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Summary . There is effect modification if the magnitude or stability of a treatment effect varies

systematically with the level of an observed covariate. A larger or more stable treatment effect is

typically less sensitive to bias from unmeasured covariates, so it is important to recognize effect

modification when it is present. We illustrate a recent proposal for conducting a sensitivity analysis

that empirically discovers effect modification by exploratory methods, but controls the family-wise

error rate in discovered groups. The example concerns a study of mortality and use of the inten-

sive care unit in 23,715 matched pairs of two Medicare patients, one of whom underwent surgery

at a hospital identified for superior nursing, the other at a conventional hospital. The pairs were

matched exactly for 130 four-digit ICD-9 surgical procedure codes and balanced 172 observed

covariates. The pairs were then split into five groups of pairs by CART in its effort to locate effect

modification. The evidence of a beneficial effect of magnet hospitals on mortality is least sensitive

to unmeasured biases in a large group of patients undergoing rather serious surgical procedures,

but in the absence of other life-threatening conditions, such as a comorbidity of congestive heart

failure or an emergency admission leading to surgery.

1. Superior nurse staffing, surgical mortality and resource utilization in Medicare

Hospitals vary in the extent and quality of their staffing, technical capabilities and nursing work

environments. Does superiority in these areas confer benefits to patients undergoing forms of

general surgery that might be performed at most hospitals? To what extent and in what way

do these factors affect the cost of surgical care? Are they a life-saving benefit or a pointless

and unneeded expense in the case of relatively routine forms of surgery?

A recent study by Silber et al. (2016) sought to answer these questions using Medicare

data for Illinois, New York and Texas in 2004-2006. A useful marker for superior staffing is

superior nurse staffing, because there is a national voluntary accreditation program to recognize

excellent nursing environments, so-called “magnet hospitals”; see Aiken, Havens and Sloane
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(2000). Additionally, it is relatively easy to use Medicare files to determine the quantity of

nurse staffing in the form of the nurse-to-bed ratio. The study compared patient outcomes

at 35 magnet hospitals with nurse-to-bed ratios of 1 or more to outcomes for patients at 293

hospitals without magnet designation and with nurse-to-bed ratios less than 1. For brevity,

hospitals in the first group are called magnet hospitals and those in the second group are called

controls. The question being asked is: How does a patient’s choice of hospital, magnet or

control, affect the patient’s outcomes and medical resource utilization? How consequential is

this choice among hospitals and what are its consequences? There is no suggestion, implicit or

otherwise, in this question that the nurses are the active ingredient distinguishing magnet and

control hospitals, no suggestion that hiring nurses or changing the nurse environment would

make control hospitals perform equivalently to magnet hospitals. Magnet designation marks a

type of hospital, but does not identify what components are critical in distinguishing that type

of hospital. Indeed, the 35 magnet hospitals had many advantages in staffing or technology:

21.5% of magnet hospitals were major teaching hospitals, as opposed to 5.7% of control hospitals;

magnet hospitals had more nurses with advanced training, more medical residents per bed, and

were somewhat more likely to have a burn unit, and to perform difficult forms of specialist

surgery such as coronary bypass surgery and organ transplantation; see Silber et al. (2016,

Table 1). Does a patient undergoing perhaps comparatively routine general surgery benefit

from all of these capabilities or are they wasted on such a patient?

The distinction in the previous paragraph may be restated as follows. The counter-factual

under study is: What would happen to a specific patient if that patient were treated at a

hospital having the superior staffing of magnet hospitals when compared to what would happen

to this same patient if treated at a control hospital? The counter-factual refers to sending the

patient to one hospital or another. What would happen if patients were allocated to existing

hospitals in a different way? The counter-factual does not contemplate changing the staffing at

any hospital. Beds in hospitals with superior staffing are in limited supply, and it is a matter

of considerable public importance that this limited resource be allocated to the patients most

likely to benefit from it.

Some patients are in relatively good health and require relatively routine care; perhaps these

patients receive little added benefit from magnet hospitals. Some patients are gravely ill and

have poor prospects no matter what care is provided; perhaps these patients also receive little

added benefit from magnet hospitals. In contrast, some patients would have poor outcomes

with inferior care and would have better outcomes with superior care; perhaps these patients

benefit most from treatment in a magnet hospital. Are magnet hospitals more effective for

some types of patients than for others? This is the question of effect modification in our title.

Silber et al. (2016) created 25,752 matched pairs of two patients, one undergoing general
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surgery at a magnet hospital, the other at a control hospital. The two patients in a pair

underwent the same surgical procedure as recorded in the 4-digit ICD-9 classification of surgical

procedures, a total of 130 types of surgical procedure. Additionally, the matching balanced a

total of 172 pretreatment covariates describing the patient’s health prior to surgery; see Silber et

al. (2016, Table 2). Overall, Silber et al found significantly lower mortality at magnet hospitals

than at control hospitals (4.8% versus 5.8%, McNemar P -value < 0.001), substantially lower

use of the intensive care unit or ICU (32.9% versus 42.9%) and slightly shorter length of stay;

see Silber et al. (2016, Table 3) where costs and Medicare payments are also evaluated. Magnet

hospitals had lower mortality rates while making less use of an expensive resource, the ICU.

