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Abstract

It would be very desirable to have a combinatorial description for By, (q,t),
the bigraded characters of the type B analogue of the ¢, t-Catalan polynomial.

It is known that B, (1,t) = > trea where &, is the set of “shifted” lattice

meln
paths consisting of unit North and East steps. In this thesis, we study a broader
class of objects by increase the length of the bottom of the shifted paths to k,
in the hope of finding a uniform combinatorial description for them all.

We here state the assumptions for this broader class By, (g,t) and give
a candidate description of B, x(q,t) as a positive linear combination of sla-
strings for n = 2,3, and a combinatorial description for n = 2. For general
n, k, we then state and proof a recurrence relation for By, (¢, 1/q) as a positive

linear combination of sly-strings, and finally give a recurrence relation involving

Catalan numbers of type A.
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1 Introduction to q,t-Catalan numbers

The (type A) ¢, t-Catalan polynomial C,,(q,t) has three main interpretations. In
this section we will introduce the original analytic definition given by Garsia and
Haiman, the generalize ¢,t - Catalan numbers as a bigraded Hilbert Series, and the
pure combinatorial description proved by Garsia and Haglund. Then we will introduce
the g, t-Fuss-Catalan numbers for complex reflection groups presented by Stump, and

a few results on the specialization of the type B ¢, t-Catalan numbers B, (q, t).

1.1 Catalan number and two ¢g-analogues

Let C, = n+r1 (2:) denote the n-th Catalan number. One of the objects counted
by the Catalan numbers is the number of Dyck paths in D,,, defined as follows (a list

of other objects counted by the Catalan numbers could be found in [13]):

Definition 1.1. A Dyck path is a sequence of North N (0, 1) and East E(1,0) steps
in the first quadrant of the xy-plane, starting at the origin (0,0), ending at (n,n),

and never go below the diagonal y = x. We let D,, denote the set of all such path.

There are two natural g-analogues of C,. The first was studied by MacMahon[12].
Given A € D, let o(\) be the element of a linear list of the multiset {0"1"} resulting
from the following algorithm: (1) Initialize ¢ to the empty string. (2) Start at (0,0),
move along A and add a 0 to the end of o(\) every time a N step is encountered, and

add a 1 to the end of o(\) every time an E step is encountered. Then first g-analogues



of C,, was given as following:

Theorem 1.2. (MacMahon)

T et - 1 {2”} |
\EDs, [n+1]q g

where mayj is the major-index statistic defined by maj(c) = >, « i, and as is
0;>0441

customary [klg = (1= ¢")/(1 = q), [Klg! = [Wg[2]g - - [Klo, [}]a = [nlg!/ ([Klg![n — Klg!).

The second natural g-analogue of C,, was studied by Carlitz and Riordan[4]. Given
A € D, let a;(\) denote the number of complete squares, in the i-th row from the
bottom of A, which are to the right of A and to the left of the line y = . We refer to
a;(A) as the length of the i-th row of A.

Set

be the area statistic of A(see Figure 1 as an example).

[\OJEEOS I \O]

Figure 1: A Dyck path, with row lengths on the right. The area statistic is 1 + 1 +
2+3+2=09.



Then first g-analogues of C), was given as following:

Theorem 1.3. (Carlitz & Riordan)

Define On(q) = Z)\EDTL qarea()\)’ then

and

Cn(q) = quilck(Q)Cnfk(Q)v n > 1.

k=1
1.2 Analytic definition of (type A) ¢,t Catalan polynomial
by Garsia and Haiman

The ¢, t-Catalan polynomial C,, (g, t) was originally introduced in a paper by A.M.
Garsia and M.Haiman in [7] analytically (see (1.1) below), as a sum over rational
functions of ¢, ¢, which arise when applying the Macdonald polynomial V operator
to the nth elementary symmetric function. This analytic definition was partially
motivated by an algebraic description suggested by Haiman [11] as the bigraded sign

character of the space of diagonal harmonics.

Definition 1.4. (Garsia & Haiman)



fe— — — <

Figure 2: Arm, leg, co-arm and co-leg.

