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A new, powerful approach to the study of effect modification in

observational studies
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Abstract. Effect modification occurs when the magnitude or stability of a treatment effect

varies as a function of an observed covariate. Generally, larger and more stable treatment

effects are insensitive to larger biases from unmeasured covariates, so a causal conclusion may

be considerably firmer if effect modification is noted when it occurs. We propose a new strat-

egy, called the submax-method, that splits the population into two subpopulations L times,

restoring the population after each split, so that successive splits do not make ever smaller

subpopulations. For instance, in split 1, the method might distinguish men and women, while

in split 2 it might ignore gender and distinguish smokers and nonsmokers. A test statistic is

computed from each subpopulation, and the one statistic for the whole population is added to

this list, making 2L + 1 test statistics in total. Typically, 2L + 1 is small compared to the

number of interaction subpopulations, namely 2L, and the 2L subpopulations are each large

compared to the 2L interaction subpopulations. These 2L + 1 statistics exhibit a fairly high

correlation because the same people reappear in many statistics; for instance, many smokers

are men. The method corrects for multiple testing using the joint distribution of the 2L + 1

test statistics, but because of the high correlation among statistics, the correction for multiple

testing is small compared to a correction using the Bonferroni inequality. The submax-method

achieves the highest design sensitivity and the highest Bahadur efficiency of its 2L + 1 com-

ponent tests. Moreover, the form of the test is sufficiently tractable that its large sample

power may be studied analytically. A simulation confirms and elaborates large sample results.

1Kwonsang Lee is a PhD student and Dylan Small and Paul Rosenbaum are professors in the Department

of Statistics, Wharton School, University of Pennsylvania, Philadelphia, PA 19104-6340 US. 1 February

2017. dsmall@wharton.upenn.edu.

1

http://arxiv.org/abs/1702.00525v1


Additionally, the simulation compares the new method to other methods for which power for-

mulas are not available. Strictly speaking, the submax procedure tests a global null hypothesis,

but it may be converted into a consonant multiple inference procedure using closed testing.

The simulation suggests that the submax method exhibits superior performance when there is

effect modification of moderate size. The mathematical formalism of the submax method has

applications besides exploiting effect modification, and these other applications are discussed

briefly. Using data from the NHANES I Epidemiologic Follow-Up Survey, an observational

study of the effects of physical activity on survival is used to illustrate the method.

Keywords: Causal effects; causal inference; design sensitivity; effect modification; epidemiol-

ogy; observational study; sensitivity analysis; testing twice.

1 Does physical activity prolong life? Equally for everyone?

1.1 A matched comparison of physical inactivity and survival

Davis et al. (1994) used the NHANES I Epidemiologic follow-up study (NHEFS) to ask:

Is greater physical activity reported at the time of the NHANES I survey associated with

a longer subsequent life? We examine the same data in a similar way, but with new

methodology, specifically the subgroup maximum method or submax-method.

A representative national sample was collected in the first NHANES I survey in 1971-

1975, and these sampled individuals were followed up for survival until 1992. Data on

all variables other than death were collected at baseline (NHANES I). Physical activity

was measured in two variables: self-reported nonrecreational activity (“In your usual days,

aside from recreation are you physically very active, moderately active or quite inactive?”)

and self-reported recreational activity (“Do you get much, moderate or little or no exercise

in the things you do for recreation?”). We formed a treated group of 470 adults who were

quite inactive, both at work and at leisure, and we matched them to a control group of
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470 adults who were quite active (very active in physical activity outside of recreation and

much or moderate recreational activity). We compare quite inactive to quite active rather

than moderately inactive to moderately active individuals because making the treated and

control groups sharply differ in dose increases the insensitivity of the study to unobserved

biases when there is a treatment effect and no bias (i.e., it increases the design sensitivity,

Rosenbaum, 2004). Following Davis et al. (1994), we excluded people who were quite ill

at the time of the NHANES I survey. Both of our groups included people aged between 45

and 74 at baseline in the NHANES I study and excluded people who, prior to the NHANES

I evaluation, had had heart failure, a heart attack, stroke, diabetes, polio or paralysis, a

malignant tumor, or a fracture of the hip or spine.

Table 1 shows the covariates used in matching. Pairs were exactly matched on sex,

smoking status (current smoker) and income (cut at two times the Federal poverty level).

Other matched variables were age, race (white or other), years of education, employment

(employed or not employed outside the home during the previous three months), marital

status, alcohol consumption and dietary quality (number of five nutrients – protein, cal-

cium, iron, Vitamin A and Vitamin C – that were consumed at more than two thirds of the

recommended dietary allowance). After matching, the groups are fairly similar, whereas

before matching, the inactive group was older, more often female, more often nonwhite,

more often poor, more often not working in the prior 3 months, more often not married,

and less often had an adequate diet.

The top panel of Figure 1 shows the Kaplan-Meier survival curves for the matched

active and inactive groups. We ask two interconnected questions: (i) What magnitude

of unmeasured bias from nonrandom treatment assignment would need to be present to

explain Figure 1 as something other than an effect caused by inactivity? (ii) Is there greater

insensitivity to unmeasured bias in some subgroups because the ostensible effect is larger

3



in those subgroups, or is there similar evidence of effect in all subgroups? We will study

sex, smoking and the two categories of income as potential effect modifiers. These three

binary covariates are exactly matched.

1.2 A new approach to effect modification in observational studies

If some subgroups experience larger or more stable effects, then the ostensible effect of a

treatment may be less sensitive to bias from nonrandomized treatment assignment in these

subgroups; see Hsu et al. (2013). Conversely, if a treatment appears to be highly effective

in all subgroups, then it is safer to generalize to other populations that may have different

proportions of people in the various subgroups.

One approach to studying effect modification in observational studies constructs a few

promising subgroups from several measured covariates using an algorithm such as Breiman

et al. (1984)’s CART technique, as discussed by Hsu et al. (2013, 2015), and as described

in §3.7. A limitation of this approach is that it is hard to study the power and operating

characteristics of such a technique except by simulation, because the CART step does not

lend itself to such an evaluation. In the current paper we propose a different approach —

the submax method — for which a theoretical evaluation is possible. The submax method

has a formula for power and design sensitivity, and additionally permits statements about

Bahadur efficiency. In particular, the new method achieves the largest — i.e., best — of the

design sensitivities for the subgroups, and the highest Bahadur efficiency of the subgroups;

moreover, both the power formula and a simulation confirm that the asymptotic results

are a reasonable guide to performance in samples of practical size. The simulation in §3.7

also compares the submax and CART methods. An additional limitation of the CART

method is that it is defined for matched pairs. In contrast, the submax-method works for

matched pairs, for matched sets with multiple controls, variable numbers of controls and
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with the full matching method described by Rosenbaum (1991) and Hansen and Klopfer

(2012).