In one analysis, Silber et al. (2016) grouped matched pairs based on an estimated probability

of death that was controlled by the matching algorithm. The lowest risk patients appeared to

benefit least from magnet hospitals. In contrast, the fourth quintile of risk — a high, but not

the highest, quintile of risk — had both lower mortality and lower cost in magnet hospitals,

whereas the highest risk quintile had lower mortality but higher cost at magnet hospitals. In

brief, Silber et al. (2016) found evidence of effect modification.

Patients with very different medical problems may have similar probabilities of death. It is

interesting that the effect of magnet hospitals appears to vary with patient risk, but it would be

more interesting still to unpack patient risk into its clinical constituents, and to understand how

the effect varies with these constituents. Clinicians do not think of patients in terms of their

probability of death, but rather in terms of their specific health problems that are aggregated

by the probability of death. In that sense, the examination of effect modification in Silber et

al. (2016) is too limited to guide practice.

The current paper uses a recently proposed exploratory technique to unpack effect modifica-

tion, combined with a confirmatory technique that examines the sensitivity of these conclusions

to unmeasured biases. Is the ostensible effect larger, more stable or more insensitive to un-

measured bias for certain surgical procedure clusters or certain categories of patients defined

by other health problems?

2. Review of effect modification in observational studies

2.1. Notation for causal effects, nonrandom treatment assignment, sensitivity analysis

In observational studies, it is known that certain patterns of treatment effects are more resistant

than others to being explained away as the consequence of unmeasured biases in treatment

assignment; see, for instance, Rosenbaum (2004), Zubizarreta et al. (2013), Stuart and Hanna

(2013).

Effect modification occurs when the size of a treatment effect or its stability varies with the

level of a pretreatment covariate, the effect modifier. Effect modification affects the sensitivity
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of ostensible treatment effects to unmeasured biases. Other things being equal, larger or more

stable treatment effects are insensitive to larger unmeasured biases; see Rosenbaum (2004,

2005). As a consequence, discovering effect modification when it is present is an important

aspect of appraising the evidence that distinguishes treatment effects from potential unmeasured

biases, a concern in every observational study. In particular, Hsu et al. (2013, 2015) discuss

sensitivity analysis in observational studies with potential effect modification, and §2 is a concise

summary. Chesher (1984), Crump et al. (2008), Lehrer, Pohl and Song (2015), Lu and White

(2015), Wager and Athey (2015), Athey and Imbens (2016), and Ding et al. (2016), discuss

effect modification from a different perspective, placing less emphasis on its role in confirmatory

analyses that distinguish treatment effects from unmeasured biases in observational studies.

There are I matched pairs, i = 1, . . . , I, of two subjects, j = 1, 2, one treated with Zij =

1, the other control with Zij = 0, so Zi1 + Zi2 = 1 for each i. Subjects are matched for

an observed covariate xij, so xi1 = xi2 = xi, say, for each i, but may differ in terms of

a covariate uij that was not measured. Each subject has two potential responses, rT ij if

treated, rCij if control, exhibiting response Rij = Zij rT ij + (1− Zij) rCij , so the effect caused

by the treatment, rT ij − rCij is not seen from any subject; see Neyman (1923) and Rubin

(1974). Fisher’s (1935) null hypothesis H0 of no treatment effect asserts rT ij = rCij for all i,

j. Simple algebra shows that the treated-minus-control pair difference in observed responses is

Yi = (Zi1 − Zi2) (Ri1 −Ri2) which equals (Zi1 − Zi2) (rCi1 − rCi2) = ± (rCi1 − rCi2) if Fisher’s

hypothesis H0 is true. Write F = {(rT ij, rCij, xij, uij) , i = 1, . . . , I, j = 1, 2} for the potential

responses and covariates, and write Z for the event that Zi1 + Zi2 = 1 for each i.

In a randomized experiment, Zi1 = 1 − Zi2 is determined by I independent flips of a fair

coin, so πi = Pr (Zi1 = 1 | F ,Z) = 1

2
for each i, and this becomes the basis for randomization

inferences, for instance for tests of Fisher’s null hypothesis or for confidence intervals or point

estimates formed by inverting hypothesis tests. A randomization inference derives the null

distribution given (F ,Z) of a test statistic as its permutation distribution using the fact that

the 2I possible values of Z =(Zi1, Zi2, . . . , ZI2) each have probability 2−I in a randomized paired

experiment; see Fisher (1935), Lehmann and Romano (2005, §5), or Rosenbaum (2002a, §2). A

simple model for sensitivity analysis in observational studies says that treatment assignments

in distinct pairs are independent but bias due to nonrandom treatment assignment may result

in πi that deviate from 1

2
to the extent that 1/ (1 + Γ) ≤ πi ≤ Γ/ (1 + Γ) for Γ ≥ 1, and

the range of possible inferences is reported for various values of Γ to display the magnitude of

bias that would need to be present to materially alter the study’s conclusion; see, for instance,

Rosenbaum (2002a, §4.3.2; 2002b) for the case of matched binary responses, as in the current

paper. For instance, a sensitivity analysis may report the range of possible P -values or point

estimates that are consistent with the data and a bias of at most Γ for several values of Γ.
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For various approaches to sensitivity analysis in observational studies, see Cornfield et al.

