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Abstract

This paper considers in the high dimensional setting a canonical testing problem in

multivariate analysis, namely testing the equality of two mean vectors. We introduce

a new test statistic that is based on a linear transformation of the data by the pre-

cision matrix which incorporates the correlations among the variables. Limiting null

distribution of the test statistic and the power of the test are analyzed. It is shown

that the test is particularly powerful against sparse alternatives and enjoys certain
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1 Introduction

A canonical testing problem in multivariate analysis is that of testing the equality of two

mean vectors µ1 and µ2 based on independent random samples, one from a distribution

with mean µ1 and covariance matrix Σ and another from a distribution with mean µ2 and

the same covariance matrix Σ . This testing problem arises in many scientific applications,

including genetics, econometrics, and signal processing. In the Gaussian setting where one

observes Xk

iid∼ Np(µ1,Σ), k = 1, ..., n1, and Y k

iid∼ Np(µ2,Σ), k = 1, ..., n2, the classical

test for testing the hypotheses

H0 : µ1 = µ2 versus H1 : µ1 �= µ2 (1)

is Hotelling’s T 2 test with the test statistic given by

T 2 =
n1n2

n1 + n2
(X̄ − Ȳ )� �Σ

−1
(X̄ − Ȳ ),

where X̄ = n−1
1

�
n1

k=1 Xk and Ȳ = n−1
2

�
n2

k=1 Y k are the sample means and �Σ is the

sample covariance matrix. The properties of Hotelling’s T 2 test has been well studied in

the conventional low-dimensional setting. It enjoys desirable properties when the dimension

p is fixed. See, e.g., Anderson (2003).

In many contemporary applications, high dimensional data, whose dimension is often

comparable to or even much larger than the sample size, are commonly available. Examples

include genomics, medical imaging, risk management, and web search problems. In such

high dimensional settings, classical methods designed for the low-dimensional case either

perform poorly or are no longer applicable. For example, the performance of Hotelling’s

T 2 test is unsatisfactory when the dimension is high relative to the sample sizes.

Several proposals for correcting Hotelling’s T 2 statistic have been introduced in the high

dimensional settings. For example, Bai and Saranadasa (1996) proposed to remove �Σ
−1

in T 2 and introduced a new statistic based on the squared Euclidean norm �X̄ − Ȳ �22.

Srivastava and Du (2008) and Srivastava (2009) constructed test statistics by replacing

�Σ
−1

with the inverse of the diagonal of �Σ. Chen and Qin (2010) introduced a test statistic
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by removing the cross-product terms
�

n1

i=1 X
�
i
X i and

�
n2

i=1 Y
�
i
Y i in �X̄ − Ȳ �22. All of the

above test statistics are based on an estimator of (µ1 − µ2)
TA(µ1 − µ2) for some given

positive definite matrix A. We shall call these test statistics sum of squares type statistics

as they all aim to estimate the squared Euclidean norm �A
1
2 (µ1 − µ2)�22.

It is known that tests based on the sum of squares type statistics can have good power

against the “dense” alternatives. That is, under the alternative hypothesis H1 the signals

in µ1 − µ2 spread out over a large number of coordinates. For a range of applications

including anomaly detection, medical imaging, and genomics, however, the means of the

two populations are typically either identical or are quite similar in the sense that they

only possibly differ in a small number of coordinates. In other words, under the alternative

H1, the difference of the two means µ1 − µ2 is sparse. For example, for ultrasonic flaw

detection in highly-scattering materials, many scattering centers such as grain boundaries

produce echoes and the ensemble of these echoes is usually defined as background noise,

while small cracks, flaws, or other metallurgical defects would be defined as signals. See,

for example, Zhang, Zhang and Wang (2000). In this case, it is natural to take µ1 −µ2 to

be sparse when the metallurgical defects exist. Similarly, for detection of hydrocarbons in

materials, instantaneous spectral analysis is often used to detect hydrocarbons through low-

frequency shadows, which is usually considered as sparse signals. See Castagna, Sun and

Siegfried (2003). In medical imaging, MRI is commonly used for breast cancer detection.

It is used to visualize microcalcifications, which can be an indication of breast cancer. The

signals are rare in such applications, see James, Clymer and Schmalbrock (2001). Another

application is the shape analysis of brain structures, in which the shape differences, if any,

are commonly assumed to be confined to a small number of isolated regions inside the

whole brain. This is equivalent to the sparse alternative. See Cao and Worsley (1999) and

Taylor and Worsley (2008). In these sparse settings, tests based on the sum of squares

type statistics are not powerful. For example, the three tests mentioned earlier all require

(n1+n2)�µ1−µ2�22/p
1
2 → ∞ in order for any of the tests to be able to distinguish between

the null and the alternative with probability tending to 1.
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The goal of this paper is to develop a test that performs well in general and is particularly

powerful against sparse alternatives in the high dimensional setting under dependency. To

explore the advantages of the dependence between the variables, we introduce a new test

statistic that is based on a linear transformation of the observations by the precision matrix

Ω. Suppose for the moment the precision matrix Ω = Σ
−1 is known. For testing the null

hypothesis H0 : µ1 = µ2, we first transform the samples {Xk; 1 ≤ k ≤ n1} and {Y k; 1 ≤

k ≤ n2} by multiplying with Ω to obtain the transformed samples {ΩXk; 1 ≤ k ≤ n1}

and {ΩY k; 1 ≤ k ≤ n2}. The new test statistic is then defined to be the maximum of the

squared two sample t-statistics of the transformed observations {ΩXk; 1 ≤ k ≤ n1} and

{ΩY k; 1 ≤ k ≤ n2}. We shall first show that the limiting null distribution of this test

statistic is the extreme value distribution of type I, and then construct an asymptotically

α level test based on the limiting distribution. It is shown that this test enjoys certain

optimality and uniformly outperforms two other natural tests against sparse alternatives.

The asymptotic properties including the power of the tests are investigated in Section 3.

The covariance matrix Σ and the precision matrix Ω are typically unknown in practice

and thus need to be estimated. Estimation of Σ and Ω in the high dimensional setting

has been well studied in the last few years. See, for example, Yuan and Lin (2007), Bickel

and Levina (2008), Rothman et al. (2008), Ravikumar et al. (2008), Cai, Zhang and Zhou

(2010), Yuan (2010), Cai and Liu (2011), Cai, Liu, and Luo (2011), and Cai and Yuan

(2012). In particular, when Ω is sparse, it can be well estimated by the constrained �1

minimization method proposed in Cai, Liu, and Luo (2011). When such information is

not available, the adaptive thresholding procedure introduced in Cai and Liu (2011) can

be applied to estimate Σ and its inverse is then used to estimate Ω. The estimate of Ω is

then plugged into the test statistic mentioned above to yield a data driven procedure. In

principle, other “good” estimators of Ω can also be used. It is shown that, under regularity

conditions, the data-driven test performs asymptotically as well as the test based on the

oracle statistic and thus shares the same optimality.

A simulation study is carried out to investigate the numerical performance of the pro-
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posed test in a wide range of settings. The numerical results show that the power of

proposed test uniformly and significantly dominates those of the tests based on the sum of

squares type statistics when either Σ or Ω is sparse. When both Σ and Ω are non-sparse, the

proposed test with the inverse of the adaptive thresholding estimator of Σ still significantly

outperforms the sum of squares type tests.

The rest of the paper is organized as follows. After reviewing basic notation and defini-

tions, Section 2 introduces the new test statistics. Theoretical properties of the proposed

tests are investigated in Section 3. Limiting null distributions of the test statistics and the

power of the tests, both for the case the precision matrix Ω is known and the case Ω is

unknown, are analyzed. Extensions to the non-Gaussian distributions are given in Section

4. A simulation study is carried out in Section 5 to investigate the numerical performance

of the tests. Discussions of the results and other related work are given in Section 6. The

proofs of the main results are delegated in Section 7. Additional simulation results and

theoretical analysis are given in the supplement Cai, Liu and Xia (2013b).

2 Methodology

This section considers the testing problem in the setting of Gaussian distributions. Ex-

tensions to the non-Gaussian case will be discussed in Section 4. We shall first present

our testing procedure in the oracle setting in Section 2.1 where the precision matrix Ω is

assumed to be known. In addition, two other natural testing procedures are introduced

in this setting. A data-driven procedure is given in Section 2.2 for the general case of the

unknown precision matrix Ω by using an estimator of the precision matrix Ω.

We begin with basic notation and definitions. For a vector β = (β1, . . . , βp)
� ∈ Rp, define

the �q norm by |β|q = (
�

p

i=1 |βi|q)1/q for 1 ≤ q ≤ ∞ with the usual modification for q = ∞.

A vector β is called k-sparse if it has at most k nonzero entries. For a matrix Ω = (ωi,j)p×p,

the matrix 1-norm is the maximum absolute column sum, �Ω�L1 = max1≤j≤p

�
p

i=1 |ωi,j|,

the matrix elementwise infinity norm is defined to be |Ω|∞ = max1≤i,j≤p |ωi,j| and the

elementwise �1 norm is �Ω�1 =
�

p

i=1

�
p

j=1 |ωi,j|. For a matrix Ω, we say Ω is k-sparse if
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each row/column has at most k nonzero entries. We shall denote the difference µ1 − µ2

by δ so the null hypothesis can be equivalently written as H0 : δ = 0. For two sequences

of real numbers {an} and {bn}, write an = O(bn) if there exists a constant C such that

|an| ≤ C|bn| holds for all sufficiently large n, write an = o(bn) if limn→∞ an/bn = 0, and

write an � bn if there are positive constants c and C such that c ≤ an/bn ≤ C for all n ≥ 1.

