AMCS Written Preliminary Exam Part I, August 27, 2014

1. Let x_0 be a real number; we define a sequence of real numbers by setting:

$$x_{n+1} = x_n - \frac{x_n^3 + x_n^2 - 2x_n - 2}{3x_n^2 + 2x_n - 2}.$$

Suppose that $x_0 > 1$. Show that the sequence has a limit, independent of $x_0 > 1$, and determine what it is.

- 2. Prove that $\sin x \le x$ for all $0 \le x$.
- 3. What is the radius of convergence of the power series:

$$f(z) = \sum_{n=0}^{\infty} \frac{z^{n(n+1)}}{n^n}?$$

How does the series behave on the boundary of the disk where it converges?

4. Identify all the poles, zeros, removable singularities, and essential singularities of the function

$$f(z) = \frac{1}{z}e^{z + \frac{1}{z}}$$

Be sure to consider the behavior as $z \to \infty$. What is the residue of f at 0, i.e., the value of the integral

$$\frac{1}{2\pi i} \int_{|z|=1} f(z) dz?$$

Express the answer as an infinite series.

5. Assume $u: \mathbb{R}^3 \to \mathbb{R}$ is a smooth function that satisfies

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} > 0.$$

Show that *u* cannot assume a local maximum at any point $(x_0, y_0, z_0) \in \mathbb{R}^3$.

6. Let $\mathbf{x} : [0, \infty) \to \mathbb{R}^3$ denote a solution of the ODE

$$\dot{\mathbf{x}}(t) = \mathbf{c} \times \mathbf{x}(t), \mathbf{x}(0) = \mathbf{x}_0.$$

Here c is a fixed unit vector, \times is the standard cross product on \mathbb{R}^3 . Show that the trajectory of \mathbf{x} lies on a circle in \mathbb{R}^3 , and give an equation for the circle.

7. Show that the linear system

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

is not solvable for arbitrary $(a, b, c)^t$. Find a linear condition that insures solvability.

8. You are waiting at a bus stop, where the arrival times of buses are Poisson processes. Bus A has an arrival rate of μ , Bus B has an arrival rate of ν , and they arrive independently. What is the probability that Bus A arrives before Bus B?