(1959), Gastwirth (1992), Gilbert et al. (2003), Egleston et al. (2009), Hosman et al. (2010)

and Liu et al. (2013).

2.2. Three strategies examining effect modification

There is effect modification if the magnitude of the effect, rT ij− rCij, varies systematically with

xi. Let G be a subset of the values of x, and define the null hypothesis HG to be Fisher’s null

hypothesis for individual j in set i with xij ∈ G, so HG asserts that rT ij = rCij for all ij with

xij = xi ∈ G. Let g = (G1, . . .GG) be a mutually exclusive and exhaustive partition of values

of xij = xi, so each pair i has an xi contained in exactly one Gg. A simple form of effect

modification occurs if HGg
is true for some g but not for other g. Write Ig for the number pairs

with xi ∈ Gg, so I =
∑G

g=1
Ig.

There are three strategies for defining the groups, g = (G1, . . . ,GG), two of which are

practically useful but technically straightforward, the third having interesting technical as-

pects that we illustrate using the Medicare example. One useful strategy defines the groups,

g = (G1, . . . ,GG), a priori, without reference to data. For example, on the basis of clinical judge-

ment, one might believe certain surgical procedures are more challenging or hazardous than

others, and therefore divide the exactly matched procedures into a few groups based on clinical

judgement alone. Alternatively, clinical judgement might separate patients with severe chronic

conditions unrelated to the current surgery, such as congestive heart failure.

A second strategy uses an external source of data to define the groups. In particular, Silber

et al. (2016) fit a logit model to an external data source, predicting mortality from covariates,

xij , then formed five groups g = (G1, . . . ,G5) based on this predicted risk for a given x. This

approach made no use of the mortality experience of the patients in the current study in defining

the groups. A variant of the second strategy is to split one data set at random into two parts,

create the groups using the first part, then analyze only the second part with these, again,

externally determined groups.

In both of the first two strategies, the groups, g = (G1, . . . ,GG), were determined by events

external to the outcomes reported study. The second strategy makes explicit use of an external

source of data, while the first strategy uses judgement that is presumably informed historically

by various external sources of data. The key element in both strategies is that the groups were

fixed before examining outcomes in the current study, and in that sense are unremarkable as

groups, requiring no special handling because of their origin. With a priori groups, we could

use any of a variety of methods to test the G hypotheses HGg
in such a way as to strongly

control the family-wise error rate at α, meaning that the chance of falsely rejecting at least one

true HGg
is at most α no matter which hypotheses are true and which are false.
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The third strategy that we illustrate here creates the groups, g = (G1, . . . ,GG), by exploratory

techniques using all of the current data, and then goes on to perform an analysis of the same data

as if the groups had been determined a priori. The third strategy is designed so that it controls

the family-wise error rate in a sensitivity analysis despite the data-dependent generation of G

particular groups from among the infinitely many ways of splitting the space of values of the

observed covariates x. This strategy is discussed in detail in Hsu et al. (2015) and it entails

certain restrictions on the way the groups are constructed.

A simple version of the strategy regresses |Yi| = |(Zi1 − Zi2) (Ri1 −Ri2)| on xi using a form

of regression that yields groups, such as CART. Note that the unsigned |Yi| not the signed Yi

are used; that is, the regression does not know who is treated and who is control. The leaves of

a CART tree become the groups, g = (G1, . . . ,GG). The signs of the Yi are then “remembered,”

in an analysis that views the groups, g = (G1, . . . ,GG), as fixed, so it resembles analyses that

would have been appropriate with an a priori grouping of the type created by the first two

strategies.

It is important to understand what is at issue in the third strategy; see Hsu et al. (2015) for

a precise and general technical discussion. Briefly if obscurely, the groups, g = (G1, . . . ,GG),

and hence the hypotheses, HGg
, are not stable. If the observed data had been slightly different,

the CART tree would have been different, and we would be testing different hypotheses. What

does it mean to speak about the probability of falsely rejecting HGg
if most data sets would not

lead us to test HGg
?

Consider the simplest case, a paired randomized experiment. If Fisher’s null hypothesis of

no effect of any kind were true, then Yi = (Zi1 − Zi2) (rCi1 − rCi2) = ± (rCi1 − rCi2) and, given

(F ,Z), different random assignments Zij always yield |Yi| = |rCi1 − rCi2|, so all 2I random

assignments produce the same CART tree and the same g = (G1, . . . ,GG). In other words,

under H0, the CART tree and hence g = (G1, . . . ,GG) is a function of (F ,Z) and not of Z.