The submax-method considers a single combined analysis together with several ways

to split the population into subgroups. It does not form the interaction of subgroups,

which would quickly become thinly populated with small sample sizes; rather, it considers

one split, reassembles the population, then considers another split. If the splits were

defined by L binary covariates, then there would be 2L interaction subgroups, but the

submax-method would do only 1 overall test plus 2L subgroup tests, making a total of

2L+1 highly correlated tests, not 2L independent tests. If the binary covariates each split

every subpopulation in half, then each interaction subgroup would contain a fraction 2−L

of the population — i.e., not much — but each of our 2L subgroup tests would use half the

population — i.e., a much larger fraction. The submax-method uses the joint distribution

of the 2L+ 1 test statistics, with the consequence that the correction for multiple testing

is quite small due to the high correlation among the test statistics. Specifically, the two

halves of one binary split are independent because they refer to different people, but each

of those test statistics is highly correlated with test statistics for other splits, because all

the splits use the same people. In the example, we split the population by gender (male

or female), by current cigarette smoking (yes or no), and by two income groups, so we do

2K + 1 = 2× 3 + 1 = 7 correlated tests. Although the test statistics for men and women

are independent, the statistics for men and smokers are highly correlated because there are

many male smokers.
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2 Notation and review of observational studies

2.1 Treatment effects in randomized experiments

There are G groups, g = 1, . . . , G, of matched sets, i = 1, . . . , Ig, with ngi individuals

in set i, j = 1, . . ., ngi, one treated individual with Zgij = 1 and ngi − 1 controls with

Zgij = 0, so that 1 =
∑ngi

j=1
Zgij for each g, i. Matched sets were formed by matching for

an observed covariate xgij , but may fail to control an unobserved covariate ugij , so that

xgij = xgik for each g, i, j, k, but possibly ugij 6= ugik. In §1.1, the matched sets are pairs,

ngi = 2, and there are G = 23 = 8 groups of pairs defined by combinations of L = 3 binary

covariates, sex, smoking and income group, with 470 =
∑

8

g=1
Ig pairs in total.

Individual gij exhibits response rTgij if treated or response rCgij if given the control, so

this individual exhibits response Rgij = Zgij rTgij + (1− Zgij) rCgij, and the effect of the

treatment, rTgij − rCgij, is not observed for anyone; see Neyman (1923) and Rubin (1974).

Fisher’s (1935) null hypothesis of no treatment effect asserts that H0 : rTgij = rCgij for

all i, j. Write F = {(rTgij, rCgij , xgij , ugij) , g = 1, . . . , G, i = 1, . . . , Ig, j = 1, . . . , ngi}.

Write |S| for the number of elements in a finite set S.

Write Z for the set containing the |Z| = ∏G
g=1

∏Ig
i=1

ngi possible values z of the treat-

ment assignment Z =
(
Z111, Z112, . . . , ZG,IG,nG,IG

)T

, so z ∈ Z if zgij = 0 or zgij = 1 and

1 =
∑ngi

j=1
zgij for each gi. Conditioning on the event Z ∈ Z is abbreviated as condi-

tioning on Z. In an experiment, randomization picks a Z at random from Z, so that

Pr (Z = z | F , Z) = |Z|−1 for each z ∈ Z. In a randomized experiment, randomiza-

tion creates the exact null randomization distribution of familiar test statistics, such as

Wilcoxon’s signed rank statistic or the mean pair difference or Maritz (1979)’s version of

Huber M-statistic. In the analysis of the paired censored survival data in §1.1, the test

statistic is the Prentice-Wilcoxon test proposed by O’Brien and Fleming (1987). These
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test statistics and many others are of the form T =
∑G

g=1

∑Ig
i=1

∑ngi

j=1
Zgij qgij for suitable

scores qgij that are a function of the Rgij , ngi and possibly the xgij, so that, under H0 in

a randomized experiment, the conditional distribution Pr (T | F , Z) of the test statistic T

is the distribution of the sum of fixed scores qgij with Zgij = 1 selected at random. In a

conventional way, randomization tests are inverted to obtain confidence intervals and point

estimates for magnitudes of treatment effects; see, for instance, Lehmann (1975), Maritz

(1979) and Rosenbaum (2007).

In large sample approximations, the number of groups, G, will remain fixed, and the

number of matched sets Ig in each group will increase without bound.

2.2 Sensitivity to unmeasured biases in observational studies

In an observational study, conventional tests of H0 appropriate in the randomized exper-

iments in §2.1 can falsely reject a true null hypothesis of no effect because treatments

are not assigned at random, Pr (Z = z | F , Z) 6= |Z|−1. A simple model for sensitivity

analysis in observational studies assumes that, in the population prior to matching for x,

treatment assignments are independent and two individuals, gij and g′i′j′, with the same

observed covariates, xgij = xg′i′j′ , may differ in their odds of treatment by at most a factor

of Γ ≥ 1,

1

Γ
≤ Pr (Zgij = 1 | F) Pr

(
Zg′i′j′ = 0

∣∣ F
)

Pr
(
Zg′i′j′ = 1

∣∣ F
)
Pr (Zgij = 0 | F)

≤ Γ whenever xgij = xg′i′j′ ; (1)

then the distribution of Z is returned to Z by conditioning on Z ∈ Z.

Under the model (1), one obtains conventional randomization inferences for Γ = 1,

but these are replaced by an interval of P -values or an interval of point estimates or an

interval of endpoints for a confidence interval for Γ > 1. The intervals become longer as

Γ increases, the interval of P -values tending to [0, 1] as Γ → ∞, reflecting the familiar fact
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that association, no matter how strong, does not logically entail causation. At some point,

the interval is sufficiently long to be uninformative, for instance including P -values that

would both reject and accept the null hypothesis of no effect. The question answered by a

sensitivity analysis is: How much bias in treatment assignment, measured by Γ, would need

to be present before the study becomes uninformative? For instance, how large would Γ

have to be to produce a P -value above α, conventionally α = 0.05?

An approximation to the upper bound on the P -value is obtained in the following way;

see Gastwirth, Krieger and Rosenbaum (2000) for detailed discussion and see Rosenbaum

(2007, §4; 2014) for its application to Huber-Maritz M-tests. Assume H0 is true for the

purpose of testing it, so that Rgij = rCgij and qgij are fixed by conditioning on F . Write

Tg =
∑Ig

i=1

∑ngi

j=1
Zgij qgij , so that T =

∑G
g=1

Tg. Subject to (1) for a given Γ ≥ 1, find the

maximum expectation, µΓg, of Tg. Also, among all treatment assignment probabilities that

satisfy (1) and that achieve the maximum expectation µΓg, find the maximum variance,

νΓg, of Tg. If T ≥ ∑G
g=1

µΓg, report as the upper bound on the P -value for T ,

1− Φ








G∑

g=1

Tg − µΓg


 /

√√√√
G∑

g=1

νΓg



 , (2)

where Φ (·) is the standard Normal cumulative distribution. The bound is derived as

min (Ig) → ∞ with some mild conditions to ensure that no one qgij dominates the rest,

and that the fixed scores qgij do not become degenerate as min (Ig) increases. For Γ = 1,

this yields a Normal approximation to a randomization P -value using T as the test statistic.

If treatment assignments were governed by the probabilities satisfying (1) that yield µΓg

and νΓg, then, under H0 and mild conditions on the qgij, the joint distribution of

{(T1 − µΓ1) /
√
νΓ1, . . . , (TG − µΓG) /

√
νΓG}T

8



would converge to a G-dimensional Normal distribution with expectation vector 0 and

covariance matrix I as min (Ig) → ∞. Simpler methods of proof and formulas apply in

simple cases, such as matched pairs; for instance, contrast §3 and §4 of Rosenbaum (2007).

These simpler methods of proof bound the distribution of T exactly, then approximate the

bounding distribution, whereas the general method is merely a large sample approximation

to the upper bound on the P -value when T ≥ ∑G
g=1

µΓg. Write µΓ = (µΓ1, . . . µΓG)
T and

VΓ for the G×G diagonal matrix with gth diagonal element νΓg.

For various methods of sensitivity analysis in observational studies, see Egleston et al.

(2009), Gilbert et al. (2003), Hosman et al. (2010), and Liu et al. (2013).

2.3 Design sensitivity and Bahadur efficiency

Suppose that there is a treatment effect and there is no bias from the unobserved covariate

ugij , and call this the favorable situation. In an observational study, if an investigator

were in the favorable situation, then she would not know it, and the best she could hope

to say is that the results are insensitive to small and moderate biases Γ. The power of a

sensitivity analysis is the probability that she will be able to say this. More precisely, in

the favorable situation, the power of a level α sensitivity analysis at sensitivity parameter

Γ is the probability that (2) will be less than or equal to α when computed at the given

Γ.

