκe) /∈ [L,R]) ≤
E(Y(dnκe) − EY(dnκe))

6

(L− EY(dnκe))6
= O(1/n3). (B.19)

Similarly, P(Y(dn(1−κ)e) /∈ [L,R]) = O(1/n3), which gives P(Bc
2) = O(1/n3).

Now, partition [L,R] in a grid L = t0 < t1 < . . . < tM = R, of size 4 logn
C1n

, that is,

ta = L+ a
(

4 logn
C1n

)
, for 0 ≤ a ≤M := C1(R−L)n

4 logn . Define Na =
∑n

s=1 1{Ys ∈ (ta, ta+1]}, the

number of observations in the interval (ta, ta+1]. Let

B3 :=

{
min

0≤a≤M
Na ≥ 1

}
∩
{

max
0≤a≤M

Na ≤
12C2

C1
log n

}
.

Lemma B.4. P(Bc
3) = O(1/n3).

Proof. Note that P(Yj /∈ (ta, ta+1]) = 1−(H(ta+1)−H(ta)) ≤ 1− 4 logn
n , by Assumption

2. Then

P
(

min
0≤a≤M

Na = 0

)
=

M∑
a=0

P(Na = 0) .κ n

(
1− 4 log n

n

)n
= O(1/n3). (B.20)

Next, note that E(Na) = n(F (ta+1) − F (ta)) ∈ [4 log n, 4C2
C1

log n], by Assumption 2.

Therefore, by the union bound followed by a Chernoff bound,4 gives

P
(

max
0≤a≤M

Na >
12C2

C1
log n

)
=

M∑
a=0

P
(
Na − E(Na) >

8C2

C1
log n

)
. ne

− 4C2 logn
C1 = ne−4 logn = O(1/n3). (B.21)

Combining (B.20) and (B.21) the proof of the lemma follows.

4Suppose X1, X2, . . . , Xn are independent random variables taking values in {0, 1}. Let X =
∑n
i=1 Xi

denote their sum and let µ = E(X). Then P(X ≥ (1 + δ)µ) ≤ e−
δ2µ
3 , for 0 < δ < 1 and P(X ≥ (1 + δ)µ) ≤

e−
δµ
2 , for δ ≥ 1.
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Finally, let B4 = {|η̆uv/ηuv− 1| ≤ 1 : for all u, v ∈ {0, 1}}, and set B0 = B2 ∩B3 ∩B4.
From (B.19) and Lemma (B.4),

PB1(Bc
0) ≤ P(Bc

0) ≤ P(Bc
2) + P(Bc

3) + P(B4
3) = O(1/n3). (B.22)

Therefore, it suffices to consider events on B = B0 ∩ B1. Now, fix b ∈ Iκ. For any
` ≥ b denote by Ij(`) = (tj(`), tj(`)+1] the interval which contains Y(`), and F uv((a, b]) :=

F uv(a)− Fuv(b), for u, v ∈ {0, 1}. Then, by triangle inequality, on the set B,

|F 00((tj(b), tj(`)+1])− F 00((Y(b), Y(`)])| ≤ |F 00(tj(b))− F 00(Y(b))|+ |F 00(tj(`)+1)− F 00(Y(`))|

= O

(
log n

n00

)
= O

(
log n

n

)
. (B.23)

Now, take ε = δ0/
√
n. Then recalling the definition of F̆

(0)
co (Y(b)) =

F 00(Y(b))−(1−λ̆)F 10(Y(b))

λ̆
,

and using triangle inequality gives,

PB

(
F̆ (0)
co (Y(b))− F̆ (0)

co (Y(`)) ≥ ε
)

= PB

(
F 00((Y(b), Y(`)])

λ̆0

−
(1− λ̆0)(F 01((Y(b), Y(`)]))

λ̆0

≥ ε

)

≤ PB

(
F 00((tj(b), tj(`)+1])

λ̆0

−
1− λ̆0(F 01((tj(b), tj(`)+1]))

λ̆0

≥ ε

2

)
(by (B.23))

≤ T1 + T2,

where

T1 = P

(
|F 00((tj(b), tj(`)+1])− F00((tj(b), tj(`)+1])| ≥

λ̆0( ε2 − Fco((tj(b), tj(`)+1])

2

)
and

T2 = P

(
|F 01((tj(b), tj(`)+1])− F01((tj(b), tj(`)+1])| ≥

λ̆0( ε2 − Fco((tj(b), tj(`)+1])

2(1− λ̆0)

)
.

Now, we will bound T1. To begin with note that

−n00F 00((tj(b), tj(`)+1]) ∼ Bin(n00,−F00((tj(b), tj(`)+1])).

Moreover, by Assumption 2, −Fco((tj(b), tj(`)+1]) ≥ C1(tj(`)+1 − tj(b)) ≥ K(` − b)/n, for

some constant K > 0. Then for |`− b| > 4
Kλ̆0
√
η̆00

√
n log n, where η̆00 = n00/n, we have

P

(
|F 00((tj(b), tj(`)+1])− F00((tj(b), tj(`)+1])| ≥

λ̆0( ε2 − Fco((tj(b), tj(`)+1])

2

)
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≤ P

(
|F 00((tj(b), tj(`)+1])− F00((tj(b), tj(`)+1])| ≥ −

λ̆0Fco((tj(b), tj(`)+1])

2

)

≤ P

(
|n00F 00((tj(b), tj(`)+1])− n00F00((tj(b), tj(`)+1])| ≥ Kλ̆0n00(`− b)

2n

)

≤ 2e−
η̆00K

2λ̆2
0(`−b)2

2n = O(1/n8),

where the last step follows by the Hoeffding’s inequality.

Now, suppose |`− b| ≤ 4
Kλ̆0
√
η̆00

√
n log n. Let t = − λ̆0ε

2F00((tj(b),tj(`)+1]) . Then

P

(
|F 00((tj(b), tj(`)+1])− F00((tj(b), tj(`)+1])| ≥

λ̆(ε− Fco((tj(b), tj(`)+1])

2

)

≤ P

(
|F 00((tj(b), tj(`)+1])− F00((tj(b), tj(`)+1])| ≥ λ̆0ε

2

)
≤ P

(
|n00F 00((tj(b), tj(`)+1])− n00F00((tj(b), tj(`)+1])| ≥ −tn00F00((tj(b), tj(`)+1])

)
≤ 2 exp

{
t2η̆00nF00((tj(b), tj(`)+1])

3

}
(by Chernoff bound)

≤ 2 exp

{
η̆00λ̆

2
0δ

2
0

12F00((tj(b), tj(`)+1])

}

≤ 2 exp

{
− η̆00λ̆

2
0δ

2
0n

12K(`− b)

}
(since −Fco((tj(b), tj(`)+1]) ≥ K(`− b)/n)

≤ 2 exp

{
−
η̆

3/2
− λ̆3

0δ
2
0

√
n

48 log n

}
(recall η̆− = minu,v η̆uv).

This implies T1 ≤ O(1/n8) + 2 exp

{
− η̆

3/2
− λ̆3

0δ
2
0

√
n

48 logn

}
, and similarly, for T2. These combined

with PB1(Bc
0) = O(1/n3) completes the proof of Lemma B.3. 2.

B.2. Completing the proof of Theorem 3.2. In this section we complete the proof
of Theorem 3.2. To begin, we estimate the difference Mn(F̆ , φ̆) −Mn(F̂ , φ̆), To this end,
recalling (3.6), we have

Mn(F̆ , φ̆)−Mn(F̂ , φ̂)

=
1

n

[ ∑
u,v∈{0,1}

∑
b∈Iκ

nuv
n

{
F uv(Y(b)) log

F uv(Y(b))

F̂uv(Y(b))
+ (1− F uv(Y(b)) log

1− F̂uv(Y(b))

1− F̂uv(Y(b))

}
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+ |Iκ|

{
n00

n
log

1− φ̆at
1− φ̂at

+
n01

n
log

φ̆at

φ̂at
+
n10

n
log

φ̆nt

φ̂nt
+
n11

n
log

1− φ̆nt
1− φ̂nt

}]
,

=
1

n

∑
u,v∈{0,1}

nuv
n

∑
b∈Iκ

Tuv(Y(b)) +
|Iκ|
n

[
n00 + n01

n
Rnt +

n10 + n11

n
Rat

]
, (B.24)

where

Tuv(Y(b)) := F uv(Y(b)) log
F uv(Y(b))

F̂uv(Y(b))
+ (1− F uv(Y(b))) log

1− F uv(Y(b))

1− F̂uv(Y(b))
,

Rat = (1− φ̆at) log
1− φ̆at
1− φ̂at

+ φ̆at log
φ̆at

φ̂at
,

and

Rat = (1− φ̆nt) log
1− φ̆nt
1− φ̂nt

+ φ̆nt log
φ̆nt

φ̂nt
.