Therefore, under H0, the 2Ig possible treatment assignments for the Ig pairs with xi ∈ Gg each

have probability 2−Ig , resulting in conventional permutation tests within each of the G groups,

tests that are conditionally independent given (F ,Z) under H0. The problem occurs because

we are interested in testing not just H0, but also individual HGg
when H0 is false because some

individuals are affected by the treatment. If H0 is false, different random assignments Z yield

different |Yi|, hence different CART trees and different hypotheses, g = (G1, . . . ,GG). With a

bit of care, it is possible to demonstrate two useful facts. First, if rT ij − rCij = 0 for all ij with

xi ∈ Gg, then the conditional distribution given g = (G1, . . . ,GG) and (F ,Z) of the corresponding

Zij with xi ∈ Gg is its usual randomization distribution. In that sense, the instability of the

tree over repeated randomizations has not distorted this conditional distribution of treatment

assignments in groups with no treatment effect. Second, if a method is applied to test the
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HGg
that would strongly control the family-wise error rate at α with a priori fixed groups,

then conditionally given g = (G1, . . . ,GG) and (F ,Z), the method will reject at least one null

group with probability at most α. These two facts are extended to include sensitivity analyses

in observational studies and are proved as Propositions 1 and 2 of Hsu et al. (2015). That

paper also presents some reasons to hope that subsets of xi that systematically predict |Yi| may

identify groups in which either the magnitude of rT ij − rCij or its stability varies with xi.

In the current paper, we present a practical application of this third strategy.

3. Discovering and using effect modification in the Magnet ho spital study

3.1. Forming groups of pairs for consideration as possible effect modifiers

The analyses here first broke and then re-paired the pairs in Silber et al. (2016) so that: (i) as

in Silber et al., every pair was exactly matched for the 130 four-digit ICD-9 surgical procedure

codes, (ii) the maximum number of pairs were exactly matched for an indicator of age greater

than 75, congestive heart failure (CHF), emergency admission or not, and chronic obstructive

pulmonary disease (COPD). Because identically the same people were paired differently, the

balancing properties of the new pairs are exactly the same as reported by Silber et al. (2016,

Table 2), because balancing properties refer to marginal distributions of covariates and do not

depend upon who is paired with whom.

Using rpart in R, the CART tree was built using the 22,622 pairs that were exactly matched

in the sense described in the previous paragraph, regressing |Yi| on xi, where Yi records the

difference in binary indicators of mortality. So, the tree is essentially trying to locate pairs

discordant for mortality, |Yi| = 1, on the basis of exactly matched covariates. Here, a pair is

discordant if exactly one patient in the pair died within 30-days. CART was not offered all 130

exactly matched surgical procedure codes, but rather 26 mutually exclusive clusters of the 130

surgical procedures, as listed in Table 1, plus the binary covariates age>75, CHF, emergency

admission, and COPD. The resulting tree is depicted in Figure 1. A few procedure clusters

— e.g., liver procedures — are diverse, perhaps meriting further subdivision that we do not

consider here.

The tree in Figure 1 did not use two variables that were considered by it, namely ‘age>75’

and COPD. In going to 22,622 pairs, we had omitted some pairs because they were not exactly

matched for ‘age>75’ and COPD, but that omission is not needed to use the tree in Figure 1.

Can we recover some of these omitted pairs? To recover omitted pairs, we followed the tactic

in Hsu et al. (2015). Specifically, we re-paired as many of the pairs that were not used to build

the tree to be exact for the 130 procedures plus CHF and emergency admission, adding these

additional 1,093 pairs to the groups in Figure 1, making 23,715 pairs in total, or 95% of the

original study. All analyses that follow refer to these 23,715 pairs.
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Consider the tree in Figure 1, starting from its root at the top of the figure. The tree split

the population into two groups, patients without congestive heart failure (CHF) and patients

with CHF, a serious comorbid condition. It then split this divided population by grouping

the 26 surgical procedure clusters. There are, of course, many way to group 26 procedure

clusters; for instance, there are 226 − 1 = 67, 108, 863 ways to split them into two groups. The

procedure groups, proc1 and proc2, for patients without CHF are slightly different from the

procedure groups, proc3 and proc4, for patients with CHF. Table 1 displays CART’s grouping

of the 26 procedure clusters into proc1, proc2, proc3 and proc4. In Figure 1, CART further

divided proc2 into two subsets of patients, those admitted as emergencies and the remaining

nonemergent patients. In Table 1, notice that proc1 and proc3 overlap extensively, as do proc2

and proc4. To the clinical eye, with a few raised eyebrows, the procedures in proc2 and proc4

look riskier or more complex than those in proc1 and proc3. Some procedure clusters slipped.

Appendectomy is grouped with the less risky procedures if the patient does not have CHF,

but it grouped with the more risky procedures for a patient with CHF; however, it is unclear

whether that slip is a profound insight or a hiccup.

Up to this point in the analysis, the signs of the Yi’s for discordant pairs have not been used;

the tree knew nothing about who lived and who died in pairs discordant for mortality.

3.2. Informal examination of outcomes

In §3.3, an analysis of mortality is carried out as proposed in Hsu et al. (2015). This analysis

is easier to understand if we take a quick look first. The upper part of Table 2 describes

mortality informally. The first three numeric rows of Table 2 describe information that CART

could use in building the tree, namely the number of pairs, the number of discordant pairs,

and the proportion of discordant pairs. In Table 2, 43% = 10127/23715 of pairs are in the

group 1, that is, patients without CHF undergoing less risky procedures. Expressed differently,

group 1 has the most pairs and the fewest discordant pairs of the five groups. As one might

expect given the information that CART was permitted to use, the proportion of discordant

pairs varies markedly among the groups CART built.