2.1 Oracle Procedures

Suppose we observe independent p-dimensional random samples

X1, ...,Xn1

iid∼ N(µ1,Σ) and Y 1, ...,Y n2

iid∼ N(µ2,Σ)

where the precision matrix Ω = Σ
−1 is known. In this case, the null hypothesis H0 : δ = 0

is equivalent to H0 : Ωδ = 0. An unbiased estimator of Ωδ is the sample mean vector

Ω(X̄ − Ȳ ) =: Z̄ = (Z̄1, . . . , Z̄p)T . We propose to test the null hypothesis H0 : δ = 0 based

on the test statistic

MΩ =
n1n2

n1 + n2
max
1≤i≤p

Z̄2
i

ωi,i

. (2)

At first sight, the test statistic MΩ is not the most intuitive choice for testing H0 :

δ = 0. We first briefly illustrate the motivation on the linear transformation of the data

by the precision matrix. Under a sparse alternative, the power of a test mainly depends

on the magnitudes of the signals (nonzero coordinates of δ) and the number of the signals.

It will be shown in Section 7 that (Ωδ)i is approximately equal to δiωi,i for all i in the

support of δ. The magnitudes of the nonzero signals δi are then transformed to |δi|ω
1
2
i,i
after

normalized by the standard deviation of the transformed variable (ΩX)i. In comparison,

the magnitudes of the signals in the original data are |δi|/σ
1
2
i,i
. It can be seen from the

elementary inequality ωi,iσi,i ≥ 1 for 1 ≤ i ≤ p that |δi|ω
1
2
i,i
≥ |δi|/σ

1
2
i,i
. That is, such a linear

transformation magnifies the signals and the number of the signals due to the dependence in

the data. The transformation thus helps to distinguish the null and alternative hypotheses.

The advantage of this linear transformation will be proved rigorously in Section 7. In the

context of signal detection under a Gaussian mixture model, Hall and Jin (2010) introduced
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the innovated higher criticism procedure which is also based on the transformation of

precision matrix. We should note that the innovated higher criticism procedure is only for

the detection purpose, and it does not provide an asymptotically α-level test.

The asymptotic null distribution of MΩ will be studied in Section 3. Note that MΩ is

the maximum of p dependent normal random variables. It is well known that the limiting

distribution of the maximum of p independent χ2
1 random variables after normalization is

the extreme value distribution of type I. This result was generalized by Berman (1964)

to the dependent case, where the limiting distribution for the maximum of a stationary

sequence was considered. In the setting of the present paper, the precision matrix Ω does

not have any natural order and the result in Berman (1964) thus does not apply. We shall

prove by using different techniques thatMΩ still converges to the extreme value distribution

of type I under the null H0.

More generally, for a given invertible p× p matrix A, the null hypothesis H0 : δ = 0 is

equivalent to H0 : Aδ = 0. Set δA = (δA1 , ..., δ
A
p
)� := A(X̄ − Ȳ ). Denote the covariance

matrix of AX by B = (bi,j) and define the test statistic

MA =
n1n2

n1 + n2
max
1≤i≤p

(δA
i
)2

bi,i
. (3)

The most natural choices ofA are arguablyA = Ω
1
2 andA = I. In the case ofA = Ω

1
2 , the

components of Ω
1
2X and Ω

1
2Y are independent. Set W̄ = (W̄1, ..., W̄p)T := Ω

1
2 (X̄ − Ȳ ).

It is natural to consider the test statistic

M
Ω

1
2
=

n1n2

n1 + n2
max
1≤i≤p

W̄ 2
i
. (4)

As we will show later that the test based on MΩ uniformly outperforms the test based on

M
Ω

1
2
for testing against sparse alternatives.

Another natural choice is A = I. That is, the test is directly based on the difference of

the sample means X̄ − Ȳ . Set δ̄ = (δ̄1, ..., δ̄p)� := X̄ − Ȳ and define the test statistic

MI =
n1n2

n1 + n2
max
1≤i≤p

δ̄2
i

σi,i

(5)

where σi,i are the diagonal elements of Σ. Here MI is the maximum of the squared two

sample t statistics based on the samples {Xk} and {Y k} directly. It will be shown that the
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test based on MI is uniformly outperformed by the test based on MΩ for testing against

sparse alternatives.

2.2 Data-Driven Procedure

We have so far focused on the oracle case in which the precision matrix Ω is known.

However, in most applications Ω is unknown and thus needs to be estimated. We consider

in this paper two procedures for estimating the precision matrix. When Ω is known to be

sparse, the CLIME estimator proposed in Cai, Liu and Luo (2011) is used to estimate Ω

directly. If such information is not available, we first estimate the covariance matrix Σ by

the inverse of the adaptive thresholding estimator �Σ
�

introduced in Cai and Liu (2011),

and then estimate Ω by (�Σ
�

)−1.

We first consider the CLIME estimator. Let Σn be the pooled sample covariance matrix

(σ̂i,j)p×p = Σn =
1

n1 + n2

� n1�

k=1

(Xk − X̄)(Xk − X̄)
�
+

n2�

k=1

(Y k − Ȳ )(Y k − Ȳ )
�
�
.

Let �Ω1 = (ω̂1
i,j
) be a solution of the following optimization problem:

min �Ω�1 subject to |ΣnΩ− I|∞ ≤ λn,

where � · �1 is the elementwise �1 norm, and λn = C
�
log p/n for some sufficiently large

constant C. In practice, λn can be chosen through cross validation. See Cai, Liu, and

Luo (2011) for further details. The estimator of the precision matrix Ω is defined to be

�Ω = (ω̂i,j)p×p, where

ω̂i,j = ω̂j,i = ω̂1
i,j
I{|ω̂1

i,j
| ≤ |ω̂1

j,i
|}+ ω̂1

j,i
I{|ω̂1

i,j
| > |ω̂1

j,i
|}.

The estimator �Ω is called the CLIME estimator and can be implemented by linear pro-

gramming. It enjoys desirable theoretical and numerical properties. See Cai, Liu, and Luo

(2011) for more details on the properties and implementation of this estimator.

When the precision matrix Ω is not known to be sparse, we estimate Ω by Ω̂ = (�Σ
�

)−1,

the inverse of the adaptive thresholding estimator of Σ. The adaptive thresholding esti-
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mator �Σ
�

= (σ̂�

i,j
)p×p is defined by

σ̂�

i,j
= σ̂i,jI(|σ̂i,j| ≥ λi,j)

with λi,j = δ
�

θ̂i,j log p
n

, where

θ̂i,j =
1

n1 + n2

� n1�

k=1

�
(Xki − X̄ i)(Xkj − X̄j)− σ̂i,j

�2

+
n2�

k=1

�
(Yki − Ȳ i)(Ykj − Ȳ j)− σ̂i,j

�2�

X̄ i = n−1
1

n1�

k=1

Xki, Ȳ i = n−1
2

n2�

k=1

Yki

is an estimate of θi,j = Var((Xi − µi)(Xj − µj)). Here δ is a tuning parameter which

can be taken as fixed at δ = 2 or can be chosen empirically through cross-validation. This

estimator is easy to implement and it enjoys desirable theoretical and numerical properties.

See Cai and Liu (2011) for more details on the properties of this estimator.

For testing the hypothesis H0 : µ1 = µ2 in the case of unknown precision matrix Ω,

motivated by the oracle procedure MΩ given in Section 2.1, our final test statistic is M�Ω

defined by

M�Ω =
n1n2

n1 + n2
max
1≤i≤p

�Z2
i

ω̂(0)
i,i

, (6)

where �Z = ( �Z1, . . . , �Zp)T := �Ω(X̄ − Ȳ ) and ω̂(0)
i,i

= n1
n1+n2

ω̂(1)
i,i

+ n2
n1+n2

ω̂(2)
i,i

with

(ω̂(1)
i,j
) :=

1

n1

n1�

k=1

(�ΩXk − X̄ �Ω)(
�ΩXk − X̄ �Ω)

T ,

(ω̂(2)
i,j
) :=

1

n2

n2�

k=1

(�ΩY k − Ȳ �Ω)(
�ΩY k − Ȳ �Ω)

T ,

X̄ �Ω = n−1
1

n1�

k=1

�ΩXk, Ȳ �Ω = n−1
2

n2�

k=1

�ΩY k. (7)

It will be shown in Section 3 that M�Ω and MΩ have the same asymptotic null distribution

and power under certain regularity conditions. Note that other estimators of the precision

matrix Ω can also be used to construct a good test. See more discussions in Section 3.2.2.

9



Remark 1. The CLIME estimator �Ω is positive definite with high probability when

λmin(Ω) > c > 0. However, for a given realization, Ω̂ is not guaranteed to be positive

definite. The testing procedure still works even when Ω̂ is not positive definite as the

procedure uses Ω̂ directly. If a positive semi-definite or positive definite estimator is still

desired, the following simple additional step leads to an estimator of Ω which is positive

definite and achieves the same rate of convergence.

Write the eigen-decomposition of �Ω as �Ω =
�

p

i=1 λ̂ivivTi , where λ̂i’s and vi’s are, re-

spectively, the eigenvalues and eigenvectors of �Ω. Set λ̂∗
i
= max(λ̂i, 0 log p/n) and define

�Ω
+
=

�
p

i=1 λ̂
∗
i
vivTi . Then �Ω

+
is positive definite and attains the same rate of convergence.

This method can also be applied to the adaptive thresholding estimator Σ̂
�

to ensure the

positive definiteness of the estimator. See, for example, Cai and Zhou (2011) and Cai and

Yuan (2012). All the results in the present paper hold with the estimator �Ω replaced by

�Ω
+
.

3 Theoretical Analysis

We now turn to the analysis of the properties of MΩ and M�Ω including the limiting null

distribution and the power of the corresponding tests. It is shown that the test based on

M�Ω performs as well as that based on MΩ and enjoys certain optimality under regularity

conditions. The asymptotic null distributions of M
Ω

1
2
and MI are also derived and the

power of the corresponding tests is studied.