As the sample size increases, there is a value, Γ̃, called the design sensitivity, such

that the power tends to 1 if Γ < Γ̃ and the power tends to zero if Γ > Γ̃, so Γ̃ is the

limiting sensitivity to unmeasured bias for a given favorable situation and test statistic;

see Rosenbaum (2004; 2010, Part III), Zubizarreta et al. (2013) and Stuart and Hanna

(2013). In a particular favorable situation, for a specific Γ, the rate at which (2) declines

to zero with increasing sample size yields the Bahadur efficiency of the sensitivity analysis,
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and the efficiency drops to zero at Γ = Γ̃; see Rosenbaum (2015).

3 Joint bounds for two or more comparisons

3.1 Subgroup comparisons

We are interested in K specified comparisons, k = 1, . . . ,K, among the G groups of

matched sets. By one comparison we mean a fixed nonzero vector ck = (c1k, . . . , cGk)
T

of dimension G with cgk ≥ 0 for g = 1, . . . , G, and we evaluate a comparison using the

statistic Sk =
∑G

g=1
cgk Tg. For instance, the comparison c1 = (1, . . . , 1)T yields the overall

test in §2.2. By replacing the scores qgij in §2.2 by scores q∗gij = cgk qgij, the bound for Sk

is obtained in parallel with (2). If groups 1, . . . , G/2 are matched sets of men and groups

G/2 + 1, . . . , G are matched sets of women, then the comparison c2 = (1, . . . , 1, 0, . . . , 0)T

confines attention to men, while the comparison c3 = (0, . . . , 0, 1, . . . , 1)T confines attention

to women. Perhaps an additional comparison c4 = (1, . . . , 1, 0, . . . , 0, 1, . . . , 1, 0, . . . , 0)T

would confine attention to people over the age of 65, and so on.

If the treatment effect for women were larger than the effect for men, the comparison,

c3, restricted to women might be insensitive to larger unmeasured biases than the overall

comparison, c1. Hsu et al. (2013) present an example in which a treatment to prevent

malaria is far more effective for children than for adults, so that only very large biases in

treatment assignment could explain away the ostensible benefits for children.

3.2 Joint evaluation of subgroup comparisons

Let C be the K × G matrix whose K rows are the c
T
k = (c1k, . . . , cGk), k = 1, . . . ,K.

Define θΓ = CµΓ and ΣΓ = CVΓC
T , noting that ΣΓ is not typically diagonal. Write

θΓk for the kth coordinate of θΓ and σ2

Γk for the kth diagonal element of ΣΓ. Define

DΓk = (Sk − θΓk) /σΓk and DΓ = (DΓ1, . . . ,DΓK)T . Finally, write ρΓ for the K × K

10



correlation matrix formed by dividing the element ofΣΓ in row k and column k′ by σΓk σΓk′ .

Subject to (1) under H0, at the treatment assignment probabilities that yield the µΓg

and νΓg, the distribution of DΓ is converging to a Normal distribution, NK (0,ρΓ), with

expectation 0 and covariance matrix ρΓ as min (Ig) → ∞. Using this null distribution,

the null hypothesis H0 is tested using

DΓmax = max
1≤k≤K

DΓk = max
1≤k≤K

Sk − θΓk
σΓk

.

The α critical value κΓ,α for DΓmax solves

1− α = Pr (DΓmax < κΓ,α) = Pr

(
Sk − θΓk

σΓk
< κΓ,α, k = 1, . . . ,K

)
(3)

under H0. The multivariate Normal approximation to κΓ,α is obtained using the qmvnorm

function in the mvtnorm package in R, as applied to the NK (0,ρΓ) distribution; see Genz

and Bretz (2009). Notice that this approximation to κΓ,α depends upon Γ only through

ρΓ, which in turn depends upon Γ only through νΓg. The resulting approximate α critical

value κΓ,α for DΓmax is larger than Φ−1 (1− α) because the largest of K statistics DΓk has

been selected, and it reflects the correlations ρΓ among the coordinates of DΓ.

3.3 Behavior of the critical constant κΓ,α in a simple case

Consider a simple, balanced case under the null hypothesis H0, in which every matched set

is a matched pair, ngi = 2 for all g, i, and outcomes are continuously distributed and hence

untied with probability one. Additionally, there are L matched binary covariates, such as

gender, to be examined as potential effect modifiers making G = 2L groups of pairs, with

the same number of matched pairs in each group, I1 = · · · = IG = I, say. Suppose that, in

each group, Tg is Wilcoxon’s signed rank statistic computed from the I pairs in that group.
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In this case, µΓg = {Γ/ (1 + Γ)} I
(
I + 1

)
/2 and νΓg =

{
Γ/ (1 + Γ)2

}
I
(
I + 1

) (
2I + 1

)
/6;

see Rosenbaum (2002, §4.3.3). In this simple case, by symmetry, the correlation matrix

ρΓ does not depend upon Γ. There are K = 2L+1 comparisons, namely c1 = (1, . . . , 1)T

in §3.1 using all of the pairs, yielding T as in §2.2, plus two comparisons for each binary

covariate for half the pairs at the high and low levels of that covariate, for instance, c2,

c3 and c4 in §3.1, making a total of K = 2L + 1 tests. Because of the symmetry of

this situation, the correlation/covariance matrix ρΓ of DΓk has the simple form in Table

2; that is, DΓ1 has correlation 0.707 = 1/
√
2 with DΓk for k ≥ 2, the two consecutive

comparisons for the two categories of the same binary variable are uncorrelated, and all

other comparisons have correlation 0.5.

In this simple, balanced case, Table 3 shows the critical constant κΓ,α for α = 0.05 and

L = 0, 1, . . . , 15 potential effect modifiers, and K = 2L+1 = 1, 3, . . . , 31 tests. For com-

parison in Table 3, κΓ,α is compared to Φ−1 (1− α/K), the critical constant obtained from

the Bonferroni inequality. For instance, the Bonferroni critical constant Φ−1 (1− α/K)

for K = 15 tests and L = 7 is 2.71, which is larger than the submax critical constant of

2.70 for K = 25 tests and L = 12.

3.4 Application in the NHANES example

Table 4 performs the test in §3.2 for the NHANES data in §1.1 using the Prentice-Wilcoxon

statistic T of O’Brien and Fleming (1987). The row of Table 4 for Γ = 1 consists of Normal

approximations to randomization tests, while the rows with Γ > 1 examine sensitivity to

bias from nonrandom treatment assignment. For Γ = 1, the test statistic DΓmax = 6.09 ≥

κΓ,α = 2.31, so Fisher’s hypothesis of no treatment effect would be rejected at level α if

the data had come from a randomized experiment with Γ = 1. For Γ = 1, the maximum

statistic is based on all 470 pairs, DΓmax = DΓ1; however, DΓk ≥ κΓ,α = 2.31 for every
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subgroup, k = 1, . . . ,K = 7. At Γ = 1.4, the deviates DΓ2 and DΓ6 for females (k = 2)

and the nonpoor (k = 6) no longer exceed κΓ,α = 2.31, and the precise meaning of this is

examined in more detail in §4. At Γ = 1.64, Fisher’s hypothesis of no treatment effect

is still rejected because the deviate DΓ3 for males exceeds κΓ,α = 2.31. Although there

are 275 pairs of women and 195 pairs of men, the strongest evidence, the least sensitive

evidence, of an effect of inactivity on survival is for men. The bottom two panels of Figure

1 show the separate survival curves for men and women.