Now, using a log a
x + (1 − a) log 1−a

1−x ≥
1
2(x − a)2 (Observation A.2) gives Tuv(Y(b)) &

(F̂uv(Y(b))− F uv(Y(b)))
2, Rat & (φ̂at − φ̆at)2 and Rnt & (φ̂nt − φ̆nt)2. Therefore,

Mn(F̆ , φ̆)−Mn(F̂ , φ̂) &
1

n

∑
u,v∈{0,1}

nuv
n

∑
b∈Iκ

(F̂uv(Y(b))− F uv(Y(b)))
2 +Kn||φ̂− φ̆||22,

for some constant Kn
P→ K > 0. Therefore, using Mn(F̆ , φ̆) −Mn(F̂ , φ̂) ≤ Mn(F̆ , φ̆) −

Mn(F̃ , φ̆), since (F̃ , φ̆) ∈ ϑ+ × [0, 1]2+ on the set B1 (where F̃ is the PAVA estimate in
Definition B.1), gives

1

n

∑
u,v∈{0,1}

nuv
n

∑
b∈Iκ

(F̂uv(Y(b))− F uv(Y(b)))
2 +Kn||φ̂− φ̆||22 . Mn(F̆ , φ̆)−Mn(F̂ , φ̂)

. Mn(F̆ , φ̆)−Mn(F̃ , φ̆)

= oP (n−
5
4 ), (B.25)

by Proposition B.1.
Therefore, (B.25) implies ||

√
n(φ̂− φ̆)||22 = oP (n−

1
4 ). Moreover,∑

b∈Iκ

(F̂nt(Y(b))− F̆nt(Y(b)))
2 = oP (n−

1
4 ),

∑
b∈Iκ

(F̂at(Y(b))− F̆at(Y(b)))
2 = oP (n−

1
4 ), (B.26)

since F̂10 = F̂nt, F 10 = F̆nt, F̂01 = F̂at, F 01 = F̆at, and nuv/n
P→ ηuv. Next, observe that

on B1, |F̆00(t)| ≤ 1, and

(F̂ (0)
co (t)− F̆ (0)

co (t))2
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=

(
F̂00(t)− (1− λ̂0)F̂nt(t)

λ̂0

− F̆00(t)− (1− λ̆0)F̆nt(t)

λ̆0

)2

.

(
F̂00(t)

λ̂0

− F̆00(t)

λ̆0

)2

+

(
(1− λ̂0)F̂nt(t)

λ̂0

− (1− λ̆0)F̆nt(t)

λ̆0

)2

= OP (1)(F̂00(t)− F̆00(t))2 +OP (1)(F̂nt(t)− F̆nt(t))2 +

(
1

λ̂0

− 1

λ̆0

)2

. (B.27)

Adding (B.27) over Y(b), b ∈ Iκ, and using
(

1
λ̂0
− 1

λ̆0

)2
= oP (n−

5
4 ), since ||

√
n(φ̂− φ̆)||22 =

oP (n−
1
4 ), (B.25), and (B.26), gives

∑
b∈Iκ(F̂

(0)
co (Y(b)) − F̆

(0)
co (Y(b)))

2 = oP (n−
1
4 ). Similarly,

we can show that
∑

b∈Iκ(F̂
(1)
co (Y(b)) − F̆

(1)
co (Y(b)))

2 = oP (n−
1
4 ). This, together with (B.26)

gives the following lemma:

Lemma B.5. The BL estimators (F̂ , φ̂) and the plug-in estimators (F̆ , φ̆) satisfy ||
√
n(φ̂−

φ̆)||22 = oP (n−
1
4 ) and ∑

b∈Iκ

||F̂ (Y(b))− F̆ (Y(b))||22 = oP (n−
1
4 ).

This shows the MBL estimators and the plug-in estimators are close in average squared
error with respect to the empirical distribution H =

∑
u,v∈{0,1}

nuv
n F uv. To complete the

proof of Theorem (3.2), we need to show that the average with respect to the empiri-
cal distribution can be replaced by the average (integral) with respect to the population
distribution function H =

∑
u,v∈{0,1} ηuvF uv.

Lemma B.6. The BL estimators F̂ and the plug-in estimators F̆ satisfy
ˆ
Jκ

||
√
n{F̂ (t)− F̆ (t)}||22dH = oP (1),

where the oP (1) terms goes to zero as n→∞.

Proof. For b ∈ Iκ and Y(b) ≤ t < Y(b+1), F̆ (t) = F̆ (Y(b)). Moreover, F̂ (t) ≤ F̂ (Y(b+1)),
where the inequality holds coordinate-wise. Then, for Y(b) ≤ t < Y(b+1),

||F̂ (t)− F̆ (t)||2 ≤ ||F̂ (Y(b))− F̆ (Y(b))||2 + ||F̆ (Y(b))− F̆ (Y(b+1))||2
≤ ||F̂ (Y(b))− F̆ (Y(b))||2 +O(1/n).

Therefore, ∑
b∈Iκ

ˆ Y(b+1)

Y(b)

||
√
n{F̂ (t)− F̆ (t)}||22dH
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.κ ∆n
∑
b∈Iκ

||F̂ (Y(b))− F̆ (Y(b))||22 + ∆, (B.28)

where ∆ := supb∈[n](H(Y(b+1)) − H(Y(b)))
D
= supb∈[n](U(b+1) − U(b)) = OP (log n/n), by

(Holst, 1980, Theorem 3.1). Then, by (B.28)

ˆ Y(dn(1−κ)e)

Y(dnκe)

||
√
n{F̂ (t)− F̆ (t)}||22dH

=
∑
b∈Iκ

ˆ Y(b+1)

Y(b)

||
√
n{F̂ (t)− F̆ (t)}||22dH

≤ OP (log n)
∑
b∈Iκ

||{F̂ (Y(b))− F̆ (Y(b))}||22 + oP (1)

= oP (1),

where the last step follows from Lemma B.5.
To complete the proof we need to take care of the boundary effects. As before, by triangle

inequality

ˆ Ydnκe

H−1(κ)
||
√
n{F̂ (t)− F̆ (t)}||22dH

. ||
√
n{F̂ (Ydnκe)− F̆ (Ydnκe)}||22(Ydnκe − κ) + oP (1)

= oP (1), (B.29)

where the last step uses
√
n{F̂ (Ydnκe) − F̆ (Ydnκe)} = oP (1) (which follows by a simple

modification of the proof of Theorem 3.2) and
√
n(Ydnκe−κ) = OP (1). Similarly, it can be

shown that

ˆ H−1(1−κ)

Ydn(1−κ)e

||
√
n{F̂ (t)− F̆ (t)}||22dH = oP (1). (B.30)

The proof now follows by combining (B.29) and (B.30) with (B.28).

B.3. Limiting distribution of the MBL estimators. As the limiting distribution
of the empirical distributions F uv are well-known, Theorem 3.2 can be used to derive the
limiting distribution of the MBL estimators F̂ .

Corollary B.2. Fix 0 < κ < 1/2. Then for any continuous function h : R→ R,

ˆ
Jκ

h(t) ·
√
n{F̂ (t)− E(F̆ (t)|Z,D)}dH D→

ˆ
Jκ

h(t) ·G(t)dH, (B.31)
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where

G(t) :=


1
φc

{√
φc+φn
φ0

B00(F00(t))−
√

φn
φ1
B10(F10(t))

}
B01(F01(t))√

φ0φat
1
φc

{√
φc+φa
φ1

B11(F11(t))−
√

φa
φ0
B01(F01(t))

}
B10(F10(t))√

φ0φnt
,

 ,

and B00(·), B01(·), B10(·), and B11(·) are independent standard Brownian bridges, and the
integrals in (B.31) are defined coordinate-wise.