3.1 Asymptotic Distributions of the Oracle Test Statistics

We first establish the asymptotic null distributions for the oracle test statistics MΩ, MΩ
1
2

and MI . Let D1 = diag(σ1,1, ..., σp,p) and D2 = diag(ω1,1, ...,ωp,p), where σk,k and ωk,k are

the diagonal entries of Σ and Ω respectively. The correlation matrix of X and Y is then

Γ = (γi,j) = D−1/2
1 ΣD−1/2

1 and the correlation matrix of ΩX and ΩY is R = (ri,j) =

D−1/2
2 ΩD−1/2

2 . To obtain the limiting null distributions, we assume that the eigenvalues
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of the covariance matrix Σ are bounded from above and below, and the correlations in Γ

and R are bounded away from −1 and 1. More specifically we assume the following:

(C1): C−1
0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ C0 for some constant C0 > 0;

(C2): max1≤i<j≤p |γi,j| ≤ r1 < 1 for some constant 0 < r1 < 1;

(C3): max1≤i<j≤p |ri,j| ≤ r2 < 1 for some constant 0 < r2 < 1.

Condition (C1) on the eigenvalues is a common assumption in the high-dimensional

setting. Conditions (C2) and (C3) are also mild. For example, if max1≤i<j≤p |ri,j| = 1, then

Σ is singular. The following theorem states the asymptotic null distributions for the three

oracle statistics MΩ, MΩ
1
2
and MI .

Theorem 1. Let the test statistics MΩ, MΩ
1
2
and MI be defined as in (2), (4) and (5),

respectively.

(i). Suppose that (C1) and (C3) hold. Then for any x ∈ R,

PH0

�
MΩ − 2 log p+ log log p ≤ x

�
→ exp

�
− 1√

π
exp(−x

2
)
�
, as p → ∞.

(ii). For any x ∈ R,

PH0

�
M

Ω
1
2
− 2 log p+ log log p ≤ x

�
→ exp

�
− 1√

π
exp(−x

2
)
�
, as p → ∞.

(iii). Suppose that (C1) and (C2) hold. Then for any x ∈ R,

PH0

�
MI − 2 log p+ log log p ≤ x

�
→ exp

�
− 1√

π
exp(−x

2
)
�
, as p → ∞.

Theorem 1 holds for any fixed sample sizes n1 and n2 and it shows that MΩ, MΩ
1
2
and

MI have the same asymptotic null distribution. Based on the limiting null distribution,

three asymptotically α-level tests can be defined as follows:

Φα(Ω) = I{MΩ ≥ 2 log p− log log p+ qα},

Φα(Ω
1
2 ) = I{M

Ω
1
2
≥ 2 log p− log log p+ qα},

Φα(I) = I{MI ≥ 2 log p− log log p+ qα},
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where qα is the 1−α quantile of the type I extreme value distribution with the cumulative

distribution function exp
�
− 1√

π
exp(−x/2)

�
, i.e.,

qα = − log(π)− 2 log log(1− α)−1.

The null hypothesis H0 is rejected if and only if Φα(·) = 1. Although the asymptotic

null distribution of the test statistics MΩ, MI , and M
Ω

1
2
are the same, the power of the

tests Φα(Ω), Φα(Ω
1
2 ), and Φα(I) are quite different. We shall show in Section 1 in the

supplementary material Cai, Liu and Xia (2013b) that the power of Φα(Ω) uniformly

dominates those of Φα(Ω
1
2 ) and Φα(I) when testing against sparse alternatives, and the

results are briefly summarized in Section 3.2.3.

3.2 Asymptotic Properties of Φα(Ω) And Φα(�Ω)

In this section, the asymptotic power of MΩ is analyzed and the test Φα(Ω) is shown to

be minimax rate optimal. In practice, Ω is unknown and the test statistic M�Ω should be

used instead of MΩ. Define the set of kp-sparse vectors by

S(kp) =
�
δ :

p�

j=1

I{δj �= 0} = kp
�
.

Throughout the section, we analyze the power of MΩ and M�Ω under the alternative

H1 : δ ∈ S(kp) with kp = pr, 0 ≤ r < 1, and the nonzero

locations are randomly uniformly drawn from {1, ..., p},

Under H1, we let (X − µ1,Y − µ2) be independent with the nonzero locations of δ. As

discussed in the introduction, the condition on the nonzero coordinates in H1 is mild.

Similar conditions have been imposed in Hall and Jin (2008), Hall and Jin (2010) and

Arias-Castro, Candès and Plan (2011). We show that, under certain sparsity assumptions

on Ω, M�Ω performs as well as MΩ asymptotically. For the following sections, we assume

n1 � n2 and write n = n1n2
n1+n2

.
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3.2.1 Asymptotic Power And Optimality of Φα(Ω)

The asymptotic power of Φα(Ω) is analyzed under certain conditions on the separation

between µ1 and µ2. Furthermore, a lower bound is derived to show that this condition is

minimax rate optimal in order to distinguish H1 and H0 with probability tending to 1.

Theorem 2. Suppose (C1) holds. Under the alternative H1 with r < 1/4, if maxi |δi/σ
1
2
i,i
| ≥

�
2β log p/n with β ≥ 1/(mini σi,iωi,i) + ε for some constant ε > 0, then as p → ∞

PH1

�
Φα(Ω) = 1

�
→ 1.

We shall show that the condition maxi |δi/σ
1
2
i,i
| ≥

�
2β log p/n is minimax rate optimal

for testing against sparse alternatives. First we introduce some conditions.

(C4) kp = pr for some r < 1/2 and Ω = Σ
−1 is sp-sparse with sp = O((p/k2

p
)γ) for some

0 < γ < 1.

(C4
�
) kp = pr for some r < 1/4.

(C5) �Ω�L1 ≤ M for some constant M > 0.

Define the class of α-level tests by

Tα = {Φα : PH0

�
Φα = 1

�
≤ α}.

The following theorem shows that the condition maxi |δi/σ
1
2
i,i
| ≥

�
2β log p/n is minimax

rate optimal.

Theorem 3. Assume that (C4) (or (C4�)) and (C5) hold. Let α, ν > 0 and α + ν < 1.

Then there exists a positive constant c such that for all sufficiently large n and p,

inf
δ∈S(kp)∩{|δ|∞≥c

√
log p/n}

sup
Φα∈Tα

P(Φα = 1) ≤ 1− ν.

Theorem 3 shows that, if c is sufficiently small, then any α level test is unable to

reject the null hypothesis correctly uniformly over δ ∈ S(kp) ∩ {|δ|∞ ≥ c
�

log p/n} with

probability tending to one. So the order of the lower bound maxi |δi/σ
1
2
i,i
| ≥

�
2β log p/n

can not be improved.
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3.2.2 Asymptotic Properties And Optimality of Φα(�Ω)

We now analyze the properties of M�Ω and the corresponding test including the limiting

null distribution and the asymptotic power. We shall assume the estimator �Ω = (ω̂i,j) has

at least a logarithmic rate of convergence

��Ω−Ω�L1 = oP(
1

log p
) and max

1≤i≤p

|ω̂i,i − ωi,i| = oP(
1

log p
). (8)

This is a rather weak requirement on Ω̂ and, as will be shown later, can be easily satisfied

by the CLIME estimator or the inverse of the adaptive thresholding estimator for a wide

range of covariance/precision matrices. We will show that under Condition (8) M�Ω has the

same limiting null distribution as MΩ. Define the corresponding test Φα(�Ω) by

Φα(�Ω) = I{M�Ω ≥ 2 log p− log log p+ qα}.

The following theorem show that M�Ω and MΩ have the same asymptotic distribution and

power under Condition (8), and so the test Φα(�Ω) is also minimax rate optimal.

Theorem 4. Suppose that �Ω satisfies (8) and (C1) and (C3) hold.

(i). Then under the null hypothesis H0, for any x ∈ R,

PH0

�
M�Ω − 2 log p+ log log p ≤ x

�
→ exp

�
− 1√

π
exp(−x

2
)
�
, as n, p → ∞.

(ii). Under the alternative hypothesis H1 with r < 1/6, we have, as n, p → ∞,

PH1

�
Φα(�Ω) = 1

�

PH1

�
Φα(Ω) = 1

� → 1.

Furthermore, if maxi |δi/σ
1
2
i,i
| ≥

�
2β log p/n with β ≥ 1/(mini σi,iωi,i) + ε for some

constant ε > 0, then

PH1

�
Φα(�Ω) = 1

�
→ 1, as n, p → ∞.

14



As mentioned earlier, Condition (8) is rather weak and is satisfied by the CLIME

estimator or the inverse of the adaptive thresholding estimator for a wide range of pre-

cision/covariance matrices. It is helpful to give a few examples of collections of preci-

sion/covariance matrices for which (8) holds.