The ¢, t-Catalan sequence is defined by setting

Cnlg,t) = Z {22 1@) 25 al@)(1 — ¢)(1 — g) H:c;é(o,o)(l _ qa/(z)tl’(x)) S @ @l @)
- [ ( 7 = FO0) () — ) -

pukn

(1.1)

where the sum is over all partitions p of n, and all products and sums in the p'®
summand are over the cells x of . For a given cell z, in the Ferrers diagram of p,
the leg I(x), the arm a(x), the co-leg I'(x), and the co-arm a'(z) of x are defined to
be respectively the numbers of squares above, to the right of, below, and to the left

of z, with the diagram oriented in the French manner as shown in Figure 2.

This C,(q,t) is a bivariate “q-analog” of the familiar Catalan numbers C, =
ot (277) . Making use of the theory of Macdonald polynomials, the paper established

that the specialization C,(1,q) and q(g>0n(q, 1/q) reduce to well-known g-analogues

of the Catalan numbers, state as follows, respectively.

Proposition 1.5. C,,(q) = C,(1,q) = Cy,(g,1) reduces to the Carlitz-Riodan [4] q-



Catalan numbers:

Co(g) =1

n—1
Cn(Q) = Z quk(q)Cnfl—lJQ) — Z qarea()\)’
k=0

XD,
which g-counts Dyck paths by area.

Proposition 1.6. D,(q) = q(g>Cn(q, 1/q) reduces to MacMahon[12] q-Catalan num-

bers:

1 n )
D, (q) = — maj(o (X))
@ [n+uq[nL T )

AeDy,

which q-counts Dyck words by the major index.

1.3 generalized ¢,{-Catalan numbers as a bigraded Hilbert
Series

In [10], M. Haiman introduced the following definition as a bigraded Hilbert Series.

Beginning with the polynomial ring
(C[Xm Yn] = C[xl’ Yy 0y T, yn]7

recall the definition of bigraded Hilbert series:

Given any subspace W C C|[X,,Y,], the bigraded Hilbert series of W is defined



as

H(Wsq,t) =) ' dim(W),

i,j>0
where the subspaces W(7) consist of those elements of W of bi-homogeneous degree
7 in the x variables and j in the y variables, so W = @MZOW("J).

let the symmetric group S,,, which is the reflection group of type A, _1, act diag-
onally by permuting the coordinates in x and y simultaneously amongst themselves,
ie.

Up('rluylf" 7xn7yn) :p($0(1)7y0(2)7”' 7x0(n)7y0'(7’b))'

A polynomial p € C[X,,,Y,] is alternating, or an alternate, if

o(p) =sgn(p), Vo e€S,.

Let W€ be the subspace of alternating elements in W, and

H(WEq,t) = Z ' dim(We(9)),

4,520

Now let I be the ideal generated by all S,,-invariant polynomials without constant

term: [ = <Z?:1 ohyF Vh+ k> O> , consider the quotient ring

DR, = C[X,,Y,]/I.



Also define the space of diagonal harmonics DH,, by

N, ={f(X,,Yn) : p(0X,,0Y,) [( X, Yn) = 0,Vp(X,,Y,) € I},

where p(0X,,,dY,) denotes the differential operator obtained by substituting for the
variables x1, Y1, - - , Zpn, Y, the corresponding partial derivative operators 0,,,0y,, - - ,
Oz,> Oy,

Many of the properties of DH,, and RH,, carry over to two sets of variables. For
example D H,, is a finite dimensional vector space which is isomorphic to DR,,. Among
several conjectures of a combinatorial nature concerning DH,, is that its subspace
DH; of S,-alternating elements — that is, its isotypic component corresponding to

the sign character € of S — has dimension equal to the Catalan number C,,.

Definition 1.7. (Haiman)

Taking into account the grading, Haiman defined a Hilbert polynomial

Dy(t,q) = H(DH;q,t) = > t"¢" dim(DH)p s

h,k>0

Haiman later showed that the rational function C),(q,t) defined above is in fact

equals to the bigraded Hilbert series defined above:

Theorem 1.8. (Haiman)

Cn(q,t) = Dn(q,t) = H(DH};q,t).



1.4 Pure combinatorics definitions

A pure combinatorial description was later conjectured by Haglund in 2000[8] after a
pro-longed study of tables of C),(q,t). It was then proved by Garsia and Haglund [5]
6].