B.3.1. Proof of Corollary B.2. The joint distribution of the process
√
n(F uv(t)−Fuv(t))u,v∈{0,1}

can be easily derived from empirical process theory. To this end, let D[0, 1] be the space of
all right-continuous functions on [0, 1] with left limits equipped with the supremum norm
metric. A sequence of random functions {Xn(·)}n≥1 in D[0, 1] converges to X(·) ∈ D[0, 1],

denoted by Xn(t)
w⇒ X(t), if E(f(Xn)) → Ef(X), for all bounded continuous function

f : D[0, 1] → R. Now, considering
√
n(F uv(t) − Fuv(t))u,v∈{0,1} as a random element of

D[0, 1]4 equipped with the product topology, we have the following result:

Lemma B.7. Let B00, B01, B10, and B11 be independent Brownian bridges. Then

√
n


F 00(t)− F00(t)

F 01(t)− F01(t)

F 11(t)− F11(t)

F 10(t)− F10(t)

 w⇒


B00(F00(t))√

η00

B01(F01(t))√
η01

B11(F11(t))√
η11

B10(F10(t))√
η10

 (B.32)

Proof. Note that E(F̆ (t)|Z,D)} is the mean of the plug-in estimate conditional on the
sigma-algebra generated by (Z,D) = ((Z1, D1), (Z2, D2), . . . , (Zn, Dn)). Conditioned on
this sigma-algebra, {nuv}u,v∈{0,1} are fixed, and E(F uv(t)|D,Z) = P(Y1 ≤ t|Z1 = u,D1 =

v) = Fuv(t). Moreover, if s < t, Cov(F uv(s), F uv(t)|D,Z) = 1
nuv

Fuv(s)(1−Fuv(t)), and for

(u, v) 6= (u′v′), Cov(F uv(s), F u′v′(t)|D,Z) = 0 since,

EF uv(t)F u′v′(t)

=
1

nuvnu′v′

∑
a,a′∈[n]

Za=u,Da=v,Za′=u,Da′=v

P(Ya ≤ s, Ya′ ≤ t|Za = u,Da = v, Za′ = u′, Da′ = v′)

= Fuv(s)Fu′v′(t), (B.33)

whenever (u, v) 6= (u′v′).
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Now, it is well-known that for each (u, v),
√
nuv(F uv(t)−Fuv(t)))

w⇒ (Buv(Fuv(t)){u,v}∈{0,1},

and therefore, (
√
nuv(F uv(t)− Fuv(t))){u,v}∈{0,1} ⇒ (Buv(Fuv(t)){u,v}∈{0,1}. Then,

(
√
n(F uv(t)− Fuv(t))){u,v}∈{0,1}

w⇒ (
Buv(Fuv(t))√

ηuv
){u,v}∈{0,1},

and the result follows.

For χ = (χnt, χat) ∈ R2, define

C(χ) :=


1−χat

1−χnt−χat 0 0 − χnt
1−χnt−χat

0 1 0 0

0 − χat
1−χnt−χat

1−χnt
1−χnt−χat 0

0 0 0 1

 .

Note that E(F̆ (t)|Z,D) = C(φ̆)(F00(t), F01(t), F11(t), F10(t))′ and

G(t) = C(φ)

(
B00(F00(t))
√
η00

,
B01(F01(t))
√
η01

,
B11(F11(t))
√
η11

,
B10(F10(t))
√
η10

)′
,

where G(·) is as defined in the statement of Corollary B.2. Now, using the above lemma

and the Donsker’s invariance principle, and noting that C(φ̆)
P→ C(φ), it follows that

ˆ
Jκ

h(t) ·
√
n(F̆ (t)− E(F̆ (t)|Z,D))dH

=

ˆ
Jκ

h(t) · C(φ̆) ·
√
n


F 00(t)− F00(t)

F 01(t)− F01(t)

F 11(t)− F11(t)

F 10(t)− F10(t)

 dH

D→
ˆ
Jκ

h(t) ·G(t)dH, (B.34)

for any continuous function h : R→ R. This implies
ˆ
Jκ

h(t) ·
√
n{F̂ (t)− E(F̆ (t)|Z,D)}dH

=

ˆ
Jκ

h(t) ·
√
n{F̆ (t)− E(F̆ (t)|Z,D)}dH +

ˆ
Jκ

h(t) ·
√
n{F̂ (t)− F̆ (t)}dH

D→
ˆ
Jκ

G(t)dH, (B.35)

using (B.34) for the first term, and second term is oP (1) by applying the Cauchy-Schwarz
inequality followed by Theorem 3.2.
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APPENDIX C: THE MBL ESTIMATORS UNDER THE NULL

In this section we analyze the MBL estimate of the distribution functions of the compli-
ance classes under the null. To this end, define

ψ̂ = (ψ̂co, ψ̂nt, ψ̂at)
′ := arg max

ψ∈ϑ+,0

Mn(ψ, φ̆),

and

F φ̆00(t) = λ̆0Fco(t) + (1− λ̆0)Fnt(t)

F φ̆01(t) = Fat(t),

F φ̆10(t) = Fnt(t),

F φ̆11(t) = λ̆1Fco(t) + (1− λ̆1)Fat(t). (C.1)

Next, define the population objective function,5 under the null H0, as follows:

M(ψ, φ̆) = T00(ψco, ψnt, φ̆) + T10(ψnt, φ̆) + T10(ψnt, φ̆) + T11(ψco, ψat, φ̆), (C.2)

where

T00(ψco, ψnt, φ̆) =
1

n

∑
b∈Iκ

n00

n

{
log
(

1− φ̆at
)

+ J(F φ̆00(Y(b)), λ̆0ψco(Y(b)) + (1− λ̆0)ψnt(Y(b)))
}
,

T10(ψnt, φ̆) =
1

n

∑
b∈Iκ

n10

n

{
log φ̆nt + J(F φ̆10(Y(b)), ψnt(Y(b)))

}
,

T01(ψat, φ̆) =
1

n

∑
b∈Iκ

n01

n

{
log φ̆at + J(F φ̆01(Y(b)), ψat(Y(b)))

}
,

T11(ψco, ψat, φ̆) =
1

n

∑
b∈Iκ

n11

n

{
log
(

1− φ̆nt
)

+ J(F φ̆11(Y(b)), λ̆1ψco(Y(b)) + (1− λ̆1)ψat(Y(b)))
}
.

Finally, recall the plug-in estimators of the distribution functions of the compliers:

F̆ (0)
co (t) =

F 00(t)− (1− λ̆0)F 10(t)

λ̆0

, F̆ (1)
co (t) =

F 11(t)− (1− λ̆1)F 01(t)

λ̆1

.

The following result, as in Lemma B.5, shows how the MBL estimator under the null is
related to the plug-in estimator:

5Note that we are slightly abusing terminology here, because the population objective function depends
on the sample {Y1, Y2, . . . , Yn}. Ideally, one should define M(·, ·) as an integral with respect to the population
distribution function H. However, for technical reasons, it is more convenient for us to define M(·, ·) with
respect to the empirical measure instead.



50 LEE ET AL.

Proposition C.1. Fix 0 < κ < 1, and let Iκ be as defined in (3.4). Then, under the
null H0, the MBL estimator ψ̂ = (ψ̂co, ψ̂nt, ψ̂at)

′ satisfies

1

n

∑
b∈Iκ

∥∥∥∥∥∥∥

√
n(ψ̂co(Y(b))− τ̆co(Y(b)))√
n(ψ̂nt(Y(b))− τ̆nt(Y(b)))√
n(ψ̂at(Y(b))− τ̆at(Y(b)))


∥∥∥∥∥∥∥

2

2

= oP (1),

where

τ̆co(t) :=
(C̆01(t) + C̆11(t))F̆

(0)
co (t) + (C̆10(t) + C̆00(t))F̆

(1)
co (t)∑

u,v∈{0,1} C̆uv(t)

τ̆nt(t) := F 10(t) +

λ̆0

1−λ̆0
C̆10(t)

{
F̆

(0)
co (t)− F̆ (1)

co (t)
}

∑
u,v∈{0,1} C̆uv(t)

τ̆at(t) := F 01(t) +

λ̆1

1−λ̆1
C̆01(t)

{
F̆

(1)
co (t)− F̆ (0)

co (t)
}

∑
u,v∈{0,1} C̆uv(t)

, (C.3)

where C̆uv =
λ̆2

0λ̆
2
1

λ̆2
uv

· n
nuv
· F φ̆uv(Y(b))(1− F

φ̆
uv(Y(b))), with λ̆uv as defined in Theorem 6.1.

C.1. Proof of Proposition C.1. To begin with define

ψ̆ := (ψ̆co, ψ̆nt, ψ̆at)
′ := max

ψ∈ϑ0

Mn(ψ, φ̆),

where ϑ0 =
{

(θco, θnt, θat) : θco, θnt, θat ∈ RR}, is the unrestricted null parameter space. In

this case there is no-closed form expression of ψ̆. However, by the asymptotic expansion of
the sample null objective function we can find an asymptotically equivalent formula for ψ̆.

Lemma C.1. Let ψ̆ and τ̆ = (τ̆co, τ̆nt, τ̆at)
′ be as defined above. Then∑

b∈Iκ

||ψ̆(Y(b))− τ̆ (Y(b))||22 = oP (1), (C.4)

whenever ||ψ̆(Y(b))−F0(Y(b))||2 = oP (1), for every b ∈ Iκ, where F0 = (Fco, Fnt, Fat)
′, with

F
(0)
co = F

(1)
co := Fco, is the vector of true distribution functions under the null.