We first consider the following class of precision matrices that satisfy an �q-ball con-

straint for each row/column. Let 0 ≤ q < 1 and define

Uq(sp,1,Mp) =
�
Ω � 0 : �Ω�L1 ≤ Mp, max

1≤j≤p

p�

i=1

|ωi,j|q ≤ sp,1
�
. (9)

The class Uq(sp,1,Mp) covers a range of precision matrices as the parameters q, sp,1 and Mp

vary. Using the techniques in Cai, Liu and Luo (2011), Proposition 1 below shows that (8)

holds for the CLIME estimator if Ω ∈ Uq(sp,Mp) with

sp,1 = o
� n(1−q)/2

M1−q

p (log p)(3−q)/2

�
. (10)

We now turn to the covariance matrices. Consider a large class of covariance matrices

defined by, for 0 ≤ q < 1,

U�

q
(sp,2,Mp) =

�
Σ : Σ � 0, �Σ−1�L1 ≤ Mp, max

i

p�

j=1

(σi,iσj,j)
(1−q)/2|σi,j|q ≤ sp,2

�
. (11)

Matrices in U�

q
(sp,2) satisfy a weighted �q-ball constraint for each row/column. Let Ω̂ =

(Σ̂
�

)−1, where Σ̂
�

is the adaptive thresholding estimator defined in Section 2.2. Then

Proposition 1 below shows that Condition (8) is satisfied by Ω̂ if Σ ∈ U�

q
(sp,2,Mp) with

sp,2 = o
� n(1−q)/2

M2
p
(log p)(3−q)/2

�
. (12)

Besides the class of covariance matrices U�

q
(sp,2,Mp) given in (11), Condition (8) is also

satisfied by the inverse of the adaptive thresholding estimator Ω̂ = (Σ̂
�

)−1 over the class

of bandable covariance matrices defined by

Fα(M1,M2) =




Σ : Σ � 0, �Σ−1�L1 ≤ M1, max
j

�

i:|i−j|>k

|σi,j| ≤ M2k
−α, for k ≥ 1






where α > 0, M1 > 0 and M2 > 0. This class of covariance matrices arises naturally in

time series analysis. See Cai, Zhang and Zhou (2010) and Cai and Zhou (2012).
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Proposition 1. Suppose that log p = o(n1/3) and (C1) holds. Then the CLIME estimator

for Ω ∈ Uq(sp,1,Mp) with (10) satisfies (8). Similarly, the inverse of the adaptive threshold-

ing estimator of Σ ∈ U�

q
(sp,2,Mp) with (12) or Σ ∈ Fα(M1,M2) with log p = o(nα/(4+3α))

satisfies (8).

We should note that the conditions (8) , (10), and (12) are technical conditions and

they can be further weakened. For example, the following result holds without imposing a

sparsity condition on Ω.

Theorem 5. Let Ω̂ be the CLIME estimator. Suppose that (C1) and (C3) hold and

mini ωi,i ≥ c for some c > 0. If �Ω�L1 ≤ Mp and

M2
p
= o(

√
n/(log p)3/2), (13)

then

PH0(Φα(Ω̂) = 1) ≤ α + o(1), as n, p → ∞.

Furthermore, if maxi |δi/σ
1
2
i,i
| ≥

�
2β log p/n with β ≥ 1/(mini σi,iωi,i)+ε for some constant

ε > 0, then

PH1(Φα(Ω̂) = 1) → 1, as n, p → ∞.

3.2.3 Power Comparison of the Oracle Tests

The tests Φα(Ω) and Φα(Ω̂) are shown in Sections 3.2.1 and 3.2.2 to be minimax rate

optimal for testing against sparse alternatives. Under some additional regularity conditions,

it can be shown that the test Φα(Ω) is uniformly at least as powerful as both Φα(Ω
1
2 ) and

Φα(I), and the results are stated in Proposition 1 in the supplementary material Cai, Liu

and Xia (2013b). Furthermore, we show that, for a class of alternatives, the test Φα(Ω) is

strictly more powerful than both Φα(Ω
1
2 ) and Φα(I). For further details, see Propositions

2 and 3 in the supplementary material Cai, Liu and Xia (2013b). On the other hand, we

should also note that the relative performance of the three oracle tests, Φα(Ω), Φα(Ω
1
2 ),

and Φα(I), is not clear in the non-sparse case. It is possible, for example, when kp = pr

for some r > 1/2, Φα(Ω) might be outperformed by Φα(Ω
1
2 ) or Φα(I).
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4 Extension to Non-Gaussian Distributions

We have so far focused on the Gaussian setting and studied the asymptotic null distributions

and power of the tests. In this section, the results for the tests Φα(Ω) and Φα(�Ω) are

extended to non-Gaussian distributions.

We require some moment conditions on the distributions of X and Y . Let X and Y

be two p-dimensional random vectors satisfying

X = µ1 +U 1 and Y = µ2 +U 2,

where U 1 and U 2 are independent and identical distributed random vectors with mean zero

and covariance matrix Σ = (σi,j)p×p. Let V j = ΩU j =: (V1j, . . . , Vpj)T for j = 1, 2. The

moment conditions are divided into two cases: the sub-Gaussian-type tails and polynomial-

type tails.

(C6). (Sub-Gaussian-type tails) Suppose that log p = o(n1/4). There exist some

constants η > 0 and K > 0 such that

E exp(ηV 2
i1/ωi,i) ≤ K and E exp(ηV 2

i2/ωi,i) ≤ K for 1 ≤ i ≤ p.

(C7). (Polynomial-type tails) Suppose that for some constants γ0, c1 > 0, p ≤ c1nγ0 ,

and for some constants � > 0 and K > 0

E|Vi1/ω
1
2
i,i
|2γ0+2+� ≤ K and E|Vi2/ω

1
2
i,i
|2γ0+2+� ≤ K for 1 ≤ i ≤ p.

Theorem 6. Suppose that (C1), (C3) and (C6) (or (C7)) hold. Then under the null

hypothesis H0, for any x ∈ R,

PH0

�
MΩ − 2 log p+ log log p ≤ x

�
→ exp

�
− 1√

π
exp(−x

2
)
�
, as n, p → ∞.

Theorem 6 shows that Φα(Ω) is still an asymptotically α-level test when the distribution

is non-Gaussian. When Ω is unknown, as in the Gaussian case, the CLIME estimator �Ω

in Cai, Liu and Luo (2011) or the inverse of adaptive thresholding estimator (Σ̂
�

)−1 can

be used. The following theorem shows that the test Φα(�Ω) shares the same optimality as

Φα(Ω) in the non-Gaussian setting.
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Theorem 7. Suppose that (C1), (C3), (C6) (or (C7)) and (8) hold.

(i). Under the null hypothesis H0, for any x ∈ R,

PH0

�
M�Ω − 2 log p+ log log p ≤ x

�
→ exp

�
− 1√

π
exp(−x

2
)
�
, as n, p → ∞.

(ii). Under H1 and the conditions of Theorem 2, we have

PH1

�
Φα(�Ω) = 1

�
→ 1, as n, p → ∞.

5 Simulation Study

In this section, we consider the numerical performance of the proposed test Φα(�Ω) and

compare it with a number of other tests, including the tests based on the sum of squares

type statistics in Bai and Saranadasa (1996), Srivastava and Du (2009), Chen and Qin

(2010), and the commonly used Hotelling’s T 2 test. These last four tests are denoted

respectively by BS, SD, CQ and T 2 respectively in the rest of this section.

The test Φα(�Ω) is easy to implement. A range of covariance structures are considered

in the simulation study, including the settings where the covariance matrix Σ is sparse,

the precision matrix Ω is sparse, and both Σ and Ω are non-sparse. In the case when Ω is

known to be sparse, the CLIME estimator in Cai, Liu and Luo (2011) is used to estimate

it, while the inverse of the adaptive thresholding estimator in Cai and Liu (2011) is used

to estimate Ω when such information is not available. The simulation results show that

the test Φα(�Ω) significantly and uniformly outperforms the other four tests when either Σ

or Ω is sparse, and the test Φα(�Ω) still outperforms the other four tests even when both Σ

and Ω are non-sparse.

Without loss of generality, we shall always take µ2 = 0 in the simulations. Under

the null hypothesis, µ1 = µ2 = 0, while under the alternative hypothesis, we take µ1 =

(µ11, . . . , µ1p)
�
to have m nonzero entries with the support S = {l1, ..., lm : l1 < l2 <

· · · < lm} uniformly and randomly drawn from {1, ..., p}. Two values of m are considered:

m = �0.05p� and m = �√p�. Here �x� denote the largest integer that is no greater than
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x. For each of these two values of m, and for any lj ∈ S, two settings of the magnitude

of µ1,lj are considered: µ1,lj = ±
�

log p/n with equal probability and µ1,lj has magnitude

randomly uniformly drawn from the interval [−
�

8 log p/n,
�

8 log p/n]. We take µ1,k = 0

for k ∈ Sc.

The specific models for the covariance structure are given as follows. Let D = (di,j)

be a diagonal matrix with diagonal elements di,i = Unif(1, 3) for i = 1, ..., p. Denote by

λmin(A) the minimum eigenvalue of a symmetric matrix A. The following three models

where the precision matrix Ω is sparse are considered.

• Model 1 (Block diagonal Ω): Σ = (σi,j) where σi,i = 1, σi,j = 0.8 for 2(k − 1) + 1 ≤

i �= j ≤ 2k, where k = 1, ..., [p/2] and σi,j = 0 otherwise.

• Model 2 (“Bandable” Σ): Σ = (σi,j) where σi,j = 0.6|i−j| for 1 ≤ i, j ≤ p.

• Model 3 (Banded Ω): Ω = (ωi,j) where ωi,i = 2 for i = 1, ..., p, ωi,i+1 = 0.8 for

i = 1, ..., p − 1, ωi,i+2 = 0.4 for i = 1, ..., p − 2, ωi,i+3 = 0.4 for i = 1, ..., p − 3,

ωi,i+4 = 0.2 for i = 1, ..., p− 4, ωi,j = ωj,i for i, j = 1, ..., p and ωi,j = 0 otherwise.

We also consider two models where the covariance matrix Σ is sparse.

• Model 4 (Sparse Σ): Ω = (ωi,j) where ωi,j = 0.6|i−j| for 1 ≤ i, j ≤ p. Σ =

D1/2
Ω

−1D1/2.

• Model 5 (Sparse Σ): Ω
1/2 = (ai,j) where ai,i = 1, ai,j = 0.8 for 2(k − 1) + 1 ≤ i �=

j ≤ 2k, where k = 1, ..., [p/2] and ai,j = 0 otherwise. Ω = D1/2
Ω

1/2
Ω

1/2D1/2 and

Σ = Ω
−1.