Table 4 is compactly and conveniently indexed by one parameter Γ. It is sometimes

helpful to give a two-parameter interpretation of this one parameter. In particular, the

longer life of active men in Table 4 is insensitive to an unmeasured bias of Γ = 1.64. In

a matched pair, Γ = 1.64 corresponds with an unobserved covariate that doubles the odds

of a longer life and increases the chance of inactivity by a factor of more than 6-fold; see

the amplification of Γ into two equivalent parameters ∆ and Λ in Rosenbaum and Silber

(2009a), where 1.64 = Γ = (∆Λ+ 1) / (∆Λ) for ∆ = 2 and Λ = 6.33.

In §3.8, an alternative analysis of the NHANES data is presented using Breiman et al.

(1984)’s CART regression, as proposed by Hsu et al. (2013, 2015). The CART technique

is described in §3.7 where a simulation compares it to the submax method.

3.5 Design sensitivity and Bahadur efficiency

As in Rosenbaum (2012), it is easy to see that under an alternative hypothesis given by a

favorable situation — a treatment effect with no unmeasured bias — the design sensitivity

of DΓmax, say Γ̃max, is equal to the maximum design sensitivity Γ̃k of the K component

tests, Γ̃max = max
(
Γ̃1, . . . , Γ̃K

)
. Briefly, by the definition of design sensitivity, if Γ <

Γ̃k, then the probability that DΓk ≥ κ tends to 1 for every κ as min (Ig) → ∞, so the

probability that DΓmax ≥ κΓ,α tends to 1 because DΓmax ≥ DΓk. Although there is a
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price to be paid for multiple testing, that price does not affect the design sensitivity.

Define β1 = 1. Berk and Jones (1979) show that, if DΓk has Bahadur efficiency βk rel-

ative to DΓ1 for k = 2, . . . ,K under some alternative hypothesis, then DΓmax has Bahadur

efficiency βmax = max1≤k≤K βk. Berk and Jones call this “relative optimality” meaning

DΓmax is optimal among the fixed set DΓ1, . . . ,DΓK . In other words, the correction for

multiplicity, κΓ,α > Φ−1 (1− α), does reduce finite sample power, but in a limited way, so

that the Bahadur efficiency is ultimately unaffected.

3.6 Power calculations and design sensitivity in a simple case

Under an alternative hypothesis, if the Tg are independent and asymptotically Normal

with expectation µ∗
g and variance ν∗g , then straightforward manipulations involving the

multivariate Normal distribution yield an asymptotic approximation to the power of tests

based on DΓmax or DΓk for fixed k.

Specifically, write θ∗k =
∑G

g=1
cgk µ

∗
g and σ∗

k for the square root of the kth diagonal

element of the K × K covariance matrix Cdiag (ν∗
1
, . . . , ν∗K)CT , so θ∗k is the expectation

and σ∗
k is the standard deviation of Sk under the alternative; moreover, write ρ∗ for the

K×K correlation matrix computed from this covariance matrix. The approximate power

is the following probability computed under the alternative hypothesis,

1− Pr (DΓmax < κΓ,α) = 1− Pr

(
Sk − θΓk

σΓk
< κΓ,α, k = 1, . . . ,K

)

= 1− Pr

(
Sk − θ∗k

σ∗
k

<
θΓk − θ∗k + κΓ,α σΓk

σ∗
k

, k = 1, . . . ,K

)
. (4)

The Normal approximation to the joint distribution of the Tg under the alternative means

that the last term in (4) is approximately a particular quadrant probability for theNK (0,ρ∗)
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distribution, and this may be calculated using the pmvnorm function in the mvtnorm pack-

age in R. Under the same assumptions, the power of a test based on one fixed DΓk is

approximately

1− Pr

{
Sk − θ∗k

σ∗
k

<
θΓk − θ∗k +Φ−1 (1− α) σΓk

σ∗
k

}
, (5)

and this may be calculated using the standard Normal distribution.

Moreover, the design sensitivity Γ̃k for Sk =
∑G

g=1
cgkTg is the limit of values of Γ that

solve 1 =
(∑G

g=1
cgk µ

∗
g

)
/
(∑G

g=1
cgk µΓg

)
. That is, using Sk, as I → ∞, the power tends

to 1 for Γ < Γ̃k and it tends to 0 for Γ > Γ̃k. This formula emphasizes the importance of

effect modification. For instance, with two groups, G = 2, say g = 0 and g = 1, if µ∗
0
> µ∗

1
,

then the design sensitivity is largest with c0k = 1 and c1k = 0, so as I → ∞, there are

values of Γ such that the power of the overall test is tending to 0 while the power of a test

focused on the first subgroup is tending to 1. This will be quite visible in both theoretical

and simulated power calculations.

An oracle would use the one DΓk with the highest power. Lacking such an oracle, it is

interesting to compare DΓmax to: (i) the oracle, (ii) the one test, DΓ1, that uses all of the

matched sets, as in §2.2.

To illustrate, consider the simple, balanced case in §3.3, and suppose that there are L

binary covariates as potential effect modifiers. We would like to compute power under

a favorable alternative, meaning that, unknown to the investigator, the treatment has an

effect and there is no unmeasured bias from ugij . Because the investigator cannot know

that the data came from the favorable situation, a sensitivity analysis is performed. A

simple favorable situation has Ig = I independent treated-minus-control pair differences in

every group g, where the pair differences are Normal with various expectations and variance

1. Then Wilcoxon’s signed rank statistic in group g, namely Tg, is asymptotically Normal

under the alternative hypothesis as I → ∞, and simple formulas in Lehmann (1975, §4.2)
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give the expectation and variance, µ∗
g and ν∗g , of Tg, under this alternative. There are

GI = 2L · I pairs in total. Note that the K = 2L + 1 statistics, Sk, are each computed

from at least 2L−1 ·I pairs, not from I pairs, and they are each sums of at least 2L−1 signed

rank statistics Tg.

Table 5 displays theoretical power for a level α = 0.05 test of no effect in several

favorable situations, that is, situations with a treatment effect and no bias. In Table 5,

“one covariate” refers to L = 1 binary covariate, making G = 2L = 2 groups, so that DΓmax

is the maximum of three statistics, namely the deviates for the signed rank statistics in

groups 1 and 2 and for the sum of these two statistics. In Table 5, “five covariates” refers

to L = 5 binary covariates, making G = 2L = 32 groups, so that DΓmax is the maximum of

11 = 2×5+1 statistics, namely the deviates for 10 totals of 16 signed rank statistics at the

high and low levels of each covariate, and also for the sum of all 32 signed rank statistics.

The sample size in Table 5 is constant in each group, Ig = I, with total sample size

2016 = GI = 2L · I, so this is I = 1008 for L = 1 covariate and I = 63 for L = 5 covariates.

In both cases, L = 1 and L = 5, only the first covariate is a potential effect modifier, in the

sense that the expected pair difference only changes with the level of the first covariate,

being ζ0 for the 0 level and ζ1 for the 1 level. When ζ0 6= ζ1, there is effect modification.

With L = 5, four of the five covariates are simply a distraction that require DΓmax to make

a larger correction for multiple testing. The first situation in Table 5 has no treatment

effect, ζ0 = ζ1 = 0, so the reported values are the actual size of a level α = 0.05 test.