Proof. Next, recall the definitions of Mn and M from (3.6) and (C.2). Then

(Mn −M)(ψ̆, φ̆)− (Mn −M)(F0, φ̆)

=
1

n

∑
u,v∈{0,1}

∑
b∈Iκ

nuv
n

(F uv(Y(b))− F
φ̆
uv(Y(b)))

F φ̆uv(Y(b))(1− F
φ̆
uv(Y(b)))

(ψ̂uv(Y(b))− F φ̆uv(Y(b))) +OP (n−
3
2 )
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=
1

n

∑
u,v∈{0,1}

∑
b∈Iκ

Qφ̆uv(Y(b))(ψ̂uv(Y(b))− F φ̆uv(Y(b))) +OP (n−
3
2 ),

where Qφ̆uv(Y(b)) = nuv
n ·

1

F φ̆uv(Y(b))(1−F
φ̆
uv(Y(b)))

.

Now, under the null hypothesis, F
(0)
co = F

(1)
co := Fco, we can re-group the terms in the

above sum in terms of ψ̂co(Y(b))− Fco(Y(b)), ψ̂nt(Y(b))− Fnt(Y(b)) and ψ̂at(Y(b))− Fat(Y(b)),
to get

(Mn −M)(ψ̆, φ̆)− (Mn −M)(F0, φ̆)

=
1√
n

∑
b∈Iκ

(ψ̆(Y(b))− F0(Y(b)))
′Zn(Y(b))

+OP (n−
3
2 ), (C.5)

where F0 = (Fco, Fnt, Fat)
′ is the vector of true distribution functions under the null, and

Zn(t) =
1√
n

 λ̆0Q
φ̆
00(t){F 00(t)− F φ̆00(t)}+ λ̆1Q

φ̆
11(t){F 11(t)− F φ̆11(t)}

(1− λ̆0)Qφ̆00(t){F 00(t)− F φ̆00(t)}+Qφ̆10(t){F 10(t)− F φ̆10(t)}
(1− λ̆1)Qφ̆11(t){F 11(t)− F φ̆11(t)}+Qφ̆01(t){F 01(t)− F φ̆01(t)}

 . (C.6)

Next, denote by Vn the Hessian matrix of M(ψ, φ̆) at the point ((F0(Y(b)))b∈Iκ). Note
that the Hessian matrix is block diagonal

Vn = diag(Vn(Y(b)))b∈Iκ , (C.7)

where Vn(·) : R→ R3×3 is given by the following:

Vn(t) =


∂2M(ψ,φ̆)
∂ψco(t)2

∂2M(ψ,φ̆)
∂ψco(t)∂ψnt(t)

∂2M(ψ,φ̆)
∂ψco(t)∂ψat(t)

∂2M(ψ,φ̆)
∂ψnt(t)∂ψco(t)

∂2M(ψ,φ̆)
∂ψnt(t)2

∂2M(ψ,φ̆)
∂ψnt(t)∂ψat(t)

∂2M(ψ,φ̆)
∂ψat(t)∂ψco(t)

∂2M(ψ,φ̆)
∂ψat(t)∂ψnt(t)

∂2M(ψ,φ̆)
∂ψat(t)2

 |ψ=F0

= − 1

n

λ̆
2
0Q

φ̆
00(t) + λ̆2

1Q
φ̆
11(t) λ̆0(1− λ̆0)Qφ̆00(t) λ̆1(1− λ̆1)Qφ̆11(t)

λ̆0(1− λ̆0)Qφ̆00(t) (1− λ̆0)2Qφ̆00(t) +Qφ̆10(t) 0

λ̆1(1− λ̆1)Qφ̆11(t) 0 (1− λ̆1)2Qφ̆11(t) +Qφ̆01(t)

 .

Now, by a second order Taylor expansion of M(ψ̂, φ̆)−M(F0, φ̆) around the point ((F0(Y(b)))b∈Iκ)
gives,

M(ψ̆, φ̆)−M(F0, φ̆) =
1

2
·
∑
b∈Iκ

(ψ̆(Y(b))− F0(Y(b)))
′V (Y(b))(ψ̆(Y(b))− F0(Y(b))) +OP (n−

3
2 ),
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since the gradient of M(ψ, φ̆) at the point ((F0(Y(b)))b∈Iκ) is zero (by arguments similar to
the proof of Lemma A.1). Then from (C.5)

Mn(ψ̆, φ̆)−Mn(F0, φ̆) =
1√
n

∑
b∈Iκ

(ψ̆(Y(b))− F0(Y(b)))
′Zn(Y(b))


+

1

2
·
∑
b∈Iκ

(ψ̆(Y(b))− F0(Y(b)))
′Vn(Y(b))(ψ̆(Y(b))− F0(Y(b))) +OP (n−

3
2 ), (C.8)

Similarly, replacing ψ̆ by F0 − n−
1
2V −1

n Zn = τ̆ (by Lemma C.2 below), in (C.8), where
Zn = (Zn(Y(b))

′)′b∈Iκ and Vn = diag(Vn(Y(b)))b∈Iκ , gives

Mn(τ̆ , φ̆)−Mn(F , φ̆) = −1

2
· 1

n

∑
b∈I
Zn(Y(b))

′Vn(Y(b))
−1Zn(Y(b)) +OP (n−

3
2 ), (C.9)

since 1
n

∑
b∈Iκ ||τ̆ (Y(b))||22 = OP (1/n). This implies, subtracting (C.9) from (C.8) gives,

Mn(ψ̆, φ̆)−Mn(τ̆ , φ̆)

=
∑
b∈Iκ

(ψ̆(Y(b))− τ̆ (Y(b)))
′Vn(Y(b))(τ̆ (Y(b))− F̂0(Y(b))) +OP (n−

3
2 ). (C.10)

Now, since Mn(ψ̆, φ̆)−Mn(τ̆ , φ̆) ≥ 0 and supb∈Iκ || −V (Y(b))
−1||∞ = OP (n) (seen from

Lemma C.2 below), the result in (C.4) follows.6

Lemma C.2. For t ∈ (0, 1),

V −1
n (t)Zn(t) =

√
n

Fco(t)− τ̆co(t)Fnt(t)− τ̆nt(t)
Fat(t)− τ̆at(t)

 ,

where τ̆co(t), τ̆nt(t), and τ̆at(t), are as defined in Proposition C.1.

Proof. Recall Vn(t) from (C.7). Then by direct calculations, the inverse matrix V −1
n (t)

can be computed as:

V −1
n (t) = − n

|det(Vn(t))|

W11(t) W12(t) W13(t)
W21(t) W22(t) W23(t)
W31(t) W32(t) W33(t)


where

|det(Vn(t))| = Qφ̆00(t)Qφ̆01(t)Qφ̆10(t)Qφ̆11(t) ·

(
λ̆2

1

Qφ̆00(t)
+
λ̆2

0(1− λ̆1)2

Qφ̆01(t)
+

(1− λ̆0)2λ̆2
1

Qφ̆10(t)
+

λ̆2
0

Qφ̆11(t)

)
6For a symmetric matrix A, denote by ||A||∞ the maximum eigenvalue of A.
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W11(t) =
(

(1− λ̆0)2Qφ̆00(t) +Qφ̆10(t)
)
×
(

(1− λ̆1)2Qφ̆11(t) +Qφ̆01(t)
)

W12(t) = −λ̆0(1− λ̆0)Qφ̆00(t)×
(

(1− λ̆1)2Qφ̆11(t) +Qφ̆01(t)
)

W13(t) =
(

(1− λ̆0)2Qφ̆00(t) +Qφ̆10(t)
)
×−λ̆1(1− λ̆1)Qφ̆11(t)

W21(t) = W12(t)

W22(t) = λ̆2
0(1− λ̆1)2Qφ̆00(t)Qφ̆11(t) + λ̆2

0Q
φ̆
00(t)Qφ̆01(t) + λ̆2

1Q
φ̆
01(t)Qφ̆11(t)

W23(t) = λ̆0(1− λ̆0)λ̆1(1− λ̆1)Qφ̆00(t)Qφ̆11(t)

W31(t) = W13(t)

W32(t) = W23(t)

W33(t) = (1− λ̆0)2λ̆2
1Q

φ̆
00(t)Qφ̆11(t) + λ̆2

0Q
φ̆
00(t)Qφ̆10(t) + λ̆2

1Q
φ̆
10(t)Qφ̆11(t).

Then recall the matrix Zn(t) from (C.6). The proof of the result follows by direct mul-
tiplication.

The proof Proposition C.1 can now completed by arguments similar to the proof of
Proposition B.1. We outline the steps below, omitting the details:

– To begin with define, τ̃ = (τ̃co, τ̃nt, τ̃at), as follows:

τ̃s := arg min
θ∈P([0,1]R)

∑
b∈Iκ

(τ̆s(Y(b))− θ(Y(b)))
2, (C.11)

where s ∈ {co, nt, at}. Then as in Proposition B.1, it can shown that∑
b∈Iκ

||τ̃ (Y(b))− τ̆ (Y(b))||22 = oP (n−
1
4 ).