In addition, three models where neither Σ nor Ω is sparse are considered. In Model 6,

Σ is a sparse matrix plus a perturbation of a non-sparse matrix E. The entries of Σ in

Model 7 decays as a function of the lag |i−j|, which arises naturally in time series analysis.

Model 8 considers a non-sparse rank-3 perturbation to a sparse matrix which leads to a

non-sparse covariance matrix Σ. The simulation results show that the proposed test Φα(�Ω)

still significantly outperforms the other four tests under these non-sparse models.
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• Model 6 (Nonsparse case): Σ
∗ = (σ∗

i,j
) where σ∗

i,i
= 1, σ∗

i,j
= 0.8 for 2(k − 1) + 1 ≤

i �= j ≤ 2k, where k = 1, ..., [p/2] and σ∗
i,j

= 0 otherwise. Σ = D1/2
Σ

∗D1/2 +

E + δI with δ = |λmin(D
1/2

Σ
∗D1/2 + E)| + 0.05, where E is a symmetric matrix

with the support of the off-diagonal entries chosen independently according to the

Bernoulli(0.3) distribution with the values of the nonzero entries drawn randomly

from Unif(−0.2, 0.2).

• Model 7 (Nonsparse case): Σ∗ = (σ∗
i,j
) where σ∗

i,i
= 1 and σ∗

i,j
= |i− j|−5/2 for i �= j.

Σ = D1/2
Σ

∗D1/2.

• Model 8 (Nonsparse case): Σ = D1/2(F +u1u�
1+u2u�

2+u3u�
3)D

1/2, where F = (fi,j)

is a p× p matrix with fi,i = 1, fi,i+1 = fi+1,i = 0.5 and fi,j = 0 otherwise, and ui are

orthonormal vectors for i = 1, 2, 3.

Under each model, two independent random samples {Xk} and {Y l} are generated

with the same sample size n = 100 from two multivariate normal distributions with the

means µ1 and µ2 respectively and a common covariance matrix Σ. The dimension p takes

values p = 50, 100 and 200. The power and significance level are calculated from 1000

replications.

The numerical results on the proposed test Φα(�Ω) and BS, SD, CQ and T 2 under Models

1-5 are summarized in Tables 1 - 2. Table 1 compares the empirical sizes of the tests. It

can be seen that the estimated sizes are reasonably close to the nominal level 0.05 for all

the tests. Table 2, which compares the powers, shows that the new test Φα(�Ω), based

on either the CLIME estimator of sparse Ω or the inverse of the adaptive thresholding

estimator of sparse Σ, uniformly and significantly outperforms the other four tests over all

dimensions ranging from 50 to 200. The powers of these tests are significantly lower than

that of Φα(�Ω). These numerical results confirm the theoretical analysis given in the last

section.

Table 3 summarizes the sizes and powers for the non-sparse cases. We only report here

the cases when the magnitudes of the signals vary under the alternative. The performance
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p 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200

Model 1 Model 2 Model 3 Model 4 Model 5

T 2 0.04 0.06 − 0.04 0.04 − 0.04 0.05 − 0.05 0.06 − 0.05 0.05 −

BS 0.06 0.07 0.06 0.07 0.06 0.06 0.06 0.05 0.04 0.07 0.07 0.06 0.06 0.06 0.05

SD 0.06 0.07 0.06 0.07 0.06 0.06 0.06 0.05 0.02 0.07 0.07 0.06 0.06 0.06 0.05

CQ 0.06 0.07 0.06 0.06 0.06 0.07 0.06 0.05 0.02 0.07 0.07 0.06 0.06 0.06 0.05

Φα(
�Ω) 0.05 0.05 0.06 0.04 0.05 0.06 0.05 0.06 0.06 0.04 0.05 0.06 0.03 0.04 0.03

Table 1: Empirical sizes based on 1000 replications with α = 0.05 and n = 100.

of the tests is similar to that in the case of fixed magnitude. It can be seen from Table 3

that the sizes of the sum of square type tests tend to be larger than the nominal level 0.05

while the sizes of the new test Φα(�Ω) is smaller than the nominal level. Thus, the new test

has smaller type I error probability than those of the sum of square type tests. For the

models where both Σ and Ω are non-sparse, the power of the proposed test Φα(�Ω) is not

as high as in the sparse cases. However, similar phenomena are observed in Table 3 when

comparing the powers with the other tests. The tests based on the sum of squares test

statistics are not powerful against the sparse alternatives, and they are still significantly

outperformed by the new test Φα(�Ω).

More extensive simulations were carried out in the non-sparse settings as well as for non-

Gaussian distributions. We also compare the proposed test with the tests based on some

other estimators of the precision matrices. In particular, we consider non-sparse covariance

structures by adding to the covariance/precision matrices in Models 1-5 a perturbation

of a non-sparse matrix E, where E is a symmetric matrix with 30% random nonzero

entries drawn from Unif(−0.2, 0.2). Furthermore, simulations for five additional non-sparse

covariance models are carried out. The comparisons are consistent with the cases reported

here. For reasons of space, these simulation results are given in the supplementary material

Cai, Liu and Xia (2013b).

In summary, the numerical results show that the proposed test Φα(�Ω) is significantly
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p 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200

m = 0.05p with fixed magnitude

Model 1 Model 2 Model 3 Model 4 Model 5

T 2 0.22 0.41 − 0.17 0.27 − 0.14 0.26 − 0.14 0.21 − 0.34 0.39 −

BS 0.11 0.19 0.27 0.11 0.13 0.24 0.12 0.28 0.44 0.10 0.15 0.23 0.07 0.07 0.07

SD 0.11 0.19 0.27 0.11 0.13 0.24 0.12 0.27 0.44 0.10 0.15 0.27 0.07 0.07 0.07

CQ 0.11 0.19 0.27 0.11 0.13 0.24 0.12 0.27 0.44 0.10 0.15 0.23 0.07 0.07 0.07

Φα(
�Ω) 0.36 0.70 0.89 0.26 0.41 0.66 0.21 0.40 0.62 0.18 0.28 0.61 0.57 0.66 1.00

m =
√
p with fixed magnitude

Model 1 Model 2 Model 3 Model 4 Model 5

T 2 0.85 0.81 − 0.64 0.67 − 0.63 0.57 − 0.58 0.49 − 0.81 0.85 −

BS 0.30 0.36 0.40 0.23 0.28 0.35 0.49 0.59 0.63 0.26 0.30 0.36 0.08 0.08 0.08

SD 0.30 0.36 0.40 0.23 0.28 0.35 0.50 0.59 0.63 0.29 0.29 0.35 0.08 0.08 0.09

CQ 0.30 0.35 0.39 0.22 0.28 0.35 0.49 0.59 0.63 0.26 0.30 0.35 0.08 0.08 0.08

Φα(
�Ω) 0.82 0.89 0.96 0.58 0.79 0.76 0.49 0.57 0.68 0.52 0.69 0.68 0.77 0.93 0.99

m = 0.05p with varied magnitude

Model 1 Model 2 Model 3 Model 4 Model 5

T 2 0.19 0.44 − 0.08 0.45 − 0.15 0.27 − 0.13 0.14 − 0.19 0.08 −

BS 0.11 0.21 0.32 0.08 0.21 0.31 0.13 0.29 0.51 0.10 0.11 0.23 0.07 0.06 0.06

SD 0.11 0.22 0.32 0.08 0.21 0.31 0.13 0.29 0.51 0.10 0.11 0.27 0.07 0.06 0.06

CQ 0.11 0.21 0.32 0.08 0.21 0.32 0.13 0.29 0.52 0.10 0.11 0.24 0.07 0.06 0.06

Φα(
�Ω) 0.35 0.76 0.94 0.12 0.85 0.88 0.24 0.51 0.84 0.22 0.30 0.76 0.44 0.11 0.40

m =
√
p with varied magnitude

Model 1 Model 2 Model 3 Model 4 Model 5

T 2 0.63 0.70 − 0.72 0.75 − 0.59 0.56 − 0.29 0.74 − 0.28 0.95 −

BS 0.23 0.34 0.44 0.27 0.42 0.38 0.51 0.52 0.72 0.12 0.39 0.38 0.07 0.08 0.08

SD 0.23 0.34 0.44 0.27 0.42 0.38 0.51 0.52 0.72 0.15 0.37 0.41 0.07 0.09 0.08

CQ 0.23 0.33 0.44 0.26 0.41 0.37 0.51 0.51 0.72 0.12 0.39 0.38 0.07 0.08 0.08

Φα(
�Ω) 0.71 0.90 0.97 0.80 0.91 0.87 0.54 0.70 0.92 0.47 0.96 0.94 0.30 1.00 1.00

Table 2: Powers of the tests based on 1000 replications with α = 0.05 and n = 100.
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and uniformly more powerful than the other four tests in the settings where either Σ or Ω

is sparse. When both Σ and Ω are non-sparse, the test Φα(�Ω) still outperforms the sum of

squares type tests. Based on these numerical results, we recommend using the test Φα(�Ω)

with the CLIME estimator of Ω when Ω is known to be sparse and using Φα(�Ω) with the

inverse of the adaptive thresholding estimator of Σ when such information is not available.

p 50 100 200 50 100 200 50 100 200

Model 6 Model 7 Model 8

Size

T 2 0.05 0.05 − 0.05 0.05 − 0.04 0.04 −

BS 0.07 0.07 0.05 0.07 0.06 0.05 0.06 0.06 0.06

SD 0.08 0.05 0.05 0.08 0.06 0.05 0.05 0.05 0.06

CQ 0.07 0.07 0.05 0.07 0.06 0.06 0.06 0.06 0.06

Φα(
�Ω) 0.05 0.05 0.05 0.02 0.02 0.03 0.03 0.02 0.03

Power when m = 0.05p

T 2 0.14 0.37 − 0.17 0.43 − 0.31 0.40 −

BS 0.10 0.22 0.24 0.09 0.12 0.20 0.07 0.10 0.16

SD 0.10 0.21 0.26 0.09 0.13 0.20 0.07 0.09 0.16

CQ 0.10 0.22 0.23 0.09 0.12 0.20 0.07 0.11 0.16

Φα(
�Ω) 0.16 0.40 0.46 0.14 0.41 0.80 0.20 0.50 0.84

Power when m =
√
p

T 2 0.47 0.23 − 0.49 0.59 − 0.53 1.00 −

BS 0.17 0.13 0.46 0.16 0.18 0.20 0.11 0.15 0.16

SD 0.14 0.14 0.57 0.16 0.17 0.20 0.12 0.14 0.16

CQ 0.16 0.13 0.46 0.15 0.18 0.20 0.11 0.14 0.16

Φα(
�Ω) 0.24 0.26 0.77 0.37 0.57 0.53 0.38 0.73 0.85

Table 3: Empirical sizes and powers for Model 6-8 with α = 0.05 and n = 100. Based on

1000 replications.