This combinatorial formula for C,(g,t) involves a new statistic on Dyck path

called bounce.

Definition 1.9. Given A\ € D,,, define the bounce path of X\ to be the path described
by the following algorithm: (1)Start at (0,0) and travel North along A. (2) When
encounter the beginning of an E step, turn East and travel straight. (3) When hit
the diagonal y = z. Then turn North and travel straight. (4) Continue in this way
until you arrive at (n,n).

The “bouncing ball” will strike the diagonal at places (0, 0), (41, j1), (J2,72), -+, (Jo—

Ly — 1), (Jb, Jb) = (n,n). We define the bounce statistic bounce(\) to be the sum

bounce(\) = Z n— j.

An example is shown in Figure 3.
The following theorem is proved by Garsia and Haglund [5] [6]:

Theorem 1.10. (Garsia & Haglund)

Cn(q,t) _ Z qbounce()\)tarea(A).

AED,
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Figure 3: The bounce path (dotted line) of a Dyck path (solid) line. The bounce
statisticequals 9 —2+9—-44+9—-6=7+5+3 = 15.

There is another pair of statistics for the ¢, t-Catalan discovered by M. Haiman. It
involves pairing area with a different statistic we call “dinv”, for “diagonal inversion”

or “d-inversion”.
Definition 1.11. Let A € D,,. Let
dinv(A) = [{(4,7):1<i<j<n,a =a;}|
+{(,7):1<i<j<n,a =a;+1}]

be the “diagonal inversion” or “d-inversion” statistics, where a; the length of the

i-th row from the bottom.

In words, dinv(\) is the number of pairs of rows of A of the same length, or which
differ by one in length, with the longer row below the shorter, as shown in Figure 4.

Then we have the following theorem and corollary:
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Figure 4: the inversion pairs (i,7) are (3,4),(3,5),(3,7),(4,5),(4,7),(5,7) (corre-
sponding to pairs of rows of the same length) and (6, 7) (corresponding to rows which
differ by one in length), thus dinv = 7.

Theorem 1.12.

Z qdinv()\)tarea()\) _ Z qbounce()\)tarea()\)'
AeDy, AeDy,

Corollary 1.13.

Cn<q, t) _ Z qdmv()\)tarea()\)'

AEDy

1.5 ¢,t-Fuss-Catalan numbers for complex reflection groups

As introduced in section 1.3, Cy,(q,t) can be defined as a bigraded Hilbert series of
a module associated to the symmetric group S,,. Stump[14] generalized this construc-
tion to finite complex reflection groups and exhibit some nice conjectured algebraic
and combinatorial properties of these polynomials in ¢ and ¢.

Generalize the concept for polynomials to be alternating to any finite complex
reflection group in the following way: let V' be an n-dimensional complex vector space

and let W C GL(V) be a finite complex reflection group acting on V. Definitions on
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complex reflection groups could be found in [3].
Define the diagonal action of W on C[X,,, Y,,] by “doubling up” the contragredient
action w(p) := pow™ of W on V* = Hom(V,C) diagonally.
Let W be a complex reflection group acting on a complex vector space of dimension

n. We call a polynomial p € C[X,,,Y,] alternating if

det(w)w(p) =p, Ywe W.

Let I <C[X,,Y,] be the ideal generated by all alternating polynomials and define the

W-module M™ =™/ < X,,, Y, > I™.

Definition 1.14. (Stump)

The g, t-Ful-Catalan numbers associated to W are defined as

Cat™ (W, q,t) := H(M™: q,t) = Z dim(M;)q't.
§,§>0
Remark 1.15. For W being the complex reflection group of type A,_; - which is
the symmetric group S,, - the definition of alternating polynomials reduces to the
case given in sectionl.3, and the definition of ¢, t-FuB-Catalan numbers associated to
W =8, is reduced to definition 1.7. Later on we will call this W = S, case C,(q,t)

the type-A ¢, t-Catalan numbers.
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(4,4 4,4

0,0

Figure 5: A shifted Dyck path in £ with area = 6
1.6 Type B analogue of ¢, t-Fuf3-Catalan numbers

Define B,(q,t) = Cat (W5, , ¢, 1) to be the Type B analogue of ¢, t-FuB-Catalan
numbers. It would be very desirable to have a combinatorial description for the
bigraded characters of the type B analogue B, (q,t), as well as for other root systems.
There is currently no known way to define them analytically or combinatorially. There
are, however, some studies on the specialization B,(1,¢) and ¢" B,(¢,1/q).