This implies Mn(τ̆ , φ̆)−Mn(ψ̂, φ̆) ≤Mn(τ̆ , φ̆)−Mn(τ̃ , φ̆) = oP (n−
5
4 ).

– Then as in the proof of Lemma B.5 in Section B.2, it follows that
∑

b∈Iκ ||ψ̂(Y(b))−
τ̆ (Y(b))||22 = oP (n−

1
4 ), completing the proof of Proposition C.1.

APPENDIX D: PROOF OF THEOREM 6.1

In this section we derive the asymptotic distribution of the binomial likelihood ratio
statistic (BLRT). Recall from (6.4) that the BLRT statistic

Tn := max
θ∈ϑ+

Mn(θ, φ̆)− max
θ∈ϑ+,0

Mn(θ, φ̆),

where φ̆ = (φ̆nt, φ̆at), with φ̆a = n01
n00+n01

, φ̆n = n10
n10+n11

and φ̆c = 1− φ̆n − φ̆a, is the plug-in
estimate of the compliance classes. Denote

θ̂ := arg min max
θ∈ϑ+

Mn(θ, φ̆), ψ̂ := arg min max
θ∈ϑ+,0

Mn(ψ, φ̆), (D.1)
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where θ̂(t) = (θ̂
(0)
co (t), θ̂nt(t), θ̂

(1)
co (t), θ̂at(t)) and ψ̂(t) = (ψ̂co(t), ψ̂nt(t), ψ̂at(t)). Finally, recall

from (2.11), the plug-in estimates of λ0, λ1

λ̆0 =
φ̆c

φ̆c + φ̆n
, λ̆1 =

φ̆c

φ̆c + φ̆a
,

and, define

θ̂00(t) = λ̆0θ̂
(0)
co (t) + (1− λ̆0)θ̂nt(t), ψ̂00(t) = λ̆0ψ̂co(t) + (1− λ̆0)ψ̂nt(t)

θ̂01(t) = θ̂at(t), ψ̂01(t) = ψ̂at(t)

θ̂10(t) = θ̂nt(t), ψ̂10(t) = ψ̂nt(t)

θ̂11(t) = λ̆1θ̂
(1)
co (t) + (1− λ̆1)θ̂at(t), ψ̂11(t) = λ̆1ψ̂co(t) + (1− λ̆1)ψ̂at(t),

With the above notation, we now have the following lemma, which shows that, under
the null, the restricted as well as the unrestricted MBL estimates of the true distribution
functions are asymptotically close to the plug-in estimates.

Lemma D.1. Under the null H0, the following holds:∑
b∈Iκ

∑
u,v∈{0,1}

(
θ̂uv(Y(b))− F uv(Y(b))

)2
= oP (1), (D.2)

and ∑
b∈Iκ

∑
u,v∈{0,1}

(
ψ̂uv(Y(b))− τ̆uv(Y(b))

)2
= oP (1), (D.3)

where τ̆00(t) = λ̆0τ̆co(t) + (1 − λ̆0)τ̆nt(t), τ̆01(t) = τ̆at(t), τ̆10(t) = τ̆nt(t), and τ̆11(t) =
λ̆1τ̆co(t) + (1− λ̆1)τ̆at(t), with (τ̆co(t), τ̆nt(t), τ̆at(t)) as defined in Proposition C.1.

Proof. The result in (D.2) can be shown by arguments similar to the proof Lemma of
B.5. Recall that Lemma B.5 shows that

∑
b∈Iκ

∑
u,v∈{0,1}(F̂uv(Y(b))− F uv(Y(b)))

2 = oP (1),

where F̂ is the BL estimate of F , the vector of true distribution functions, when the
proportion of the compliance classes are estimated by maximizing the binomial likelihood
function. On the other hand, θ̂ is the BL estimate of F , when the proportion of the
compliance classes are estimated by the plug-in estimates. Nevertheless, the proof of Lemma
B.5 can be repeated verbatim to show (D.2).

The result in (D.3) follows from Proposition C.1 and the definition of {τ̆uv}u,v∈{0,1}.

Using this lemma leading term of the asymptotic expansion of the BLRT can be derived
as follows:
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Lemma D.2. Let {τ̆uv}u,v∈{0,1} and {ψ̂uv}u,v∈{0,1}, be as defined above. Then the BLRT
statistic satisfies

Tn =
1

n

∑
{u,v}∈{0,1}

∑
b∈Iκ

nuv

{
(τ̆uv(Y(b))− F uv(Y(b)))

2

F uv(Y(b))(1− F uv(Y(b)))

}
+OP (1/

√
n) (D.4)

Proof. Recall that the definitions of θ̂ and ψ̂ from (D.1). Then, the BLRT can be
rewritten as,

Tn = Mn(θ̂, φ̆)−Mn(ψ̂, φ̆) =
1

n

∑
{u,v}∈{0,1}

∑
b∈Iκ

(Tuv(Y(b)|θ̂)− Tuv(Y(b)|ψ̂), (D.5)

where

Tuv(Y(b)|θ̂) =
nuv
n

{
F uv(Y(b)) log θ̂uv(Y(b)) + (1− F uv(Y(b))) log(1− θ̂uv(Y(b)))

}
Tuv(Y(b)|ψ̂) =

nuv
n

{
F uv(Y(b)) log ψ̂uv(Y(b)) + (1− F uv(Y(b))) log(1− ψ̂uv(Y(b)))

}
.

Recall the definition of the (negative) binary entropy function I(x) = x log x + (1 −
x) log(1− x). Then, note that

Tuv(Y(b)|θ̂)− I(F uv(Y(b)))

=
nuv
n

{
F uv(Y(b)) log

θ̂uv(Y(b))

F uv(Y(b))
+ (1− F uv(Y(b))) log

1− θ̂uv(Y(b))

1− F uv(Y(b))

}
= R(b)

uv , (D.6)

where

R(b)
uv =

nuv
n
·

(θ̂uv(Y(b))− F uv(Y(b)))
2

4

{
F uv(Y(b))

(ωuv(Y(b)))2
−

1− F uv(Y(b))

(1− ωuv(Y(b)))2

}
,

and ωuv(Y(b)) ∈ [F uv(Y(b)) ∧ θ̂uv(Y(b)), θ̂uv(Y(b)) ∨ F uv(Y(b))].

Note that ωuv(Y(b)) ≥ F uv(Y(dnκe)) ∧ θ̂uv(Y(dnκe)) and F uv(Y(b)) ≤ F uv(Y(dn(1−κ)e)).
Therefore,

F uv(Y(b))

(ωuv(Y(b)))2
≤

F uv(Y(dn(1−κ)e))

F uv(Y(nκ)) ∧ θ̂uv(Y(nκ))
= OP (1),

since F uv(Y(dnκe))
P→ H−1

uv (κ), F uv(Y(dn(1−κ)e))
P→ H−1

uv (1 − κ) using Observation A.3, and

|θ̂uv(Y(dnκe))− F uv(Y(dnκe))| = oP (1) by Lemma D.1. Similarly,

1− F uv(Y(b))

(1− ωuv(Y(b)))2
= OP (1).
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Therefore, ∑
b∈Iκ

|R(b)
uv | ≤ OP (1)

∑
b∈Iκ

|θ̂uv(Y(b))− F uv(Y(b))|2

≤ OP (1)
∑
b∈Iκ

|F uv(Y(b))− θ̂uv(Y(b))|2 = oP (1), (D.7)

by (D.2). Therefore, by (D.6),

1

n

∑
{u,v}∈{0,1}

∑
b∈Iκ

Tuv(Y(b)|θ̂)− I(F uv(Y(b))) = oP (1/n). (D.8)

Similarly, by a second order Taylor approximation,

Tuv(Y(b)|ψ̂)− I(F uv(Y(b))) =
nuv
n
· 1

2
·

(ψ̂uv(Y(b))− F uv(Y(b)))
2

F uv(Y(b))(1− F uv(Y(b)))
+W (b)

uv , (D.9)

where

W (b)
uv =

nuv
n
·

(ψ̂uv(Y(b))− F uv(Y(b)))
3

6

{
F uv(Y(b))

(ωuv(Y(b)))3
−

1− F uv(Y(b))

(1− ωuv(Y(b)))3

}
,

and ωuv(Y(b)) ∈ [F uv(Y(b)) ∧ ψ̂uv(Y(b)), ψ̂uv(Y(b)) ∨ F uv(Y(b))]. Now, as in (D.7),

1

n

∑
b∈Iκ

|W (b)
uv | ≤ OP (1)