The second situation in Table 5 has a constant treatment effect, ζ0 = ζ1 = 0.5, so it is

a mistake to look for effect modification because there is none. The third situation in

Table 5 has slight effect modification, ζ0 = 0.6 > 0.4 = ζ1, although the average treatment

effect is 0.5 = (ζ0 + ζ1) /2 as in the second situation. The fourth situation in Table 5

has substantial effect modification, ζ0 = 0.5 > 0 = ζ1, so the average treatment effect is
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0.25 = (ζ0 + ζ1) /2. The design sensitivity Γ̃g for Wilcoxon’s statistic Tg in group g is

3.17 if ζg = 1/2 and it is 1 if ζg = 0; see Rosenbaum (2010, p. 272) for details of this

calculation. For instance, in Table 5 with ζ0 = ζ1 = 0.5, the power of the test is below the

level α = 0.05 when Γ > Γ̃g = 3.17.

Table 5 compares the power of DΓmax to a single combined test DΓ1 that uses all pairs

and an oracle that performs a single test using all the pairs that have the largest value of

ζg. Obviously, the oracle is not a statistical procedure because it requires the statistician

to know what she does not know, namely which groups have the largest ζg. From theory,

in the nonnull situations 2, 3 and 4, we know that DΓmax has the same design sensitivity

as the oracle, whereas the DΓ1 has lower design sensitivity than the oracle unless there

is no effect modification, ζ0 = ζ1, as in situation 2. In situation 2, all three procedures

have design sensitivity Γ̃ = 3.17, with negligible power for Γ = 3.2 > 3.17. In situation 3,

ζ0 = 0.6, and both DΓmax and the oracle have design sensitivity Γ̃ = 4.05 by focusing on

group 0 for covariate 1, and they have nonnegligible power at Γ = 3.4 < 4.05; however, DΓ1

has design sensitivity Γ̃ = 3.13 in situation 3, with negligible power at Γ = 3.2. In situation

4, ζ1 = 0, and both DΓmax and the oracle have design sensitivity Γ̃ = 3.17 by focusing on

group 0 for covariate 1; however, DΓ1 has design sensitivity Γ̃ = 1.70 in situation 3, with

negligible power at Γ = 2.8.

In the first situation in Table 5, all tests have the correct size for Γ = 1, and because

there is no actual bias in the favorable situation, they have size below 0.05 for Γ > 1.

In the second situation in Table 5, DΓmax pays a price in power in its search for effect

modification that is not there. In situations 3 and 4, DΓmax has much higher power than

the DΓ1 statistic, but it is behind the oracle, reflecting the price paid to discover the true

pattern of effect modification. For instance, at Γ = 2.8, with L = 5 binary covariates and

slight effect modification, ζ0 = 0.6 > 0.4 = ζ1, the statistic DΓmax has power .959, the
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oracle has power 0.996, and DΓ1 has power 0.521.

3.7 Simulated power and a comparison with CART groups

Table 6 describes simulated power for the same situation as the theoretical power in Table

5. Unlike Table 5, the simulation includes the power for a competing method for matched

pairs proposed by Hsu et al. (2015), in which groups are built from covariates using

the CART procedure of Breiman et al. (1984). There is no known power formula for the

CART method, so it cannot be included in Table 5. In this approach, the pairs are initially

ungrouped, and so lack a g subscript. However, the pairs have been exactly matched for

several covariates that may be effect modifiers. The absolute treated-minus-control pair

difference in outcomes in pair i, namely |Yi| = |Ri1 −Ri2|, is regressed on these covariates

using CART, and the leaves of the tree define the groups. The P -values with the groups

so-defined are combined using the truncated product of P -values proposed by Zaykin et

al. (2002). The truncated product is analogous to Fisher’s product of P -values, except P -

values above a prespecified truncation point, ς, enter the product as 1, so the two methods

are the same for ς = 1. In Table 5, ς = 1/10. Unlike DΓmax, there is no guarantee that

the CART procedure will equal the oracle in terms of design sensitivity. In other words,

we expect DΓmax to win in sufficiently large samples, tracking the oracle as min (Ig) → ∞;

however, DΓmax may not win in the finite samples in Table 6.

Table 6 provides a check on the theoretical power formulas that yielded Table 5, and

in general the two tables are in agreement. The CART procedure has higher power

than DΓmax when there is no effect modification in situation 2, ζ0 = ζ1 = 0.5, because

the CART procedure typically produces a single group in this situation. The CART

procedure has lower power than DΓmax when there is slight effect modification in situation

3, ζ0 = .6 > .4 = ζ1, perhaps because the CART procedure fails to locate the slight effect
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modification. In situation 4, with ζ0 = .5 > 0 = ζ1, the move from L = 1 covariate to

L = 5 covariates reduces the power of both DΓmax and the CART procedure, but it does

more harm to DΓmax. Presumably, DΓmax pays a higher price for multiple testing with

L = 5 than with L = 1 consistent with Table 3, while the CART procedure has more

difficulty finding the right groups with L = 5 than with L = 1.

There is no uniform winner in Table 6. However, when compared to the CART

method, we expect DΓmax to gradually catch up, or to move ahead, or to stay ahead as

min (Ig) → ∞ because it has the best design sensitivity; therefore, relative performance

depends upon the sample size.

3.8 Use of CART in the example

As an alternative to the analysis in §3.4, consider using the CART method in §3.7, imple-

mented using the rpart package in R. In an rpart tree, the number of splits is controlled

by a complexity parameter that defaults to the value 0.01. Using the default settings in

rpart, the CART tree is a single group of all 470 pairs. At Γ = 1.64, the single group

test has deviate DΓ1 = 2.29 and one-sided P -value bound of 1 − Φ (2.29) = 0.011. If the

complexity parameter in rpart is reduced below 0.0062, then the CART tree splits on

sex. Hsu et al. suggest combining the P -value bounds from the leaves of the tree using

Zaykin et al. (2002)’s truncated product of P -values, an extension of Fisher’s method

of combining P -values. At Γ = 1.64, if the two P -value bounds for females and males,

1 − Φ (0.97) = 0.166 and 1 − Φ (2.32) = 0.010, are combined using the truncated product

with truncation 0.1, then the combined P -value bound is 0.028. In this one example, the

two analyses give fairly similar impressions.
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4 Simultaneous inference and closed testing

Strictly speaking, the statistic DΓmax is a test of a global null hypothesis, specifically

Fisher’s hypothesis H0 of no treatment effect in the study as a whole. In previous sections,

the cgk are either 0 or 1, and the kth comparison defines a subpopulation Sk as those groups

with cgk = 1, that is, Sk = {g : cgk = 1}, for instance, the subpopulation of men. We are, of

course, interested in the hypothesis, say Hk, that asserts there is no effect in subpopulation

Sk, say no effect in the subpopulation of men. We would like to test all K hypotheses Hk,

k = 1, . . . ,K, strongly controlling the family-wise error rate at α in the presence of a bias

of at most Γ. We may do this with the closed testing method of Marcus et al. (1976).

Define HI for I ⊆ {1, . . . ,K} to be the hypothesis that there is no treatment effect in

the union of the subpopulations Sk, k ∈ I. For instance, in Table 4, the hypothesis H{2,5}

says that there is no effect for females, k = 2, and no effect for smokers, k = 5. If H{2,5}

were true, there might nonetheless be an effect for male nonsmokers. If the goal were to

test HI alone at level α in the presence of a bias of at most Γ, then this could be done using

DΓI = maxk∈I DΓk, which is a test of the same form as DΓmax, whose approximate critical

constant from (3), say κΓ,α,I , must be recalculated using a |I|-dimensional multivariate

Normal distribution. Of course, DΓI ≥ DΓJ whenever J ⊂ I, so κΓ,α,J ≤ κΓ,α,I ; that

is, the correction for multiple testing is less severe when fewer comparisons are made. In

particular, κΓ,α,I ≤ κΓ,α for all I ⊆ {1, . . . ,K}.