23



6 Discussions

In the present paper it is assumed that the two populations have the same covariance

matrix. More generally, suppose we observe Xk

iid∼ Np(µ1,Σ1), k = 1, ..., n1, and Y k

iid∼

Np(µ2,Σ2), k = 1, ..., n2 and wish to test H0 : µ1 = µ2 versus H1 : µ1 �= µ2. In order to

apply the procedure proposed in this paper, one needs to first test H0 : Σ1 = Σ2 versus

H1 : Σ1 �= Σ2. For this purpose, for example, the test introduced in Cai, Liu and Xia

(2013a) can be used. If the null hypothesis H0 : Σ1 = Σ2 is rejected, the test proposed

in this paper is not directly applicable. However, a modified version of the procedure can

still be used. Note that the covariance matrix of X̄ − Ȳ is Σ1/n1 +Σ2/n2. To apply the

test procedure in Section 2, one needs to estimate (Σ1 +
n1
n2
Σ2)−1. When both Σ1 and Σ2

are sparse, the inverse can be estimated well by (Σ̂1,thr +
n1
n2
Σ̂2,thr)−1 using the adaptive

thresholding estimators Σ̂1,thr and Σ̂2,thr introduced in Cai and Liu (2011). Similarly, when

both Σ1 and Σ2 are bandable, (Σ1+
n1
n2
Σ2)−1 can also be estimated well. A more interesting

problem is the estimation of (Σ1 +
n1
n2
Σ2)−1 when the precision matrices Ω1 and Ω2 are

sparse.

Besides testing the means and covariance matrices of two populations, another inter-

esting and related problem is the testing of the equality of two distributions based on the

two samples. That is, we wish to test H0 : P1 = P2 versus H1 : P1 �= P2, where Pi is the

distribution of Np(µi
,Σi), i = 1, 2. We shall report the details of the results elsewhere in

the future as a significant amount of additional work is still needed.

The asymptotic properties in Section 3.2 rely on the assumption that the locations of

the nonzero entries of µ1 −µ2 are uniformly drawn from {1, ..., p}. When this assumption

does not hold, the asymptotic power results may fail. A simple solution is to first apply a

random permutation to the coordinates of µ1−µ2 (and correspondingly the coordinates of

X̄ − Ȳ ) so that the nonzero locations are uniformly drawn from {1, ..., p}, and apply the

testing procedures to the permuted data and the results given in Section 3.2 then hold.

It is well known that the convergence rate in distribution of the extreme value type

statistics is slow. There are several possible ways to improve the rate of convergence. See,
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for example, Hall (1991), Liu, Lin and Shao (2008) and Birnbaum and Nadler (2012). It is

interesting to investigate whether these methods can be applied to improve the convergence

rate of our test statistic. We leave this to future work.

7 Proof of Main Results

We prove the main results in this section. The proofs of some of the main theorems rely

on a few additional technical lemmas. These technical results are collected in Section 7.1

and they are proved in the supplementary material, Cai, Liu and Xia (2013b).

7.1 Technical Lemmas

Lemma 1 (Bonferroni Inequality). Let A = ∪p

t=1At. For any k < [p/2], we have

2k�

t=1

(−1)t−1Et ≤ P(A) ≤
2k−1�

t=1

(−1)t−1Et,

where Et =
�

1≤i1<···<it≤p
P(Ai1 ∩ · · · ∩ Ait).

Lemma 2 (Berman, 1962). If X and Y have a bivariate normal distribution with expecta-

tion zero, unit variance and correlation coefficient ρ, then

lim
c→∞

P
�
X > c, Y > c

�

[2π(1− ρ)
1
2 c2]−1 exp

�
− c2

1+ρ

�
(1 + ρ)

1
2

= 1,

uniformly for all ρ such that |ρ| ≤ δ, for any δ, 0 < δ < 1.

Lemma 3. Suppose (C1) holds and Σ has all diagonal elements equal to 1. Then for

pr-sparse δ, with r < 1/4 and nonzero locations l1, ..., lm, m = pr, randomly and uniformly

drawn from {1, ..., p}, we have, for any 2r < a < 1− 2r, as p → ∞,

P
�
max
i∈H

���
(Ωδ)i√
ωi,i

−√
ωi,iδi

��� = O(pr−a/2)max
i∈H

|δi|
�
→ 1, (14)

and

P
�
max
i∈H

���(Ω
1
2δ)i − ai,iδi

��� = O(pr−a/2)max
i∈H

|δi|
�
→ 1, (15)
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where Ω
1
2 =: (ai,j) and H is the support of δ.

Lemma 4. Let Yi ∼ N(µi, 1) be independent for i = 1, ..., n. Let an = o((log n)−1/2). Then

sup
x∈R

max
1≤k≤n

���P
�
max
1≤i≤k

Yi ≥ x+ an
�
− P

�
max
1≤i≤k

Yi ≥ x
���� = o(1) (16)

uniformly in the means µi, 1 ≤ i ≤ n. If Yi is replaced by |Yi|, then (16) still holds.

Lemma 5 (Baraud, 2002). Let F be some subset of l2(J). Let µρ be some probability

measure on Fρ = {θ ∈ F , �θ� ≥ ρ} and let Pµρ =
�
Pθdµρ(θ). Assuming that Pµρ is

absolutely continuous with respect to P0, we define Lµρ(y) =
dPµρ

dP0
(y). For all α > 0, ν ∈

[0, 1− α], if E0(L2
µρ∗

(Y )) ≤ 1 + 4(1− α− ν)2, then

∀ρ ≤ ρ∗, inf
Φα

sup
θ∈Fρ

Pθ(Φα = 0) ≥ ν.

7.2 Proof of Theorem 1

Because we standardize the test statistic first, we shall let (Z1, . . . , Zp)
�
be a zero mean mul-

tivariate normal random vector with covariance matrix Ω = (ωi,j)1≤i,j≤p and the diagonal

ωi,i = 1 for 1 ≤ i ≤ p. To prove Theorem 1, it suffices to prove the following lemma.

Lemma 6. Suppose that max1≤i �=j≤p |ωi,j| ≤ r < 1 and maxj
�

p

i=1 ω
2
i,j

≤ C0. Then for any

x ∈ R as p → ∞

P
�
max
1≤i≤p

Z2
i
− 2 log p+ log log p ≤ x

�
→ exp

�
− 1√

π
exp(−x/2)

�
, (17)

P
�
max
1≤i≤p

Zi ≤
�

2 log p− log log p+ x
�

→ exp
�
− 1

2
√
π
exp(−x/2)

�
. (18)

Proof. We only need to prove (17) because the proof of (18) is similar. Set xp = 2 log p−

log log p+ x. By Lemma 1, we have for any fixed k ≤ [p/2],

2k�

t=1

(−1)t−1Et ≤ P
�
max
1≤i≤p

|Zi| ≥
√
xp

�
≤

2k−1�

t=1

(−1)t−1Et, (19)

where Et =
�

1≤i1<···<it≤p
P
�
|Zi1 | ≥

√
xp, · · · , |Zit | ≥

√
xp

�
=:

�
1≤i1<···<it≤p

Pi1,··· ,it . De-

fine I =
�
1 ≤ i1 < · · · < it ≤ p : max1≤k<l≤t |Cov(Zik

, Zil
)| ≥ p−γ

�
, where γ > 0 is a
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sufficiently small number to be specified later. For 2 ≤ d ≤ t− 1, define

Id =
�
1 ≤ i1 < · · · < it ≤ p : Card(S) = d, where S is the largest subset of {i1, ..., it}

such that ∀ik �= il ∈ S, |Cov(Zik
, Zil

)| < p−γ

�
.

For d = 1, define I1 =
�
1 ≤ i1 < · · · < it ≤ p : |Cov(Zik

, Zil
)| ≥ p−γ for every 1 ≤ k < l ≤ t

�
.

So we have I = ∪t−1
d=1Id. Let Card(Id) denote the total number of the vectors (i1, . . . , it)

in Id. We can show that Card(Id)≤ Cpd+2γt. In fact, the total number of the subsets of

{i1, ..., it} with cardinality d is Cd

p
. For a fixed subset S with cardinality d, the number of

i such that |Cov(Zi, Zj)| ≥ p−γ for some j ∈ S is no more than Cdp2γ. This implies that

Card(Id)≤ Cpd+2γt. Define Ic = {1 ≤ i1 < · · · < it ≤ p} \ I. Then the number of elements

in the sum
�

(i1,··· ,it)∈Ic Pi1,··· ,it is C
t

p
−O(

�
t−1
d=1 p

d+2γt) = Ct

p
−O(pt−1+2γt) = (1 + o(1))Ct

p
.