1

n

∑
b∈Iκ

|ψ̂uv(Y(b))− F uv(Y(b))|3

≤ OP (1)
1

n

∑
b∈Iκ

|F uv(Y(b))− ψ̂uv(Y(b))|3

≤ OP (1)
1

n

∑
b∈Iκ

|F uv(Y(b))− τ̆uv(Y(b))|3 +OP (1)
1

n

∑
b∈Iκ

|ψ̂uv(Y(b))− τ̆uv(Y(b))|3

≤ OP (n−
3
2 ) +OP (1)

1

n

∑
b∈Iκ

|ψ̂uv(Y(b))− τ̆uv(Y(b))|2
 3

2

= oP (1/n), (D.10)

using supt |F uv(t) − τ̆uv(t)| = OP (1/
√
n) for the first term, and Cauchy-Schwarz followed

by (D.3) in the second term.
Therefore, combing (D.9) with (D.10) above gives,

1

n

∑
{u,v}∈{0,1}

∑
b∈Iκ

Tuv(Y(b)|ψ̂)− I(F uv(Y(b)))
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=
1

n

∑
{u,v}∈{0,1}

∑
b∈Iκ

nuv
n
· 1

2
·

(ψ̂uv(Y(b))− F uv(Y(b)))
2

F uv(Y(b))(1− F uv(Y(b)))
+ oP (1/n)

=
1

n

∑
{u,v}∈{0,1}

∑
b∈Iκ

nuv
n
· 1

2
·

(τ̆uv(Y(b))− F uv(Y(b)))
2

F uv(Y(b))(1− F uv(Y(b)))
+ oP (1/n), (D.11)

where the last step uses triangle inequality and (D.3). Combining (D.8) and (D.11) with
(D.5) the result follows.

The proof of Theorem 6.1 can now be completed by simplifying the RHS of (D.4). To
this end, we have the following observation:

Observation D.1. Let {τ̆uv}u,v∈{0,1} be as defined in Lemma D.1. Then, for u, v ∈
{0, 1},

τ̆uv(t) = F uv(t) + λ̆uv ·
C̆uv(t)∑

u,v∈{0,1} C̆uv(t)

(
F̆ (1)
co (t)− F̆ (0)

co (t)
)
, (D.12)

where {λ̆uv}u,v∈{0,1} and {C̆uv}u,v∈{0,1} are as defined in Theorem 6.1 and Proposition
(C.1), respectively.

Proof. Recall the plug-in estimates F̆
(0)
co (t) and F̆

(1)
co (t) from (2.14). Then from (C.3)

it follows that

τ̆00(t) = λ̆0τ̆co(t) + (1− λ̆0)τ̆nt(t)

= F 00(t) +
C̆00(t)λ̆0∑

u,v∈{0,1} C̆uv(t)

{
F 11(t)− (1− λ̆1)F 01(t)

λ̆1

− F 00(t)− (1− λ̆0)F 10(t)

λ̆0

}

= F 00(t) + λ̆00 ·
C̆00(t)∑

u,v∈{0,1} C̆uv(t)

(
F̆ (1)
co (t)− F̆ (0)

co (t)
)
.

The expressions for τ̆01(t), τ̆10(t), and τ̆11(t) can be computed similarly.

Substituting (D.12) in the RHS of equation (D.4), the leading term of the BLRT sim-
plifies as follows:

Tn =
1

n

∑
u,v∈{0,1}

∑
b∈Iκ

 λ̆uvC̆uv(Y(b))
√
Q̆uv(Y(b))∑

u,v∈{0,1} C̆uv(Y(b))

√
n(F̆ (1)

co (Y(b))− F̆ (0)
co (Y(b)))

2

+ oP (1).
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using Q̆uv(t) = nuv/n

Fuv(t)(1−Fuv)(t)
. Next, recalling he definition of {C̆uv(t)}u,v∈{0,1} from

Proposition C.1, note that

C̆uv(t) =
λ̆2

0λ̆
2
1

λ̆2
uv

· n
nuv
· F φ̆uv(t)(1− F φ̆uv(t)) =

λ̆2
0λ̆

2
1

λ̆2
uv

· 1

Qφ̆uv(t)
.

Therefore, the leading term of Tn can is further simplified as

Tn = (λ̆2
0λ̆

2
1) · 1

n

∑
b∈Iκ

∑
u,v∈{0,1}

λ̆2
0λ̆

2
1

λ̆2
uv

Q̆uv(Y(b))

Qφ̆uv(Y(b))
2

(
∑

u,v∈{0,1} C̆uv(Y(b)))2
(
√
n{F̆ (0)

co (Y(b))− F̆ (1)
co (Y(b))})2 + oP (1)

= (λ̆2
0λ̆

2
1) · 1

n

∑
b∈Iκ

1∑
u,v∈{0,1} C̆uv(Y(b))

(
√
n{F̆ (0)

co (Y(b))− F̆ (1)
co (Y(b))})2 + oP (1), (D.13)

where the last step uses supb∈Iκ

∣∣∣∣ Q̆uv(Y(b))

Qφ̆uv(Y(b))
− 1

∣∣∣∣ = oP (1), since both Q̆uv(t) and Qφ̆uv(t)

converges to ηuv
Fuv(t)(1−Fuv(t)) := Quv(t) in supremum norm. Using this and λ̆0

P→ λ0 and

λ̆1
P→ λ1, the RHS of (D.13) can be further simplified as

Tn =
1

n

∑
b∈Iκ

(
√
n{F̆ (0)

co (Y(b))− F̆
(1)
co (Y(b))})2∑

u,v∈{0,1}
1
λ̆2
uv

n
nuv

Fuv(Y(b))(1− Fuv(Y(b)))
+ oP (1)

=
1

n

∑
b∈Iκ

(
√
n{F̆ (0)

co (Y(b))− F̆
(1)
co (Y(b))})2∑

u,v∈{0,1}
1
λ̆2
uv

n
nuv

F uv(Y(b))(1− F uv(Y(b)))
+ oP (1). (D.14)

where the last step follows from supb∈Iκ |
Fuv(Y(b))

Fuv(Y(b))
− 1| = oP (1). This completes the proof

of Theorem 6.1. 2

To re-write the denominator in (D.14) as the conditional variance of the numerator, note
that nVar(F uv(t)|(Z,D)) = n

nuv
Fuv(t)(1−Fuv(t)). Therefore, by the independence of F uv

(conditional on (Z,D)),

nVar(F̆ (0)
co (t)− F̆ (1)

co (t)|(Z,D))

= Var

(
F 00(t)− (1− λ̆0)F 10(t)

λ̆0

− F 11(t)− (1− λ̆1)F 01(t)

λ̆1

|(Z,D)

)
=

∑
u,v∈{0,1}

1

λ̆2
uv

n

nuv
Fuv(t)(1− Fuv(t)), (D.15)

recalling the definition of {λ̆uv}u,v∈{0,1} from Theorem 6.1. Therefore, by mimicking the
proof of Lemma B.6, the RHS of (D.14) simplifies to (6.6).
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APPENDIX E: PROOFS FROM SECTION 4

In this section we recall the well-known PAVA algorithm Barlow et al. (1972); de Leeuw,
Hornik and Mair (2009), elaborate on the EM-PAVA algorithm, and prove Proposition 4.1.

E.1. The PAVA Algorithm. The PAVA algorithm takes input a vector u = (u1, . . . , un)′

and an a weight vector w = (w1, . . . , wn)′, and returns another vector PAVAw(u) :=
(û1, . . . , ûn)′ such that

PAVAw(u) := arg min
v1≤v2≤···≤vn

n∑
i=1

wi(ui − vi)2. (E.1)

The weighted PAVA algorithm is as follows: To begin with set ûa = ua for all a ∈ [n].

Step 1. If û1 ≤ û2, move to Step 2. Otherwise, û1 > û2 in which case the values are updated
as

û1 = û2 ←
w1u1 + w2u2

w1 + w2
,

the weighted average of the original values of {u1, u2}. Then, move to Step 2. Note
that the first step does not update the points from the third to the last, that is,
ûa = ua, for a ∈ [3, n].

Step 2. For the a-th point, compare ûa with ûa+1. If ûa ≤ ûa+1, then ûa remains the same
and the algorithm moves to the next point. If ûa > ûa+1, then ûa = ûa+1 ←
waûa+wa+1ûa+1

w1+w2
, the weighted average of {ûa, ûa+1}. Then new value is compared with

ûa−1. If the required monotonicity assumption is achieved, that is, ûa−1 ≤ ûa, then
the algorithm moves to the (a + 1)-th point. Otherwise, ûa−1 > ûa, in which case
ûa−1 = ûa = ûa+1 is updated by the weighted average of {ûa−1, ûa, ûa+1}. This re-
peated until a sequence the partial sequence û1, . . . , ûa is non-decreasing. Then the
algorithm moves to the (a+ 1)-th point.