The next three numeric rows of Table 2 display outcomes by treatment group, making use

of Yi and not just |Yi|. The mortality rates for magnet and control groups are given, as is the

odds ratio computed from discordant pairs; see Cox (1970). All of the odds ratios are greater

than or equal to 1, suggesting higher mortality at control hospitals. The largest odds ratio is

in group 2, 1.53, while the largest difference in mortality rates is in group 5, 18.6%-16.5% =

2.1%. The odds ratio closest to 1 is in group 3, the group most similar to group 2 except for

admission through the emergency room.
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3.3. Structured analysis of outcomes in discovered groups

The structured analysis in Hsu et al. (2015) starts by computing randomization tests and upper

sensitivity bounds on P -values for each of the five groups separately. In Table 2, these are based

on a test of the McNemar type, essentially binomial calculations using discordant pairs; see Cox

(1970) for discussion of paired binary data, and see Rosenbaum (2002, §4.3.2) for the sensitivity

analysis. In the bottom part of Table 2 are upper bounds on one-sided P -values testing no

treatment effect in a group in the presence of a bias in treatment assignment of at most Γ. Also

given in Table 2 are the odds ratios from discordant pairs associated with McNemar’s test.

The final column in the bottom of Table 2 gives the P -value for the truncated product of P -

values as proposed by Zaykin et al. (2002). The truncated product generalizes Fisher’s method

for combining independent P -values: the test statistic is the product of those P -values that are

smaller than a threshold, τ , where τ = 0.1 in Table 2. Zaykin et al. (2002) determined the

null distribution of the truncated product statistic. Hsu et al (2013) show that the same null

distribution may be used to combine upper bounds on P -values in a sensitivity analysis for a tree

like Figure 1, and that it often has superior power in this context compared to Fisher’s product

of all P -values, essentially because sensitivity analyses promise P -values that are stochastically

larger than uniform for a given Γ. Truncation eliminates some very large upper bounds on

P -values.

Hsu et al. (2015) combine the truncated product statistic with the closed testing procedure

of Marcus et al. (1976) to strongly control the family-wise error rate at α in a sensitivity

analysis with a bias of at most Γ. Given G hypotheses, HGg
, g = 1, . . . , G, asserting no effect in

each of G groups, closed testing begins by defining 2G − 1 intersection hypotheses, HL, where

L ⊆ {1, . . . , G} is a nonempty set, and HL asserts that HGℓ
is true for every ℓ ∈ L. Closed

testing rejects HL if and only if the P -value testing HK is ≤ α for every K ⊇ L. The P -value

testing HK is based on the truncated product of P -values for HGk
for k ∈ K.

The P -value in the final column of Table 2 tests Fisher’s hypothesis H0, or HL with L =

{1, 2, 3, 4, 5}. For Γ = 1, this test combines five McNemar tests using the truncated product,

and in the absence of bias, the hypothesis H0 is rejected with a one-sided P -value of 2.7×10−6.

To complete closed testing of subhypotheses, one performs 25 − 1 = 31 tests of intersection

hypotheses. Hypothesis H{3,4} has a P -value using the truncated product of 0.080, so neither

HG3
nor HG4

is rejected at the 0.05 level by closed testing, but HG1
, HG2

and HG5
are rejected.

In short, in the absence of bias, Γ = 1, the hypothesis of no effect is rejected in groups 1, 2, and

5.

At Γ = 1.05, Fisher’s hypothesis of no effect at all is rejected at the 9.0 × 10−5 level, and

closed testing rejects both HG1
and HG2

at the 0.05 level. At Γ = 1.10, Fisher’s hypothesis

H0 of no effect is rejected at the 0.012 level, but only HG2
is rejected at the 0.05 level. At
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Γ = 1.17, Fisher’s hypothesisH0 of no effect is rejected at the 0.044 level, no individual subgroup

hypothesis is rejected at the 0.05 level, but H{1,2} is rejected at the 0.05 level. At Γ = 1.18, no

hypothesis is rejected at the 0.05 level.

A bias of Γ = 1.17 corresponds with an unobserved covariate that doubles the odds of

having surgery at a control hospital and increases the odds of death by more than 60%. That

is, stated technically, Γ = 1.17 amplifies to (Λ,∆) = (2.0, 1.61); see Rosenbaum and Silber

(2009). McNemar’s test applied to all 23,715 pairs yields a P -value bound of 0.063 at Γ = 1.15,

so this overall test is slightly more sensitive to unmeasured biases and provides no information

about subgroups.

3.4. Use of the intensive care unit (ICU)

In Table 2, magnet hospitals exhibited lower mortality than control hospitals for ostensibly

similar patients undergoing the same surgical procedure, that is, magnet hospitals exhibited

better quality. Does better quality cost more? For resources that are allocated by a market

mechanism — say, restaurants or hotels — we expect better quality to cost more, but market

forces play little role in Medicare payments. In the absence of market forces, it is an open

question whether better quality costs more. Silber et al. (2016) examine this issue in several

ways, but Table 3 restricts attention to the consumption of a particularly expensive resource,

namely use of the intensive care unit or ICU. In a hospital with inadequate nursing staff, a

patient may be placed in the ICU to ensure that the patient is monitored, while in a hospital

with superior nursing this same patient might remain in a conventional hospital room. This is

one mechanism by which better quality — lower mortality rates — might cost less, not more.