Stump has conjectured in [14] and that B,(1,q) g-counts the area statistic for

Catalan paths of type B and establish an analogous recurrence.

Definition 1.16. A type B Catalan path(or a “shifted Dyck path”) of length n,
denoted as &,, is a lattice paths of 2n steps, either north or east, that starts at
some point on the anti-diagonal y = —x, ends at (n,n) and stays above the diagonal
x = y. For such a path A, we define area(\) to be the number of boxes in the region
confines by the path, the diagonal y = x and the anti-diagonal y = —x, not counting
the halfboxes at the diagonal y = = but counting the halfboxes at the anti-diagonal

Y= —.

If Conjecture 1.17 is correct, the following propositions are comparable to propo-
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sition 1.5.

Conjecture 1.17. (Stump)

B,(1,q) = Bu(q,1) = > ¢,
AEE,

Proposition 1.18. (Stump)

B, (1, q) satisfy the following recurrence involving Catalan numbers of type A:

n—1

Bu(1,q) = Cu(1,9) + Y ¢ Bi(1,¢)Ci(1, q)-

k=0
Also, similar to proposition 1.6, we have the following conjecture by Haiman[9]:

Conjecture 1.19. (Haiman)
2n
q”QBn(q,l/q)Z[ }
n e

1.7 Schur polynomials and sis-strings

Recall the definition of Schur polynomials:
Definition 1.20. Given a partition A = (A1, Ag, -+, A), where Ay > Ay > -+ > A,

and each ); is a non-negative integer, the Schur polynomials are defined as the ratio

S (q: T T ) CL()q+n—1,>\2+n—2,...,)\n+0) (l’l, Zo, ... ’xn)
) L2 ) A(n—1,n—2,...,0) (-Tl, Toy ... ,,fEn)
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where
22 goetnT2 gt
Antn—1,..20) (1, Ta,s .., Ty,) = det
xi\n I’gn 'I':\Ln

Specifically, in the case of n = 2, we have

S (@) = (an+1,00(000))/ (@10(q, 1))
= (102 — g=th*) /(g — 1)

= (qt)(gh e = th ) (g — 1)

Note that such a Schur polynomial can be written in the form (qt)™(¢* — t*)/(q —t).
We say a polynomial of this form is an sly-string. To simplify, we use the following

notation given by [1]: Let

K]y = (" —t¥) /(g —1).

Remark 1.21. Note that under this notation,
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and

Sxne (@, 8) = (gt) 2 [M — Ao + 1.

As a corollary of the result stated in [2], we have B, (q,t) is a positive coefficient

linear combination of Schur polynomials. Hence we have the following proposition:

Proposition 1.22. B, (q,t) is a positive coefficient linear combination of sly-strings.
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2 Set-up: Problem statement and basic assump-

tions to B, x(q,1)

In this section we will state the motivation and formally define the assumptions for
the broader class of polynomials B, x(q,t) that we will study.

Recall the open problem that is stated by Stump in [14]:

Open Problem 2.1. Are there statistics gstat and tstat on objects counted by C’at(m)(W)

which generalize area and bounce on Catalan paths D] such that

Cat(m)(W', q, t) _ Z qqstat()\)ttstat()\)?
A

We still have no candidate for the type B version of dinv (or perhaps a type B

version of bounce) to match with area to generate B, (q,t) = 3, o q®Mgareald),

2.1 Shifted Dyck path with base k£ and area statistics

By observation, if you increase the length of the bottom of the shifted paths to
k, as shown in Figure 6, then the total number of paths seems to be the binomial

coefficient ( 2"2’“*1 )

. It might make sense to study this broader class of objects, in
the hope of finding a uniform combinatorial description for them all, perhaps via an

undiscovered recurrence relation. Formally, we define the shifted Dyck path with base

k and the area statistics for such a path as follows:
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©.0)

k=4
Figure 6: A shifted Dyck path with base k = 4, length n = 4, area = 13
Definition 2.2. A “shifted Dyck path” with base k of length n, denoted as &, , is
a lattice paths of 2n 4+ k — 1 steps, either north or east, that starts at some point on
the anti-diagonal y = 1 — k — z, ends at (n,n) and stays above the diagonal x = y.
For such a path A\, we define area(\) to be the number of boxes in the region confines
by the path, the diagonal y = x and the anti-diagonal y = 1 — k — x, not counting
the halfboxes at the diagonal y = x but counting the halfboxes at the anti-diagonal

y=1—k—ux.