The closed testing method of Marcus et al. (1976) rejects HI at level α in the presence

of a bias of at most Γ if it rejects HK for all K ⊇ I, that is, if DΓK ≥ κΓ,α,K for all

hypotheses K that contain I. Closed testing has several attractive properties. In general,

closed testing strongly controls the family-wise error rate, as demonstrated by Marcus et

al. (1976). The extension of this property to sensitivity analyses is straightforward; see

Rosenbaum and Silber (2009b, §4.4). That is, no matter which hypotheses are true or
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false, the probability that closed testing falsely rejects at least one true HI is at most α

whenever the bias is at most Γ. There is an additional property of closed testing that is

specific to sensitivity analyses. Use of the Bonferroni inequality in sensitivity analysis is

conservative in a way that closed testing is not conservative; see Rosenbaum and Silber

(2009b, §4.4-§4.5) and Fogarty and Small (2016).

There is a short-cut that simplifies closed testing in this context using the inequality

κΓ,α,I ≤ κΓ,α for all I ⊆ {1, . . . ,K}, noted above. Specifically, DΓK = maxk∈KDΓk ≥ DΓk

for all k ∈ K and yet κΓ,α ≥ κΓ,α,K, so whenever DΓk ≥ κΓ,α it follows that DΓK ≥ κΓ,α,K

for all hypotheses K with k ∈ K. This means that closed testing will reject Hk whenever

DΓk ≥ κΓ,α, and may reject Hk in other cases as well. For instance, in Table 4, at Γ = 1.5,

we may reject H3 and H7 without calculating κΓ,α,K because 2.77 = DΓ3 ≥ κΓ,α = 2.31 and

2.45 = DΓ7 ≥ κΓ,α = 2.31. That is, at Γ = 1.5, closed testing rejects the null hypothesis

of no effect on men and the hypothesis of no effect on the poor.

Consider Γ = 1.4 in Table 4. The short-cut reject in all groups except females (k = 2)

and nonpoor (k = 6), so that, without further computation, DΓK ≥ κΓ,α,K for every

nonempty K except {2, 6}, {2}, and {6}. The short-cut does not apply in these cases, so

κΓ,α,K must be computed. Using the 2× 2 submatrix of ρΓ for (DΓ2, DΓ6), we determine

κΓ,α,{2,6} = 1.92, and trivially for K = {2} and K = {6} the critical constant is κΓ,α,K =

1.64. Because the short-cut has rejected every HI with {2, 6} ⊂ I, we compare DΓ{2,6} =

2.07 to κΓ,α,{2,6} = 1.92 and therefore reject H{2,6}. Continuing, we compare DΓ2 = 1.86

and DΓ6 = 2.07 to κΓ,α,K = 1.64, and we reject both H2 and H6. So, at Γ = 1.40, some of

the DΓk are below κΓ,α = 2.31, but nonetheless closed testing rejects all seven hypotheses.

It is possible, in principle, to strengthen closed testing when there are logical impli-

cations among the hypotheses, H1, . . . ,HK , as is true here. Here, strengthening means

changing the procedure so that it still controls the family-wise error rate but it may, from
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time to time, reject an additional hypothesis not rejected by closed testing. For instance,

Holm’s (1979) method is the application of closed testing using the Bonferroni inequality,

and Shaffer (1986) strengthened Holm’s method when applied to the analysis of variance

using logical implications among hypotheses. What are the logical implications in Table

4? Recall that the hypotheses assert that no one in certain subpopulations was affected

by the treatment. If any of H2, . . . ,HK is false, then H1 is false. Similarly, if H5 is

false, so at least some smokers are affected, then either H2 or H3 or both must be false,

because every smoker is either male or female. Bergmann and Hommel (1988) discuss the

nontrivial general steps required to strengthen a closed testing procedure based on logical

implications among hypotheses.

5 Aids to interpreting subgroup comparisons

The analysis in §4 yields indications of a beneficial effect of physical activity on survival

in each subpopulation, but these indications are insensitive to larger biases for men than

for women. In the second and third panel of Figure 1, the men are matched for observed

covariates, so paired men are similar, as are paired women. However, the men may differ

from the women; so, it is useful to examine the observed covariates within subgroups, as

is done in Table 7. The men and women are of similar age, but the men are more likely

than the women to smoke, drink alcohol, be working, be married, and they have somewhat

less education.

The deviates, DΓk, in Table 4 may be affected by effect modification, but they are also

affected by differing sample sizes. For instance, the deviate for the entire population, DΓ1,

is based on 470 pairs, whereas the deviate for women, DΓ2, is based on 275 pairs of women,

and the deviate for men, DΓ3, is based on 195 pairs of men. If there were an effect but

there were no effect modification — that is, if men and women experienced the same effect
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of physical inactivity — then we might reasonably expect DΓ1 to be larger than DΓ2 and

DΓ3 simply because of the reduced sample size in subpopulations. To separate the sample

size and insensitivity to unmeasured bias, a relevant point estimate would be helpful.

It is possible to produce a consistent point estimate of the design sensitivity, Γ̃k, for

the kth statistic. Sample size does not affect the design sensitivity, as it is the limit as

the sample size increases without bound. Differing sample sizes alone do not predict an

increase or a decrease in the estimated design sensitivity, in contrast with the effect of

sample size on the standardized deviates, DΓk. This estimate of Γ̃k assumes that there

is a treatment effect and no unmeasured bias, and then estimates the limiting sensitivity

to unmeasured bias as the sample size in this subpopulation increases. In general, Γ̃k

depends upon the choice of test statistic. In the example, this is the Prentice-Wilcoxon

statistic for censored paired survival times, because follow-up ended in 1992 for everyone.

Given that the end of follow-up is a fixed date, it is safe to assume that the treatment,

physical inactivity, did not affect the length of follow-up. The estimate of Γ̃k solves for Γ

in the equation DΓk = 0 or equivalently in the equation Sk − θΓk = 0. For all 470 pairs,

the estimate of Γ̃1 is 2.32. For the 275 pairs of women, the estimate of Γ̃2 is 1.96. For

the 195 pairs of men, the estimate of Γ̃3 is 2.91. In the example, both the deviates DΓk

and the estimates of Γ̃k suggest there is greater insensitivity to bias for men, and that this

is not a consequence of changing sample sizes. In contrast, if the paired survival times for

men and for women were independent draws from the same censored bivariate population,

then we would expect DΓ2 and DΓ3 to be smaller than DΓ1 because of the reduced sample

size, but we would have Γ̃1 = Γ̃2 = Γ̃3, so the three point estimates would estimate the

same quantity.
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6 Pairs or sets that are not exactly matched for some covariates

To avoid confusing a main effect of gender and effect modification involving gender, we

search for effect modification in pairs or matched sets that are exactly matched for gender,

say in pairs of men, or in pairs of women. In the example in §1.1, all pairs were exactly

matched for gender, smoking and the indicator of an income above twice the poverty level.

With more potential effect modifiers, it may not be possible to match exactly for every

potential effect modifier. What can be done in this case?

If a matched pair were exactly matched for gender, it seems reasonable to use that

pair in an analysis that splits on gender, even if the pair is not exactly matched for other

potential effect modifiers. Although there may be only a few pairs exactly matched for

twenty covariates, it will often be the case that there are many pairs exactly matched for

the first covariate, say gender, ignoring the rest, many pairs exactly matched for the second

covariate ignoring the rest, and so on. It is straightforward to compare all the pairs of

two men, all the pairs of two women, all the pairs of two smokers, etc. It simply requires

a small change in the comparison weights, cgk.