It is well known that the output PAVAw(u) = (û1, û2, . . . , ûn) of the above algorithm
is non-decreasing and is the solution for the optimization problem (E.1). For example,
suppose u = (3, 2, 1) and w = (1/3, 1/3, 1/3). Then PAVA algorithm updates u in the
following order,

(3, 2, 1)→ (5/2, 5/2, 1)→ (5/2, 7/4, 7/4)→ (2, 2, 2).

For our experiments, we have used the pava function in the R package Iso, which imple-
ments weighted PAVA algorithm described.

E.2. Proofs from the EM-PAVA Algorithm. In this section we fill in the details
of the EM-PAVA algorithm described in Section 4 above.
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E.2.1. The Expectation Step. To begin recall the definition of Ka
u,S = {Za = u, Sa = s}.

Then recalling (4.3) and (4.4), the complete data binomial log-likelihood (4.5) can be re-
written as follows:

logL(θ,χ|Dn) =
∑
a∈[n]

∑
b∈Iκ

∑
u∈{0,1}

∑
s∈{co,nt,at}

Su,s(Ya, Y(b)), (E.2)

where

Su,co(Ya, Y(b)) = 1{Ka
u,co} logχco + 1{Ya ≤ Y(b),K

a
u,co} log θ(u)

co (Y(b))

+ 1{Ya > Y(b),K
a
u,co} log(1− θ(u)

co (Y(b))),

Su,nt(Ya, Y(b)) = 1{Ka
u,nt} logχnt + 1{Ya ≤ Y(b),K

a
u,nt} log θnt(Y(b))

+ 1{Ya > Y(b),K
a
u,nt} log(1− θnt(Y(b))),

Su,at(Ya, Y(b)) = 1{Ka
u,at} logχat + 1{Ya ≤ Y(b),K

a
u,at} log θat(Y(b))

+ 1{Ya > Y(b),K
a
u,at} log(1− θat(Y(b))).

The recalling (4.6) we have

Qm(θ,χ|θ̂(m), χ̂(m)) =
∑
b∈Iκ

∑
u∈{0,1}

∑
s∈{co,nt,at}

Qu,s(Y(b)), (E.3)

where, for u ∈ {0, 1}, Qu,s(Y(b)) := Eθ̂(m),χ̂(m)

(∑n
a=1 Su,s(Ya, Y(b))|Dn

)
. To compute (E.3),

we need to compute the following probabilities:

r
(m)
0 := Pθ̂(m),χ̂(m)

(Sa = co | Za = 0, Da = 0, Ya ≤ Y(b))

r
(m)
1 := Pθ̂(m),χ̂(m)

(Sa = co | Za = 1, Da = 1, Ya ≤ Y(b))

ρ
(m)
0 := Pθ̂(m),χ̂(m)

(Sa = co | Za = 0, Da = 0, Ya > Y(b))

ρ
(m)
1 := Pθ̂(m),χ̂(m)

(Sa = co | Za = 1, Da = 1, Ya > Y(b)).

Lemma E.1. Let r
(m)
0 , r

(m)
1 , ρ

(m)
0 , ρ

(m)
0 be as defined above. Then, for u ∈ {0, 1},

Qu,co(Y(b)) =nuu

{(
F uu(Y(b))r

(m)
u + (1− F uu(Y(b)))ρ

(m)
u

)
log(1− χ̂nt,(m) − χ̂at,(m))

+ F uu(Y(b))r
(m)
u log θ(u)

co (Y(b)) + (1− F uu(Y(b)))ρ
(m)
u log(1− θ(u)

co (Y(b)))

}
.

Similarly,

Q0,nt(Y(b)) = n00

{(
F 00(Y(b))(1− r

(m)
0 ) + (1− F 00(Y(b))(1− ρ

(m)
0 )

)
log χ̂nt,(m)
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+ F 00(Y(b))(1− r
(m)
0 ) log θnt(Y(b)) + (1− F 00(Y(b))(1− ρ

(m)
0 ) log(1− θnt(Y(b)))

}
,

and

Q1,at(Y(b)) = n11

{(
F 11(Y(b))(1− r

(m)
1 ) + (1− F 11(Y(b))(1− ρ

(m)
1 )

)
log χ̂at,(m)

+ F 11(Y(b))(1− r
(m)
1 ) log θat(Y(b)) + (1− F 11(Y(b))(1− ρ

(m)
1 ) log(1− θat(Y(b)))

}
.

Finally, Q1,nt(Y(b)) = n10 logχnt+n10J(F 10(Y(b)), θnt(Y(b))) and Q0,at(Y(b)) = n01 logχat+

n01J(F 01(Y(b)), θat(Y(b))), where J(x, y) = x log y + (1− x) log(1− y).

The proof of the above lemma is an easy consequence of Lemma E.2 below. This com-
pletes the proof of the expectation step of the EM algorithm, at the (m+ 1)-th iteration.

Lemma E.2. For every integer m ≥ 1,

r
(m)
0 =

χ̂co,(m)θ̂
(0)
co,(m)(Y(b))

χ̂co,(m)θ̂
(0)
co,(m)(Y(b)) + χ̂nt,(m)θ̂nt,(m)(Y(b))

,

r
(m)
1 =

χ̂co,(m)θ̂
(1)
co,(m)(Y(b))

χ̂co,(m)θ̂
(1)
co,(m)(Y(b)) + χ̂at,(m)θ̂at,(m)(Y(b))

,

ρ
(m)
0 =

χ̂co,(m)(1− θ̂
(0)
co,(m)(Y(b)))

χ̂co,(m)(1− θ̂
(0)
co,(m)(Y(b))) + χ̂nt,(m)(1− θ̂nt,(m)(Y(b)))

,

ρ
(m)
1 =

χ̂co,(m)(1− θ̂
(1)
co,(m)(Y(b)))

χ̂co,(m)(1− θ̂
(1)
co,(m)(Y(b))) + χ̂at,(m)(1− θ̂at,(m)(Y(b)))

.

where χ̂co,(m) = 1− χ̂at,(m) − χ̂nt,(m).

Proof. Throughout the proof, we denote P = Pθ̂(m),χ̂(m)
for notational simplicity.

To begin with, note that

r
(m)
0 = P(Sa = co | Za = 0, Da = 0, Ya ≤ Y(b))

=
P(Sa = co, Za = 0, Da = 0, Ya ≤ Y(b))

P(Sa = co, Za = 0, Da = 0, Ya ≤ Y(b)) + P(Sa = nt, Za = 0, Da = 0, Ya ≤ Y(b))
.

(E.4)
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Now,

P(Sa = co, Za = 0, Da = 0, Ya ≤ Y(b))

P(Za = 0, Da = 0)

= P(Ya ≤ Y(b) | Sa = co, Za = 0, Da = 0) · P(Sa = co | Za = 0, Da = 0)

=
χ̂co,(m)

χ̂co,(m) + χ̂nt,(m)
P(Ya ≤ Y(b) | Sa = co, Za = 0)

=
χ̂co,(m)

χ̂co,(m) + χ̂nt,(m)
θ̂

(0)
co,(m)(Y(b)). (E.5)

Moreover,

P(Sa = co, Za = 0, Da = 0, Ya ≤ Y(b)) + P(Sa = nt, Za = 0, Da = 0, Ya ≤ Y(b))

P(Za = 0, Da = 0)

= P(Ya ≤ Y(b) | Sa = co, Za = 0, Da = 0) · P(Sa = co | Za = 0, Da = 0)

+ P(Ya ≤ Y(b) | Sa = nt, Za = 0, Da = 0) · P(Sa = nt | Za = 0, Da = 0)

=
χ̂co,(m)

χ̂co,(m) + χ̂nt,(m)
θ̂

(0)
co,(m)(Y(b)) +

χ̂nt,(m)

χ̂co,(m) + χ̂nt,(m)
θ̂nt,(m)(Y(b)). (E.6)

Substituting (E.5) and (E.6) in (E.4) the identity for r
(m)
0 follows. The other identities can

be proved similarly.

E.2.2. The Maximization Step. Recall from (4.7), that

(θ̆(m+1), χ̂(m+1)) = arg max
θ∈ϑ,χ∈R2

Qm(θ,χ|θ̂(m), χ̂(m)),

where θ̆(m+1)(t) = (θ̆
(0)
co,(m+1)(t), θ̆nt,(m+1)(t), θ

(1)
co,(m+1), θ̆at,(m+1))

′ and χ̂(m+1) = (χ̂nt,(m+1), χ̂at,(m+1))
′.