2.2 q, t polynomials B, ;(q,1)

Our goal following would be trying to find ¢, ¢ polynomials B,, x(q, t) for the shifted
paths with base k, where B, 1(q,t) = By,(g,1).
We will try to find a candidate description of B, x(q,t) as a positive linear com-

bination of sly-strings, based on the following two assumptions on the specialization

Bn,k(L t) and Bn,k(Qu ]-/Q)



Assumption 2.3.

itk 2n+k—1
q (ntk I)Bn,k(Q7 1/Q) = |: :| .
q?

n

Assumption 2.4.

nk 1 t Z rarea.

TEEN, k

Remark 2.5. Suppose we want a positive linear combination of slo-strings:

Bui(q,t) =Y _(qt)™ [Li]ga-

i

Note that
(q-1/a)"Ugrsq = Waise
=@ -a¢")/a=q") -
=q "l
and

(1- )" [U]1e = ™[I

We can see that By, x(q, 1/q) gives which terms of ; there are in the sum of (g, t)

and B, ;(1,t) gives us an idea of the “coefficients” (qt)™ for each [[;],,

18

(2.1)

(2.2)

"l gt
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3 n =2 Byy(g,t) as a positive linear combination
of sly-strings

In this section we will calculate Bs (g, 1/q) and By y(1,t) according to the assump-
tions, and write them as positive linear combination of sly-strings, respectively. Then
we will give a candidate description of Bs(q,t) as a positive linear combination of

sly-strings, and give a candidate combinatorics description for this proposed Bs (g, t).

3.1 Calculation of By (q,1/q)
Note that by (2.1),

2

k43
" Bax(q,1/q) = { ] :
q2

Hence

Bor(a.1/a) = ([*}*] )/ (¢%+)

= (1= ()")A = (@) )/((1 =)A= (¢°)*)g**?)

e When £ is odd,

Boy(q,1/q) = q [k + 2] p[(k + 3)/2]4
= ¢ 22k + 32 + M2k — 12 + -+ + ¢*F[3]2)

_ q—(2k+3)+1[2k, + 3]q2 + q7(2k71)+1[2k _ 1}(12 R q73+1[3]

q2

= 2k + 3)g1/g + 2k — Ugisg + - + [Ug/g-
(3.1)
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e When £ is even,

Baw(a,1/q) = q 22k + 3]e[(k +2)/2] s
= q 72 ([2k + 3]z + ¢'[2k — gz + -+ + ¢ [12)

_ q—(2k+3)+1[2k + 3]q2 + q_(2k_1)+1[2k _ 1}(12 RS q—1+1[1]

q2

= [2k 4 3]g1/q + 2k — 1ga/q + - + [Blg1/q-
(3.2)

3.2 Calculation of By (1,t)

The shifted Dyck path can start from (1 — k,0), (—=k,1) or (—k —1,2).

(-k-1,2) (2,2)

K 1)

(1-k;, 0) 0, 0)

e case 1: starting from (—k —1,2). Apparently, the only path here is taking every

step East.

Z jarea _ t2k+2.

wEEy p,start point =(—k—1,2)

e case 2: starting from (—k,1). There are k + 1 choices to take the step North.

Z tarea:tk(1+t+t2+...+tk+1) :tk[k}—i‘ﬂt

wEEy p,start point =(—k,1)
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e case 3: starting from (1 — &, 2). There are k choices to take the first step North,

and then the situation reduces to one in case 2.