Refine the grouping of matched pairs or sets so that there are groups containing only

men, groups containing only women, and groups containing matched sets that have both

men and women. Then define the comparison weights for men so that a group g of sets

containing only men has cgk = 1 and all other groups have cgk = 0. Define the comparison

for women analogously. In this way, there is a comparison for men and a comparison for

women, both comparisons use only sets that are exactly matched for gender, some pairs

not matched for gender do not get used when analyzing gender, but some of these unused

matched sets do get used in other comparisons, say the comparison of smokers.
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7 Discussion

7.1 Using the submax method to study effect modification and its consequences

Effect modification is important in observational studies for several reasons.

If there were effect modification, then we expect to report firmer causal conclusions in

subpopulations with larger effects. That is, we expect the design sensitivity and the power

of the sensitivity analysis to be larger, so we expect to report findings that are insensitive

to larger unmeasured biases in these subpopulations. Such a discovery is important in

three ways. First, the finding about the affected subpopulation is typically important in

its own right as a description of that subpopulation. Second, if there is no evidence of

an effect in the complementary subpopulation, then that may be news as well. Third,

if a sensitivity analysis convinces us that the treatment does indeed cause effects in one

subpopulation, then this fact demonstrates the treatment does sometimes cause effects,

and it makes it somewhat more plausible that smaller and more sensitive effects in other

subpopulations are causal and not spurious. This is analogous to the situation in which we

discover that heavy smoking causes lots of lung cancer, and are then more easily convinced

that second-hand smoke causes some lung cancer, even though the latter effect is much

smaller and more sensitive to unmeasured bias.

Conversely, it can be useful to discover evidence of a treatment effect of the same sign

in every major subpopulation. We often worry whether the findings of an observational

study in one population can generalize to second population that was not studied. Will

a study done in Georgia generalize to Kansas where no study was done? If the second

population were simply a different mixture of the same types of people — e.g., in Table

4, a different mixture of men and women, smokers and nonsmokers, rich and poor — then

finding strong evidence of a nontrivial effect of constant sign in all subpopulations gives us
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some reason to hope that the direction of effect found in the first population will reappear

in the second population.

The simulation contrasted the new submax method with another method using groups

formed by CART. One big difference between the two methods is that there is more theory

concerning the performance of the submax method, including power, design sensitivity and

Bahadur efficiency. The submax method achieves the largest design sensitivity of the

subgroups, but there is no similar claim for the CART method. In the simulation, the

CART method was cautious about forming groups, so it failed to capitalize on slight effect

modification, with a loss of power in situation 3; however, that also meant that CART

rarely paid a price for multiple testing when there was no effect modification in situation

2. One might tinker with the settings of the CART procedure or the simulation and

produce a different result, but that is part of the attraction of the submax method: it

has desirable properties that hold in general, without tinkering. In principle, the CART

method might discover complex patterns of effect modification that the submax procedure

does not consider. More practically, one could combine the two approaches, using the

submax procedure with a combination of groups defined a priori, like gender, and a few

groups suggested by CART, say poor, nonsmoking, men; however, we have not studied

such a joint procedure, in part because it could only be evaluated by simulation.

7.2 Other uses of the submax method

Although we have discussed the submax method in §3 in the context of effect modification,

the same mathematical calculation is useful in other contexts. The method looks at K

specified comparisons, k = 1, . . . ,K, among the G groups of matched sets using weights

ck = (c1k, . . . , cGk)
T of dimension G with cgk ≥ 0 for g = 1, . . . , G. The ck need not

pick out subpopulations defined by measured covariates, such as men and women. Two
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examples will be described briefly. Essentially, the examples distinguish groups of matched

sets, but the groups were not formed using the observed covariates, and effect modification

is not the concern.

If the treated condition were recorded in G increasing doses or intensities, then we

could group matched sets with multiple controls into G groups of sets based on the dose

given to the one treated subject in that matched set. The quality or relevance of the

dose information may be uncertain. Consider three statistics defined by the comparisons

c1 = (1, 1, . . . , 1)T , c2 = (1, 2, . . . , G)T and c3 = (0, 0, . . . , 0, 1, 1, . . . , 1)T . The comparison

c1 uses all the matched sets with equal weights, ignoring the doses. The comparison c2

gives positive weight to all sets, but gives larger weight to sets with higher doses. The

comparison c3 confines attention to sets that received high doses. See Rosenbaum (2010,

§17.3) for calculations of design sensitivities for statistics using doses in different ways. The

submax method would use all three statistics, reporting the least sensitive result, adjusting

for multiple testing in a manner that reflects the high correlation between three tests that

use the same data in different ways.

In an effort to provide information about unmeasured biases, Zubizaretta et al. (2012)

produced two types of matched pairs: (i) pairs matched for the hospital providing the

treatment in hospitals that used both the treatment and the control, and (ii) pairs with

treated and control patients from different hospitals, one hospital that almost invariably

used treatment and another hospital that almost invariably used the control. The first

type of pair controls unmeasured covariates that are constant within each hospital, say

the hospital’s nurse-to-bed ratio. However, in the first type of pair, physicians looked

at patients, giving treatment to some patients and control to others, so the first type of

pair might be affected by selection bias. In the second type of pair, each patient received

the treatment that the hospital almost invariably provides, reducing concern about the
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selection of individuals for treatment, but the hospitals themselves and the communities

they serve may differ in unmeasured ways. In this case, there are G = 2 groups of

pairs. The comparison c1 = (1, 1)T uses all pairs, c2 = (1, 0)T uses type (i) pairs, and

c3 = (0, 1)T uses type (ii) pairs. The submax method would do all three tests with multiple

comparisons, as in §4, taking account of the high correlation between comparison c1 and

each of the other comparisons.
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Table 1: Covariate balance in 470 matched, treatment-control pairs. The standardized
difference (Std. Dif) is the difference in means before and after matching in units of the
standard deviation before matching.

Covariate Mean Std. Dif.
Covariate Treated Control P -value Before After

Age 61.7 61.7 0.985 0.283 0.001
Male 0.415 0.415 1.000 -0.245 0.000
White 0.789 0.823 0.187 -0.252 -0.093

Poverty 0.460 0.460 1.000 0.377 0.000
Former Smoker 0.170 0.145 0.283 -0.142 0.064
Current Smoker 0.360 0.360 1.000 -0.141 0.000
Working last three months 0.247 0.247 1.000 -0.589 0.000
Married 0.621 0.666 0.153 -0.350 -0.099
Dietary Adequacy 3.254 3.379 0.143 -0.303 -0.098

Education

≤ 8 0.494 0.466 0.397 0.309 0.057
9-11 0.183 0.204 0.410 -0.097 -0.053
High School 0.166 0.172 0.794 -0.193 -0.016
Some College 0.066 0.070 0.796 -0.158 -0.015
College 0.085 0.085 1.000 0.038 0.000
Missing 0.006 0.002 0.317 0.004 0.054

Alcohol Consumption

Never 0.406 0.432 0.428 0.189 -0.053
< 1 time per month 0.198 0.185 0.619 0.016 0.032
1-4 times per month 0.172 0.153 0.427 -0.125 0.048
2+ times per week 0.089 0.089 1.000 -0.069 0.000
Just about everyday/everyday 0.134 0.140 0.776 -0.073 0.000

Table 2: Correlation and covariance matrix ρΓ under H0 for DΓk for all Γ ≥ 1 in the
balanced situation, using Wilcoxon’s statistic, with L = 3 potential effect modifiers.