Is the lower mortality in magnet hospitals associated with greater use of the ICU? Apparently

not. Overall and in all five groups in Figure 1, the use of the ICU in Table 3 is lower at magnet

hospitals than at control hospitals. The odds ratio is largest in group 2, but it is not small

in any group. In various other ways also, Silber et al. (2016) found that costs were lower at

hospitals with superior nursing, despite lower mortality rates.

The closed testing procedure applied to the sensitivity analysis in the bottom part of Table 3

rejects the null hypothesis of no effect on ICU utilization in all five groups providing the bias in

treatment assignment is at most Γ = 1.5. Using the method in Rosenbaum and Silber (2009),

a bias of Γ = 1.5 corresponds with an unobserved covariate that increases the odds of surgery

at a control hospital by a factor of 4 and increases the odds of going to the ICU by a factor of

2. Closed testing rejects no effect only in group 2 for 1.6 ≤ Γ ≤ 1.8, and cannot reject even

Fisher’s H0 for Γ = 1.9. Detailed results for group 2 are given in Table 4.

To emphasize a point emphasized in §1, Tables 2, 3 and 4 concern the effect of going to a

magnet hospital rather than a control hospital for surgery, but they do not show the specific
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role of nurses in this effect. It is entirely plausible that superior nurse staffing would permit

more patients to stay out of the ICU, but nothing in the data speaks to this directly. The

main difference between the ICU and the floor of the hospital is the higher density, often higher

quality, of the nurse staffing in the ICU. A hospital with a higher nurse-to-bed ratio and superior

nurse staffing may be able to care for a seriously ill patient on the hospital floor, where some

other hospital would be forced to send the same patient to the ICU.

3.5. Other analyses and options for analysis

The tree in Figure 1 was built for mortality, but was used also for ICU use. In an additional

analysis, we applied CART to each leaf of Figure 1 to predict unsigned discordance for ICU use.

The two interesting aspects of this analysis were: (i) subgroup 2 in Figure 1 was not further

divided; (ii) subgroup 5 in Figure 1 was further divided, with more evidence of an effect on

ICU use among patients in this subgroup who were not admitted through the emergency room,

a pattern analogous to subgroups 2 and 3. An interesting feature of this type of analysis is

that it makes mortality the primary endpoint, as it would be in most surgical studies, so only

mortality determines the initial tree for the mortality analysis, but it permits the secondary

outcome of ICU use to affect a secondary tree.

We let CART build the groups. Any analysis that used only |Yi| and xi could be used to

build the groups. In saying this, we mean that the strong control of the family-wise error

rate in Hsu et al. (2015) would not be affected by revisions to the tree that used only |Yi| and

xi. Indeed, a surgeon who did not look at Yi could look at Figure 1 and Table 1 and decide

to regroup some of the procedure groups. Perhaps the surgeon would view some of CART’s

decisions as clinically unwise and would change them, or perhaps the surgeon would prefer that

proc1 and proc3 be identical, and that proc2 and proc4 be identical. Indeed, the surgeon might

suggest fitting the tree again, using only |Yi| and xi, but subdividing some procedure clusters,

say liver procedures, that seem too broad to be clinically meaningful. What is critical is that

the groups are formed using |Yi| and xi without using the sign of Yi.

4. Summary and discussion: Confirmatory analyses that disco ver larger effects by

exploratory methods

4.1. Summary: It is important to notice subgroups with larger treatment effects in observa-

tional studies

In an observational study of treatment effects, there is invariably concern that an ostensible

treatment effect is not actually an effect caused by the treatment, but rather some unmeasured

bias distinguishing treated and control groups. Larger or more stable treatment effects are

more insensitive to such concerns than smaller or more erratic effects; that is, larger biases
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measured by Γ would need to be present to explain a large and stable treatment effect. These

considerations motivate an interest in effect modification in observational studies. Perhaps the

treatment effect is larger or more stable in certain subgroups defined by observed covariates.

If so, the ostensible treatment effect in such subgroups is likely to be insensitive to larger

unmeasured biases, therefore more credible, and additionally, a larger or more stable effect is

likely to be more important clinically.

The magnet hospitals had lower mortality overall, and lower or equivalent mortality in each

of the five groups. However, the superior staffing of magnet hospitals was least sensitive to

unmeasured bias in our group 2, consisting of patients undergoing relatively serious forms of

surgery in the absence of other life-threatening conditions, such as congestive heart failure or

an emergency admission leading to surgery. Moreover, not only were mortality rates lower

in magnet hospitals for these patients (2.5% rather than 3.5%), but additionally the magnet

hospitals cared for these patients with greatly reduced use of an expensive resource, namely the

intensive care unit (ICU rate of 28.9% rather than 43.3%). Determining the cost of hospital

care for Medicare patients is not straightforward, so Silber et al. (2016) contrasted several

formulas to appraise the cost of magnet hospitals. In all of these formulas, use of the ICU plays

a substantial part, as does the length of stay in the hospital. Regardless of which formula was

used, magnet hospitals appear to produce lower mortality either at no additional cost or with

a cost savings.