Lemma E.3. Let r
(m)
0 , r

(m)
1 , ρ

(m)
0 , ρ

(m)
0 be as in Lemma E.2. Then

θ̆
(0)
co,(m+1)(Y(b)) =

F 00(Y(b))r
(m)
0

F 00(Y(b))r
(m)
0 + (1− F 00(Y(b)))ρ

(m)
0

,

θ̆nt,(m+1)(Y(b)) =
n00F 00(Y(b))(1− r

(m)
0 ) + n10F 10(Y(b))

n00F 00(Y(b))(1− r
(m)
0 ) + n00(1− F 00(Y(b)))(1− ρ

(m)
0 ) + n10

,

θ̆
(1)
co,(m+1)(Y(b)) =

F 11(Y(b))r
(m)
1

F 11(Y(b))r
(m)
1 + (1− F 11(Y(b)))ρ

(m)
1

,

θ̆at,(m+1)(Y(b)) =
n11F 11(Y(b))(1− r

(m)
1 ) + n01F 01(Y(b))

n11F 11(Y(b))(1− r
(m)
1 ) + n11(1− F 11(Y(b)))(1− ρ

(m)
1 ) + n01

;
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and

χ̂nt,(m+1) =
1

|Iκ|n
∑
b∈Iκ

{
n00F 00(Y(b))(1− r

(m)
0 ) + n00(1− F 00(Y(b)))(1− ρ

(m)
0 ) + n10

}
χ̂at,(m+1) =

1

|Iκ|n
∑
b∈Iκ

{
n01 + n11F 11(Y(b))(1− r

(m)
1 ) + n11(1− F 11(Y(b)))(1− ρ

(m)
1 )

}
.

Moreover, χ̂(m+1) = (χ̂nt,(m+1), χ̂at,(m+1))
′ ∈ [0, 1]2+, that is, χ̂nt,(m+1), χ̂at,(m+1) ∈ (0, 1)

and 0 ≤ χnt,(m+1) + χat,(m+1) ≤ 1.

Proof. This follows from Lemma E.1, by solving the first-order conditions obtained by
taking the gradient of the Qm(θ,χ|θ̂(m), χ̂(m)) with respect to (θ(Y(b)))b∈Iκ and χ, and
equating it to zero.

To see, χ̂(m+1) ∈ [0, 1]2+, note that χnt,(m+1) and χat,(m+1) are obtained by maximizing
with respect to a, b a function of the form x log(a) + y log(b) + z log(1 − a − b), for some
non-negative quantities x, y, z. Clearly, this is maximized when a = x/(x + y + z), b =
y/(x+ y + z), which satisfy the requited constraints: a, b ∈ [0, 1] and 0 ≤ a+ b ≤ 1.

To ensure the monotonicity constraint we apply the PAVA algorithm with the following
weights to the vector θ̆(m+1), which is computed in the above lemma:

w
(0)
co,(m+1)(Y(b)) = n00F 00(Y(b))r

(m)
0 + n00(1− F 00(Y(b))ρ

(m)
0 ,

wnt,(m+1)(Y(b)) = n00F 00(Y(b))(1− r
(m)
0 ) + n00(1− F 00(Y(b))(1− ρ

(m)
0 ) + n10,

wat,(m+1)(Y(b)) = n11F 11(Y(b))(1− r
(m)
1 ) + n11(1− F 11(Y(b))(1− ρ

(m)
1 ) + n01,

w
(1)
co,(m+1)(Y(b)) = n11F 11(Y(b))r

(m)
1 + n11(1− F 11(Y(b))ρ

(m)
1 . (E.7)

This completes the description of the EM-PAVA algorithm. Proposition 4.1, which is proved
below, shows that this procedure indeed maximizes Qm(θ,χ|θ̂(m), χ̂(m)) over the restricted
parameter space ϑ+ × [0, 1]2+.

Proof of Proposition 4.1: A collection of f1, f2, . . . , fn : R → R is said to be nice with
respect to a given weight vector w = (w1, w2, . . . , wn)′ if the following hold:

– there exists θ̃ = (θ̃1, . . . , θ̃n)′ such that θ̄ab := arg max
∑b

s=a fs(θ) can be represented
as the weighted average of (θ̃a, . . . , θ̃b), that is,

θ̄ab =

∑b
s=awsθ̃a∑b
s=aws

∀ a ≤ b,

–
∑b

s=a fs(θ) is strictly increasing when θ ≤ θ̄ab and is strictly decreasing when θ > θ̄ab.
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We will use the following well-known result about maximizing the sum of nice functions
under the monotonicity constraint.

Lemma E.4. Ma, Foster and Stine (2015) Let f1, f2, . . . , fn : R → R be collection of
functions, and z̆a = arg maxz∈R fa(z). If this collection of functions is nice with respect to
a given weight vector w = (w1, w2, . . . , wn)′, then

arg max
z1≤...≤zn

n∑
s=1

fs(zs) = PAVAw(z̆1, . . . , z̆n),

where the PAVA algorithm uses the weight vector w.

Since χ̂(m+1) ∈ [0, 1]2+ (Lemma E.3), it suffices to show that θ̂(m+1) ∈ ϑ+ and it is the
restricted maximum. Note that the estimates

θ̆
(0)
co,(m+1)(Y(b)), θ̆nt,(m+1)(Y(b)), θ̆

(1)
co,(m+1)(Y(b)), θ̆at,(m+1)(Y(b)) ∈ [0, 1],

for each b ∈ Iκ. Therefore, the PAVA estimates θ̂(m+1) ∈ ϑ+. Next, to apply Lemma E.4
above, define the following four functions f1b, f2b, f3b, f4b:

f1b(θ1b) = n00F 00(Y(b))r
(m)
0 log θ1b + n00(1− F 00(Y(b))ρ

(m)
0 log(1− θ1b)

f2b(θ2b) =
{
n00F 00(Y(b))(1− r

(m)
0 ) + n10F 10(Y(b))

}
log θ2b

+
{
n00(1− F 00(Y(b))(1− ρ

(m)
0 ) + n10(1− F 10(Y(b)))

}
log(1− θ2b)

f3b(θ3b) = n11F 11(Y(b))r
(m)
1 log θ3b + n11(1− F 11(Y(b))ρ

(m)
1 log(1− θ3b)

f4b(θ4b) =
{
n11F 11(Y(b))(1− r

(m)
1 ) + n01F 01(Y(b))

}
log θ4b

+
{
n11(1− F 11(Y(b))(1− ρ

(m)
1 ) + n01(1− F 01(Y(b)))

}
log(1− θ4b).

where θ1b = θ
(0)
co (Y(b)), θ2b = θnt(Y(b)), θ3b = θ

(1)
co (Y(b)) and θ4b = θat(Y(b)). Then, from (E.3)

and Lemma E.1, it follows that

Qm(θ,χ|θ̂(m), χ̂(m)) = C(χ) +
4∑
s=1

∑
b∈Iκ

fsb(θsb),

where C(χ) is a function depending only of χ. Therefore, maximizing Qm(θ,χ|θ̂(m), χ̂(m))
is equivalent to maximizing

∑
b∈Iκ fsb(θsb) for each s. Now, for each s, it is easy to see that

the functions fsb(θsb), for b ∈ Iκ, satisfy the condition in Lemma E.4 with weights as in
(E.7), and, hence the proof of Proposition 4.1 follows.
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APPENDIX F: CONFIDENCE BAND CONSTRUCTION

We adopt an approach described in Buja and Rolke (2005) to construct confidence
bands for the estimated CDFs. For an estimated CDF F̂ (t) on fixed and ordered loca-
tions (t1, . . . , tn), this procedure finds an upper bound u(t) and a lower bound `(t) such
that F (t) ∈ [`(t), u(t)] with probability 100(1 − α)% simultaneously, for all t ∈ T =
{t1, t2, . . . , tn}. Begin by resampling the data B times and obtain estimates of the CDFs
F̂b(t), for 1 ≤ b ≤ B and t ∈ T . Then the following steps are implemented:

(a) Allocate the values of {F̂b(ti) : 1 ≤ b ≤ B, 1 ≤ i ≤ n} in a B × n matrix, where the
b-th row is (F̂b(t1), . . . , F̂b(tn)).

(b) Destroy the relationships within rows, by sorting the columns. This yields, for a fixed
location of t ∈ T , a set of order statistics that are estimates of marginal quantiles.
After sorting, the b-th row will contain the estimates for the b/(B + 1)-quantiles, for
1 ≤ b ≤ B. Define, qs= b

B+1
(ti) to be the (b, i)-th element of this sorted matrix, and

`s(ti) = qs(ti) and us(ti) = q1−s(ti).
(c) For each F̂b, determine the minimal parameter value s = sb such that `s(ti) ≤ F̂b(ti) ≤

us(ti), simultaneously, for all 1 ≤ i ≤ n. The bisection algorithm can find the minimal
s efficiently.

(d) For the collection of parameter values (sb)b∈B determine the upper 1 − α quantile.
This will be the estimate ŝα for a band with coverage probability minimally ≥ 1− α:
[`(t), u(t)] = [`ŝα(t), uŝα(t)], for t ∈ T .
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