DΓ1 DΓ2 DΓ3 DΓ4 DΓ5 DΓ6 DΓ7

DΓ1 1.000 0.707 0.707 0.707 0.707 0.707 0.707
DΓ2 0.707 1.000 0.000 0.500 0.500 0.500 0.500
DΓ3 0.707 0.000 1.000 0.500 0.500 0.500 0.500
DΓ4 0.707 0.500 0.500 1.000 0.000 0.500 0.500
DΓ5 0.707 0.500 0.500 0.000 1.000 0.500 0.500
DΓ6 0.707 0.500 0.500 0.500 0.500 1.000 0.000
DΓ7 0.707 0.500 0.500 0.500 0.500 0.000 1.000
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Table 3: The critical constant κα for L = 0, . . . , 15 balanced binary effect-modifiers, using
Wilcoxon’s statistic, yielding K = 2L+ 1 correlated tests with α = 0.05. For comparison,
the final column gives the critical constant obtained using the Bonferroni inequality, testing
K one-sided hypotheses at family-wise level α = 0.05.

L K = 2L+ 1 κα Bonferroni

0 1 1.64 1.64
1 3 2.03 2.13
2 5 2.20 2.33
3 7 2.32 2.45
4 9 2.40 2.54
5 11 2.46 2.61
6 13 2.51 2.67
7 15 2.55 2.71
8 17 2.59 2.75
9 19 2.62 2.79
10 21 2.65 2.82
11 23 2.67 2.85
12 25 2.70 2.88
13 27 2.72 2.90
14 29 2.74 2.92
15 31 2.75 2.95

Table 4: Seven standardized deviates from Wilcoxon’s test, DΓk, k = 1, . . . ,K = 7, testing
the null hypothesis of no effect and their maximum, DΓmax, where the critical value is
dα = 2.31 for α = 0.05. Deviates larger than dα = 2.31 are in bold.

k 1 2 3 4 5 6 7

Subpopulation All Female Male Non-smoker Smoker > 2× PL ≤ 2× PL Maximum

DΓ1 DΓ2 DΓ3 DΓ4 DΓ5 DΓ6 DΓ7 DΓmax

Sample-size 470 275 195 301 169 254 216

Γ = 1.00 6.09 3.79 4.88 4.67 3.92 3.88 4.71 6.09

Γ = 1.20 4.66 2.73 3.91 3.52 3.06 2.89 3.68 4.66

Γ = 1.40 3.48 1.86 3.11 2.57 2.36 2.07 2.83 3.48

Γ = 1.60 2.47 1.11 2.44 1.76 1.76 1.37 2.10 2.47

Γ = 1.64 2.29 0.97 2.32 1.62 1.65 1.24 1.97 2.32

Γ = 1.65 2.24 0.94 2.29 1.58 1.63 1.21 1.94 2.29
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Table 5: Theoretical power for Wilcoxon’s signed rank test in subgroup analyses using (i)
the maximum statistic DΓmax, (ii) an oracle that knows a priori which group has the largest
effect (Oracle), and (iii) one statistic that sums all Wilcoxon statistics, thereby using all
the matched pairs, DΓ1.

Situation One covariate, L = 1 Five covariates, L = 5

Γ DΓmax Oracle DΓ1 DΓmax Oracle DΓ1

(ζ0, ζ1) = (0, 0) 1 0.050 0.050 0.050 0.050 0.050 0.050
1. No effect. Values 1.01 0.035 0.033 0.033 0.035 0.033 0.033
are the size test. 1.2 0.000 0.000 0.000 0.000 0.000 0.000

1.3 0.000 0.000 0.000 0.000 0.000 0.000

(ζ0, ζ1) = (0.5, 0.5) 1 1.000 1.000 1.000 1.000 1.000 1.000
2. Constant effect. 2.8 0.579 0.671 0.671 0.460 0.601 0.601
Every subgroup 3.0 0.177 0.218 0.218 0.126 0.167 0.167
has effect 0.5. 3.2 0.030 0.030 0.030 0.020 0.019 0.019

3.4 0.004 0.002 0.002 0.002 0.001 0.001

(ζ0, ζ1) = (0.6, 0.4) 1 1.000 1.000 1.000 1.000 1.000 1.000
3. Slight effect 2.8 0.991 0.998 0.593 0.959 0.996 0.521
modification, 3.0 0.928 0.971 0.161 0.791 0.959 0.121
ζ0 > ζ1 3.2 0.733 0.855 0.018 0.492 0.816 0.011

3.4 0.446 0.615 0.001 0.220 0.554 0.001

(ζ0, ζ1) = (0.5, 0) 1 1.000 1.000 1.000 1.000 1.000 1.000
4. Effect confined 2.8 0.268 0.418 0.000 0.113 0.369 0.000
to a subgroup. 3.0 0.071 0.144 0.000 0.020 0.117 0.000
ζ1 = 0 3.2 0.013 0.033 0.000 0.002 0.025 0.000

3.4 0.002 0.006 0.000 0.000 0.004 0.000
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Table 6: Simulated power (number of rejections in 10,000 replications) for Wilcoxon’s
signed rank test in subgroup analyses using (i) the maximum statistic DΓmax, (ii) groups
built by CART, (iii) an oracle that knows a priori which group has the largest effect
(Oracle), and (iv) one statistic that sums all of the Wilcoxon statistics, thereby using all
matched pairs, DΓ1.

One covariate, L = 1 Five covariates, L = 5

µ = (µ0, µ1) Γ DΓmax CART Oracle DΓ1 DΓmax CART Oracle DΓ1

(0,0) 1 540 525 525 525 515 504 503 503
1.01 382 344 344 344 345 329 328 328
1.1 7 1 1 1 7 7 7 7
1.2 0 0 0 0 1 0 0 0
1.3 0 0 0 0 0 0 0 0

(0.5, 0.5) 1 10000 10000 10000 10000 10000 10000 10000 10000
2.8 5804 6713 6713 6713 4581 6014 6014 6014
3.0 1643 2104 2101 2101 1215 1685 1681 1681
3.2 279 315 313 313 158 187 183 183
3.4 30 13 12 12 11 10 9 9

(0.6, 0.4) 1 10000 10000 10000 10000 10000 10000 10000 10000
2.8 9913 7073 9977 6058 9589 6584 9955 5348
3.0 9264 3788 9701 1657 7975 3471 9588 1242
3.2 7387 2313 8565 173 5071 2212 8208 121
3.4 4603 1535 6265 6 2245 1363 5679 8

(0.5, 0) 1 10000 10000 10000 10000 10000 10000 10000 10000
2.8 2687 1908 4195 0 1105 1626 3686 0
3.0 678 514 1476 0 174 398 1139 0
3.2 120 100 320 0 23 67 208 0
3.4 16 14 47 0 3 10 31 0
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Table 7: Covariate means in 275 pairs of women and 195 pairs of men.
Covariate Mean

Female Male

Treated Control Treated Control

Sample size 275 275 195 195

Age 61.2 61.0 62.5 62.7
Male 0.000 0.000 1.000 1.000
White 0.775 0.822 0.810 0.826

Education
0-8 0.476 0.429 0.518 0.518
9-11 0.211 0.211 0.144 0.195
High School 0.185 0.207 0.138 0.123
Some College 0.069 0.084 0.062 0.051
College 0.051 0.069 0.133 0.108
Missing 0.007 0.000 0.005 0.005

Poverty 0.476 0.476 0.436 0.436
Former Smoker 0.116 0.080 0.246 0.236
Current Smoker 0.273 0.273 0.482 0.482
Working last three months 0.193 0.189 0.323 0.328
Married 0.502 0.553 0.790 0.826
Dietary Adequacy 3.045 3.139 3.549 3.716

Alcohol Consumption
<1 time per month 0.222 0.222 0.164 0.133
1-4 times per month 0.116 0.135 0.251 0.179
2+ times per week 0.051 0.069 0.144 0.118
Just about everyday/everyday 0.084 0.084 0.205 0.221
Never 0.527 0.491 0.236 0.349
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Figure 1: Survival in inactive and matched active groups following the NHANES survey.
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