To prove Lemma 6, it suffices to show that

Pi1,··· ,it = (1 + o(1))π− t
2p−t exp(−tx

2
) (20)

uniformly in (i1, . . . , it) ∈ Ic, and for 1 ≤ d ≤ t− 1,

�

(i1,··· ,it)∈Id

Pi1,··· ,it → 0. (21)

Putting (19) - (21) together, we obtain that

(1 + o(1))S2k ≤ P
�
max
1≤i≤p

|Zi| ≥
√
xp

�
≤ (1 + o(1))S2k−1, (22)

where Sk =
�

k

t=1(−1)t−1 1
t!π

− t
2 exp(− tx

2 ). Note that limk→∞ Sk = 1 − exp(− 1√
π
e−x/2). By

letting p → ∞ first and then k → ∞ in (22), we prove Lemma 6.

We now prove (20). Let z = (zi1 , ..., zit)
� and |z|min = min1≤j≤t |zij |. Write

Pi1,··· ,it =
1

(2π)t/2det(Ωt)
1
2

�

|z|min≥
√
xp

exp(−1

2
z�
Ω

−1
t
z)dz,

where Ωt is the covariance matrix of Z = (Zi1 , ..., Zit)
�, and Ωt = (akl)t×t, where akl =

Cov(Zik
, Zil

). Since i1, ..., it ∈ Ic, ak,k = 1 and |akl| < p−γ for k �= l. Write
�

|z|min≥
√
xp

exp(−1

2
z�
Ω

−1
t
z)dz =

�

|z|min≥
√
xp,�z�2>(log p)2

exp(−1

2
z�
Ω

−1
t
z)dz
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+

�

|z|min≥
√
xp,�z�2≤(log p)2

exp(−1

2
z�
Ω

−1
t
z)dz. (23)

Then

�

|z|min≥
√
xp,�z�2>(log p)2

exp(−1

2
z�
Ω

−1
t
z)dz ≤ C exp(−(log p)2/2t) ≤ Cp−2t, (24)

uniformly in (i1, . . . , it) ∈ Ic. For the second part of the sum in (23), note that

�Ω−1
t

− I�2 ≤ �Ω−1
t
�2�Ωt − I�2 ≤ Cp−γ. (25)

Let A = {|z|min ≥ √
xp, �z�2 ≤ (log p)2}. It follows that

�

A

e−
1
2z

�Ω−1
t zdz =

�

A

e−
1
2z

�(Ω−1
t −I)z− 1

2�z�
2
dz

= (1 +O(p−γ(log p)2))

�

A

e−
1
2�z�

2
dz

= (1 +O(p−γ(log p)2))

�

|z|min≥
√
xp

e−
1
2�z�

2
dz + Cp−2t, (26)

uniformly in (i1, . . . , it) ∈ Ic. This, together with (23) and (24), implies (20).

It remains to prove (21). For S ⊂ Id with d ≥ 1, without loss of generality, we can

assume S = {it−d+1, ..., it}. By the definition of S and Id, for any k ∈ {i1, . . . , it−d}, there

exists at least one l ∈ S such that |Cov(Zk, Zl)| ≥ p−γ. We divide Id into two parts:

Id,1 =
�
1 ≤ i1 < · · · < it ≤ p : there exists an k ∈ {i1, . . . , it−d} such that

for some l1, l2 ∈ S with l1 �= l2, |Cov(Zk, Zl1)| ≥ p−γ and |Cov(Zk, Zl2)| ≥ p−γ

�

and Id,2 = Id \ Id,1. Clearly, I1,1 = ∅ and I1,2 = I1. Moreover, we can show that

Card(Id,1)≤ Cpd−1+2γt. For any (i1, . . . , it) ∈ Id,1,

P
�
|Zi1 | ≥

√
xp, . . . , |Zit | ≥

√
xp

�
≤ P

�
|Zit−d+1

| ≥ √
xp, . . . , |Zit | ≥

√
xp

�
= O(p−d).

Hence by letting γ be sufficiently small,

�

Id,1

Pi1,··· ,it ≤ Cp−1+2γt = o(1). (27)

28



For any (i1, . . . , it) ∈ Id,2, without loss of generality, we assume that |Cov(Zi1 , Zit−d+1
)| ≥

p−γ. Note that

P
�
|Zi1 | ≥

√
xp, . . . , |Zit | ≥

√
xp

�
≤ P

�
|Zi1 | ≥

√
xp, |Zit−d+1

| ≥ √
xp, . . . , |Zit | ≥

√
xp

�
.

Let U l be the covariance matrix of (Zi1 , Zit−d+1
, . . . , Zit). We can show that �U l − Ū l�2 =

O(p−γ), where Ū l = diag(D, Id−1) and D is the covariance matrix of Zi1 and Zit−d+1
. Using

the similar arguments as in (23)-(26), we can get

P
�
|Zi1 | ≥

√
xp, |Zit−d+1

| ≥ √
xp, . . . , |Zit | ≥

√
xp

�

≤ (1 + o(1))P(|Zi1 | ≥
√
xp, |Zit−d+1

| ≥ √
xp)×O(p−d+1) ≤ Cp−

2
1+r ×O(p−d+1),

where the last inequality follows from Lemma 2 and the assumption max1≤i �=j≤p |ωi,j| ≤

r < 1. Thus by letting γ be sufficiently small,

�

Id,2

Pi1,··· ,it ≤ Cpd+2γt−d+1− 2
1+r = o(1). (28)

Combining (27) and (28), we prove (21). The proof of Lemma 6 is then complete.

7.3 Proof of Theorem 2

It suffices to prove P
�
max1≤i≤p

���(Ωδ)i/
√
ωi,i

��� ≥
�
(2 + ε/2) log p/n

�
→ 1. By Lemma

3 and the condition maxi |δi/σ
1
2
i,i
| ≥

�
2β log p/n with β ≥ 1/(mini σi,iωi,i) + ε for some

constant ε > 0, we can get max1≤i≤p |(Ωδ)i/
√
ωi,i| ≥

�
(2 + ε/2) log p/n with probability

tending to one. So Theorem 2 follows.

7.4 Proof of Theorem 3

First we assume kp = o(pr) for some r < 1/4, and we can get similar argument if kp = O(pr)

for some r < 1/2 and Ω = Σ
−1 is sp sparse with sp = O((p/k2

p
)γ) for some 0 < γ < 1. Let

Ms,p denote the set of all subsets of {1, ..., p} with cardinality kp. Let m̂ be a random set

of {1, ..., p}, which is uniformly distributed on M. Let ωj, 1 ≤ j ≤ p be i.i.d. variables

with P(ωj = 1) = P(ωj = −1) = 1/2. We construct a class of δ = µ1 − µ2 by letting
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µ1 = 0 and δ = −µ2 satisfy δ = (δ1, . . . , δp)
�
with δj =

ρ√
kp
ωj1j∈m̂, where ρ = c

�
kp log p

n

and c > 0 is sufficiently small that will be specified later. Clearly, |δ|2 = ρ. Let µρ be

the distribution of δ. Note that µρ is a probability measure on {δ ∈ Skp : |δ| = ρ}. We

now calculate the likelihood ratio Lµρ =
dPµρ

dP0
({Xn,Y n}). It is easy to see that Lµρ =

Em̂,ω

�
exp(−

√
nZ

�
δ− n

2δ
�
Ωδ)

�
, where Z is a multivariate normal vector with mean 0 and

Cov(Z) = Ω, and is independent with m̂ and Ω. For any fixed m̂ = m, let δi

m
, 1 ≤ i ≤ 2kp

be all the possible values of δ. That is, P
�
δ = δi

m
|m̂ = m

�
= 2−kp . Thus

Em̂,ω

�
exp(−

√
nZ

�
δ − n

2
δ�
Ωδ)

�
=

1�
p

kp

� 1

2kp

�

m∈M

2kp�

i=1

exp
�
−

√
nZ �δ(i)

(m) −
n

2
δ(i)�

(m)Ωδ(i)
(m)

�
.

It follows that

EL2
µρ

= E
� 1�

p

kp

� 1

2kp

�

m∈M

2kp�

i=1

exp
�
−

√
nZ �δ(i)

(m) −
n

2
δ(i)�

(m)Ωδ(i)
(m)

��2

=
1

�
p

kp

�2
1

22kp
E
� �

m,m�∈M

2kp�

i,j=1

exp
�
−
√
nZ �(δ(i)

(m) + δ(j)
(m�))−

n

2
(δ(i)�

(m)Ωδ(i)
(m) + δ(j)�

(m�)Ωδ(j)
(m�))

��

=
1

�
p

kp

�2
1

22kp

�

m,m�∈M

2kp�

i,j=1

�
exp

�
− n

2
(δ(i)�

(m)Ωδ(i)
(m) + δ(j)�

(m�)Ωδ(j)
(m�))

�

× exp
�n
2
(δ(i)�

(m) + δ(j)�

(m�))Ω(δ(i)
(m) + δ(j)

(m�))
��

=
1

�
p

kp

�2
1

22kp

�

m,m�∈M

2kp�

i,j=1

exp
�
nδ(i)�

(m)Ωδ(j)
(m�)

�
=

1
�
p

kp

�2
1

22kp

�

m,m�∈M

2kp�

i,j=1

exp
�nρ2

kp

�

k∈m,l∈m�

ak,lω
(i)
k
ω(j)
l

�
,

where ρ√
kp
(ω(i)

k
Ik∈m) := δ(i)

(m) and Ω = (akl)p×p. Thus

EL2
µρ

=
1

�
p

kp

�2
1

22kp

�

m,m�∈M

2kp
kp�

k,l=1

�
exp(

nρ2

kp
akl) + exp(−nρ2

kp
akl)

�

=
1

�
p

kp

�2
�

m,m�∈M

�

k∈m,l∈m�

cosh(
nρ2

kp
akl) ≤

1
�
p

kp

�2
�

m,m�∈M

�

k∈m,l∈m�

exp
�nρ2

kp
|akl|

�
.