A plausible interpretation of Figure 1, Table 1 and Table 2 is that: (i) patients in groups

2, 4 and 5 should be directed to magnet hospitals, a limited resource; (ii) the large number of

comparatively healthy patients requiring simpler surgical procedures may go to non-magnet hos-

pitals if space in a magnet hospital is unavailable, (iii) patients in group 3 requiring emergency

surgery should go to the nearest hospital.

4.2. Exploration, confirmation or prediction using regression trees

The CART method of Breiman, Friedman, Olshen and Stone (1984) immediately attracted

the attention of clinicians, in part because its relatively compact and coarse regression trees

resemble clinical thinking. Many clinical decisions — e.g., which patients should go to the ICU

— are discrete choices, and distinctions that are critical in one context may be unimportant in

another context, a pattern often suggested by a CART tree. For a discussion of regression trees

that emphasizes its parallel with clinical thinking, see Zhang and Singer (2010). Alas, CART

trees can be either unstable or too coarse or both. Subsequent work found that the much finer

distinctions produced by random forests, boosting or BART improved predictions when com-

pared with the compact trees produced by CART; see, for instance, Schapire, Freund, Bartlett,

and Lee (1998), Breiman (2001a), and Chipman, George and McCulloch (2010). Although
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these much finer distinctions improved prediction, and although they have a role in improving

clinical assessments, they were no longer intelligible to humans, and consequently had limited

value in scientific publications in medical journals. A clinician may consider an algorithm’s

assessment, but the clinician cannot transfer responsibility for the patient to the algorithm,

so the clinician needs to incorporate intelligible considerations in her decisions. Though not

a recent development, the proverb’s admonition, “Happy is the [. . . person . . . ] that getteth

understanding,” has lost none of its force (Proverbs 3:13, King James Version). For all their

faults, CART’s coarse trees can be understood.

The CART method, as originally proposed, did not lend itself to conventional inference, such

as hypothesis testing, much less to simultaneous inference for the groups it produced. Breiman

(2001b) took pride in the gap between methods like CART and confirmatory statistical analyses

of the type published in scientific journals, but it is at least debatable whether the gap is an

asset or a liability.

In contrast, Hsu et al. (2015) proposed a way to use CART, or similar methods, combining

exploratory construction of groups together with a confirmatory sensitivity analysis that controls

the family-wise error rate in the constructed groups. All of the data are used to build the tree

and all of the data are used in confirmatory analyses. This is important in Table 2 because the

number of pairs discordant for mortality is not large in some groups — happily, most people

survive surgery — so sample splitting to build the groups would leave less data for confirmatory

analyses. The double use of all of the data works by having CART predict |Yi| from xi without

knowing who is treated and who is control, then using the signed Yi in confirmatory analyses

with CART’s groups. CART trees can be unstable, so the tree should be regarded as an

interesting partition of the data, not a search for a “true” partition. The formal hypothesis

tests are conditional inferences given CART’s partition: they correctly use, but do not endorse,

the partition.

Will a tree built from |Yi| be useful in the study of effect modification? It is straightforward

to construct theoretical examples in which an analysis of |Yi| would miss effect modification

that an analysis of Yi might find. Obviously, a tree built from all of the Yi is preferable, but

this would preclude a confirmatory analysis using the same data. As noted by Hsu et al.

(2015), a result of Jogdeo (1977, Theorem 2.2) provides some encouragement. A simple version

of this result says: if Yi = µi + ǫi, µi ≥ 0, i = 1, . . . , I, where the errors ǫi are independent

and identically distributed with a unimodal distribution symmetric about zero, then |Yi| is

stochastically larger than |Yj | whenever µi > µj. Under this simple model, trees that form

groups from the level of |Yi| have some hope of finding groups heterogeneous in µi. True, if the

ǫi are not identically distributed, if the dispersion of ǫi varies with i, then the groups may be

affected by both level and dispersion; however, sensitivity to unmeasured bias is also affected



14 K. Lee, D. S. Small, J. Y. Hsu, J. H. Silber and P. R. Rosenbaum

by both the level and dispersion of the treatment effects, so groups reflecting unequal dispersion

are interesting also. For additional encouragement, see also the simulation results in Hsu et al.

(2015).

4.3. Alternative methods

As noted in §2.2, there are three basic approaches to confirmatory sensitivity analyses for effect

modification. One approach starts with a priori groups, or, what amounts to the same thing,

groups built from one or more external data sets. Essentially this approach was used in Silber

et al. (2016) for these data. The five groups were defined by quintiles of risk-of-death as

estimated using a model fit to another set of data. That analysis was enlightening, but the

plausible interpretation at the end of §4.1 makes useful distinctions that risk quintiles do not

make.

Another approach is to: (i) split the data into two parts at random, (ii) form patient groups

from Yi rather than |Yi| using the first part of the data, (iii) discard the first part, (iv) perform

a confirmatory analysis on the second part using the patient groups formed from the first part.

This approach is attractive when I is very large. For some indirectly related theory, see Heller

et al. (2009). Presumably, if we had twice as many pairs as we actually had, I → 2I, if we split

the data in half as just described, then the resulting analysis would be uniformly better than

the analysis we did with half as much data, because: (i) the tree would be better having been

built from Yi instead of |Yi|, but (ii) the confirmatory analysis would have the same quantity of

data as our confirmatory analysis. Silber et al. (2016) used data from New York, Illinois and

Texas primarily because purchasing Medicare data is expensive. There are, however, 47 more

states where these came from.
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Table 1. Grouping of procedure clusters, with and without congestive heart fail-

ure (CHF).