For every m, let B := Bm = {l : |ak,l| ≥ M

d
, k ∈ m}, where d =

�
p

k2p

�1−γ

and γ is

sufficiently small. For every k, the number of l such that |akl| ≥ M

d
is at most d. Hence

EL2
µρ

≤ 1
�
p

kp

�2
�

m∈M

kp�

j=0

I{|m� ∩ B| = j} exp
� �

k∈m,l∈m�

nρ2

kp
|akl|

�
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=
1

�
p

kp

�2
�

m∈M

kp�

j=0

I{|m� ∩ B| = j} exp
� �

k∈m,l∈m�∩B

nρ2

kp
|akl|+

�

k∈m,l∈m�∩Bc

nρ2

kp
|akl|

�

≤ 1
�
p

kp

�2
�

m∈M

kp�

j=0

�
kpd

j

��
p− kp
kp − j

�
exp

�Mnρ2

kp
j +

Mk2
p
log p

d

�

≤ 1�
p

kp

�
kp�

j=0

�
kpd

j

��
p− kp
kp − j

�
exp

�Mnρ2

kp
j +

Mk2
p
log p

d

�

≤ (1 + o(1))

kp�

j=0

�
kp
j

�
(dkp)j

pj
exp

�Mnρ2

kp
j +

Mk2
p
log p

d

�

= (1 + o(1))
�
1 +

dkpt

p

�kp

exp
�Mk2

p
log p

d

�
,

where t = exp
�

Mnρ
2

kp

�
= pMc

2
. It follows that

EL2
µρ

≤ (1 + o(1)) exp
�
kp log

�
1 +

dkpt

p

�
+

Mk2
p
log p

d

�

≤ (1 + o(1)) exp
�
kp

dkpt

p
+

Mk2
p
log p

d

�
≤ 1 + 4(1− α− ν)2

by letting c be sufficiently small. If kp = O(pr) for some r < 1/2 and Ω = Σ
−1 is sp sparse

with sp = O((p/k2
p
)γ) for some 0 < γ < 1, we let B := Bm = {l : ak,l �= 0, k ∈ m}. Then

we can similarly get

EL2
µρ

≤ 1
�
p

kp

�2
�

m∈M

kp�

j=0

I{|m� ∩B| = j} exp
� �

k∈m,l∈m�

nρ2

kp
|akl|

�

≤ 1
�
p

kp

�2
�

m∈M

kp�

j=0

I{|m� ∩B| = j} exp
�Mnρ2

kp
j
�
≤ (1 + o(1))

�
1 +

spkpt

p

�kp

,

So we can still get EL2
µρ

≤ 1 + 4(1− α − ν)2 by letting c be sufficiently small. Theorem 3

now follows from Lemma 5.

7.5 Proof of Theorem 4

We only prove part (ii) of Theorem 4 in this section, part (i) follows from the proof of part

(ii) directly. Without loss of generality, we assume that σi,i = 1 for 1 ≤ i ≤ p. Define the
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event A = {max1≤i≤p |δi| ≤ 8
�

log p/n}. By conditions in Theorem 4, we have

max
1≤i≤p

|ω̂(0)
i,i

− ωi,i| = oP(1/ log p).

Hence, as in the proof of Proposition 1 (i) in the supplement material, it is easy to show

that P
�
M�Ω ∈ Rα,A

c

�
= P(Ac) + o(1) and P

�
MΩ ∈ Rα,A

c

�
= P(Ac) + o(1). Note that

�Ω(X̄ − Ȳ ) = (�Ω−Ω)(X̄ − Ȳ − δ) + (�Ω−Ω)δ +Ω(X̄ − Ȳ ). On A, we have

���(�Ω−Ω)(X̄ − Ȳ − δ) + (�Ω−Ω)δ
���
∞

= oP
� 1√

n log p

�
.

To prove Theorem 4, it suffices to show that

P
�
max
1≤i≤p

|Zo

i
| ≥ √

xp + an,A
�
= P

�
max
1≤i≤p

|Zo

i
| ≥ √

xp,A
�
+ o(1), (29)

for any an = o((log p)−1/2), where Zo

i
= (ΩZ)i/

√
ωi,i defined in the proof of Proposition

1 (i) in the supplement material. From the proof of Proposition 1 (i), let H = supp(δ) =

{l1, ..., lpr}, then we can get

P
�
max
1≤i≤p

|Zo

i
| ≥ √

xp + an,A
�
= αP(A) + (1− α)P(max

i∈H
|Yi| ≥

√
xp + an,A) + o(1),

P
�
max
1≤i≤p

|Zo

i
| ≥ √

xp,A
�
= αP(A) + (1− α)P(max

i∈H
|Yi| ≥

√
xp,A) + o(1),

where given δ, Yi, i ∈ H are independent normal random variables with unit variance.

This, together with Lemma 4, implies (29).

7.6 Proof of Theorem 6

Let (V1, ..., Vp)� be a zero mean random vector with covariance matrix Ω = (ωi,j) and

the diagonal ωi,i = 1 for 1 ≤ i ≤ p satisfying moment conditions (C6) or (C7). Let

V̂li = VliI{|Vli| ≤ τn} for l = 1, ..., n, where τn = η−1/22
�

log(p+ n) if (C6) holds and

τn =
√
n/(log p)8 if (C7) holds. Let Wi =

�
n

l=1 Vli/
√
n and Ŵi =

�
n

l=1 V̂li/
√
n. Then

P(max
1≤i≤p

|Wi − Ŵi| ≥
1

log p
) ≤ P(max

1≤i≤p

max
1≤l≤n

|Vli| ≥ τn) ≤ np max
1≤i≤p

P(|V1i| ≥ τn) = O(p−1 + n−�/8).(30)

Note that

��� max
1≤i≤p

W 2
i
− max

1≤i≤p

Ŵ 2
i

��� ≤ 2 max
1≤i≤p

|Wi| max
1≤i≤p

|Wi − Ŵi|+ max
1≤i≤p

|Wi − Ŵi|2. (31)
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By (30) and (31), it is enough to prove that for any x ∈ R, as p → ∞

P(max
1≤i≤p

Ŵ 2
i
− 2 log p+ log log p ≤ x) → exp(− 1√

π
exp(−x

2
)).

It follows from Lemma 1 that for any fixed k ≤ [p/2],

2k�

t=1

(−1)t−1
�

1≤i1<...<it≤p

P(|Ŵi1 | ≥ xp, ..., |Wit | ≥ xp) ≤ P(max
1≤i≤p

|Ŵi| ≥ xp)

≤
2k−1�

t=1

(−1)t−1
�

1≤i1<...<it≤p

P(|Ŵi1 | ≥ xp, ..., |Wit | ≥ xp). (32)

Define |Ŵ |min = min1≤l≤t |Ŵil
|. Then by Theorem 1 in Zaitsev (1987), we have

P(|Ŵ |min ≥ xp) ≤ P(|Z|min ≥ xp − �n(log p)
−1/2) + c1d

5/2 exp(− n
1
2 �n

c2d3τn(log p)
1
2

), (33)

where c1 > 0 and c2 > 0 are absolute constants, �n → 0 which will be specified later

and Z = (Zi1 , ..., Zit)
� is a t dimensional normal vector as defined in Theorem 1. Because

log p = o(n1/4), we can let � → 0 sufficiently slow such that

c1d
5/2 exp(− n

1
2 �n

c2d3τn(log p)
1
2

) = O(p−M) (34)

for any large M > 0. It follows from (32), (33) and (34) that

P(max
1≤i≤p

|Ŵi| ≥ xp) ≤
2k−1�

t=1

(−1)t−1
�

1≤i1<...<it≤p

P(|Z|min ≥ xp − �n(log p)
−1/2) + o(1). (35)

Similarly, using Theorem 1 in Zäıtsev (1987) again, we can get

P(max
1≤i≤p

|Ŵi| ≥ xp) ≥
2k�

t=1

(−1)t−1
�

1≤i1<...<it≤p

P(|Z|min ≥ xp − �n(log p)
−1/2)− o(1). (36)

So by (35), (36) and the proof of Theorem 1, the theorem is proved.

7.7 Proof of Theorem 7

(i). (i) follows from the proof of Theorem 4.
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(ii). Note that �Ω(X̄−Ȳ ) = (�Ω−Ω)(X̄−Ȳ −δ)+(�Ω−Ω)δ+Ω(X̄−Ȳ ). It suffices to prove

P
�
max1≤i≤p

���
√
n(�Ωδ)i/

√
ωi,i+

√
nΩ(X̄ − Ȳ − δ)i/

√
ωi,i

��� ≥
√
ρ log p

�
→ 1 for some ρ > 2.

To this end, we only need to show P
�
max1≤i≤p

���(�Ωδ)i/
√
ωi,i

��� ≥
�
(2 + ε/4) log p/n

�
→ 1.

Note that

max
1≤i≤p

|(�Ωδ)i/
√
ωi,i| ≥ max

1≤i≤p

|(Ωδ)i/
√
ωi,i|+ oP(1) max

1≤i≤p

|δi| ≥ (1 + oP(1)) max
1≤i≤p

|(Ωδ)i/
√
ωi,i|.

By the condition maxi |δi/σ
1
2
i,i
| ≥

�
2β log p/n with β ≥ 1/(mini σi,iωi,i) + ε for some con-

stant ε > 0, we can get max1≤i≤p |(Ωδ)i/
√
ωi,i| ≥

�
(2 + ε/2) log p/n with probability

tending to one. This proves (ii).
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