No CHF CHF No CHF CHF

Procedure Cluster proc1 proc3 proc2 proc4

1 Adrenal procedures x x

2 Appendectomy x x

3 Bowel anastamoses x x

4 Bowel procedures, other x x

5 Breast procedures x x

6 Esophageal procedures x x

7 Femoral hernia procedures x x

8 Gallbladder procedures x x

9 Incisional and abdominal hernias x x

10 Inguinal hernia procedures x x

11 Large bowel resection x x

12 Liver procedures x x

13 Lysis of adhesions x x

14 Ostomy procedures x x

15 Pancreatic procedures x x

16 Parathyroidectomy x x

17 PD access procedure x x

18 Rectal procedures x x

19 Repair of vaginal fistulas x x

20 Small bowel resection x x

21 Splenectomy x x

22 Stomach procedures x x

23 Thyroid procedures x x

24 Ulcer surgery x x

25 Umbilical hernia procedures x x

26 Ventral hernia repair x x
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Table 2. Mortality in 23,715 matched pairs of a patient receiving surgery at a magnet hospital

or a control hospital, where the pairs have been divided into five groups selected by CART.

Subgroups Pooled

Group 1 Group 2 Group 3 Group 4 Group5

CHF no no no yes yes

Procedures proc1 proc2 proc2 proc3 proc4

ER admission both no yes both both

Number of Pairs 10127 5636 2943 2086 2923 23715

Discordant Pairs 210 293 488 217 760 1968

Percent Discordant % 2.1 5.2 16.6 10.4 26.0 8.3

Odds Ratio 1.41 1.53 1.09 1.28 1.18 1.23

Morality %, Magnet 0.9 2.5 10.1 4.9 16.5 4.7

Morality %, Control 1.3 3.5 10.8 6.2 18.6 5.6

Sensitivity analysis: Upper bounds on P -values for various Γ

Γ Subgroups Truncated

Group 1 Group 2 Group 3 Group 4 Group 5 Product

1.00 0.008 0.000 0.195 0.039 0.013 0.000

1.05 0.019 0.001 0.374 0.080 0.062 0.000

1.10 0.042 0.003 0.576 0.143 0.184 0.012

1.15 0.079 0.010 0.753 0.230 0.386 0.032

1.17 0.099 0.015 0.809 0.270 0.479 0.044

1.20 0.135 0.025 0.875 0.335 0.616 0.163
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Table 3. Use of the intensive care unit (ICU) in 23,715 matched pairs of a patient receiving

surgery at a magnet hospital or a control hospital, where the pairs have been divided into

five groups indicated in Figure 1.

Subgroups Pooled

Group 1 Group 2 Group 3 Group 4 Group5

CHF no no no yes yes

Procedures proc1 proc2 proc2 proc3 proc4

ER admission both no yes both both

Number of Pairs 10127 5636 2943 2086 2923 23715

Discordant Pairs 2675 2361 1282 859 970 8147

Percent Discordant % 26.4 41.9 43.6 41.2 33.2 34.4

Odds ratio 1.63 2.05 1.67 1.70 1.88 1.78

ICU %, Magnet 15.3 28.9 53.8 41.0 69.8 32.3

ICU %, Control 21.7 43.3 64.6 51.7 80.0 42.0

Sensitivity analysis: Upper bounds on P -values for various Γ

Γ Subgroups Truncated

Group 1 Group 2 Group 3 Group 4 Group 5 Product

1 0.000 0.000 0.000 0.000 0.000 0.000

1.5 0.017 0.000 0.037 0.040 0.000 0.000

1.6 0.312 0.000 0.254 0.203 0.009 0.000

1.7 0.849 0.000 0.651 0.511 0.074 0.000

1.8 0.993 0.002 0.916 0.798 0.276 0.049

1.9 1.000 0.047 0.989 0.945 0.582 0.235

Table 4. Mortality and ICU use in 5,636 pairs in Group 2. The

table counts pairs of patients, not individual patients.

Control Hospital Magnet Hospital

Dead Alive, ICU Alive, no ICU Total

Dead 23 72 105 200

Alive, ICU 60 744 1493 2297

Alive, no ICU 56 726 2357 3139

Total 139 1542 3955 5636
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Mortality in 23715 Matched Pairs

 

No CHF CHF

Group 1

(1.41, 0.9, 1.3)

proc1 proc2

Group 4

(1.28, 4.9, 6.2)
Group 5

(1.18, 16.5, 18.6)

proc3 proc4

Group 2

(1.53, 2.5, 3.5)
Group 3

(1.09, 10.1, 10.8)

Not Emergency Emergency

Fig. 1. Mortality in 23,715 matched pairs of two Medicare patients, one receiving surgery at a magnet

hospital identified for superior nursing, the other undergoing the same surgical procedure at a conven-

tional control hospital. The three values (A,B,C) at the nodes of the tree are: A = McNemar odds ratio

for mortality, control/magnet, B = 30-day mortality rate (%) at the magnet hospitals, C = 30-day mortality

rate (%) at the control hospitals.
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