> e — (R 1), + P2 R] 4 - 4 £0[2),

we&y i start point =(1—k,0)

From the area statistics, we can conclude that

By(1,t) =

et B
2Rt 20+t R 1) A+ R A 202
2 Rk 4 20 + (5 4 FR]) + (P2 R R - 1)
+oe 4 (0 4 [1],).
2k + 3], + t(t* k], + 72k — 1], + - - t°[1],)
[2k + 3]; + t[2k — 1]y + 3 (tF3[k — 2], + - - - t°[1]y)

[2k + 3], + t[2k — 1], + t3[2k — 5] -+ - + tF[1], 24k

[2k + 3], + t[2k — 1], + t3[2k — 5], - - +t*1[3], 2|k
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3.3 A candidate description of B, (q,t) as a sum of sly-strings

By the results of By (1,t) and By /4, there is a unique way of writing N x(q,t)

as a sum of sly-strings:

(

2k + g0 +(qt)[2k — g + (qt)*[2k — 5qs

—f—(qt)5[2/€ - 9]q,t +ot (qt)k[l]qﬂf 21k
Byi(q,t) = )
2k +3],, +(qt)[2k — g + (qt)°[2k — 5]y,

+(qt)*[2k = g + -+ + (qt) T [Bloe 21K

3.4 A candidate combinatorics description for this proposed

B27/€(Q7 t)

To try to give a pure combinatorics description to this By ;(q, t), we want to decide
the power of each ¢**2"1¢5%8*2 of each shifted Dyck path with base k = 4 in a reasonable
way.

Suppose we want the second power to be the area statistic. We consider each

group of paths in the cases stated in the calculation of By (1,1).



thlk 4+ 2] | "k + 1, | t*72[K)e | oo t1[3]; | °[2]¢

t2h+2 1 0 0 0 0
{2+l 1 0 0 0 0
t2k 1 0 0 0 0
2k —1 1 1 0 0 0
2k — 2 1 1 0 0 0
t?* —3 1 1 1 0 0
tk 1 1 1 0 0
th=1 0 1 1 0 0
th=2 0 0 1 0 0
3 0 0 0 1 0

t2 0 0 0 1 0

t! 0 0 0 1 1

t0 0 0 0 0 1

23

As shown in the chart above, it is natural to see that when you add up all 1 the

terms in the first column, and then going diagonal taking the last item in every next

columns till the last column(which are those marked red), we will get [2k + 3];.

Visually, we call that the “first layer” since those are the terms in the left and

bottom most in the chart. Similarly, we get the“second layer” as the terms marked
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blue. Those terms add up to ¢[2k — 1];. Continue this grouping process until we hit
the inner-most layer.

In comparison to the candidate Ba (g, t), we let any path corresponds to the term

t' in the first layer [2k 4 3]; to be the corresponding term in [2k + 3], ;, which is

q2k+2—iti

. Similarly, any path corresponds to the term % =3¢* in the j-th layer ¥ —3[2k — (45 —

7)]: to be the corresponding term in (qt)% 32k — (45 — 7)],., which is

(qt>2j73tiq2k7(4j77)717i _ q2k72jfi+3t2j+2'73

Note that (2k+2 — i) +i =1 and (2k — 25 — i+ 3) + (2j + i — 3) = 2k, we have

g?kt2areagarea path in "first layer”

q2k—areatarea otherwise

An example for k = 4 is as follows:
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t16]; t*[5]; t?[4] 3] t012];
th ?LlO
t9 (]fq
t8 q2t8

t7 (]3757 (qt)tﬁ — qt7

1 g1 | (gt)gt® = ¢t

t5 q f5 (qt)q2t4 — q3t5 (qt)3t2 — q3t5

th gt | (g)g’t = q'tt | (qt)’qt = q't!

3 qt ()"t = ¢ | (qt)*¢ = ¢t

2 ¢t (qt)g’t = q°t?

t ¢’t (qt)g® = q't
tO qu

Now we use the language of the shifted Dyke path to describe those paths ”in the
first layer”. Those in the first column are the paths in case 1 and case 2, which are
those starting from (—k — 1,2) and (—k, 1), and the last element of each following
columns are those with the last two steps NE. (i.e. those paths that passes (1,1).)

Hence

q2k+27areatarea path passes <_k; -1, 2)7 (—kj, 1) or (1, 1)

2k—areatarea

q otherwise

The example of n = 4 is shown as follows:



Example 3.1. For n = 2, k = 4, the count of each path is shown as follows:

th qt9 q2t8
q3t7 q4t6 q5t5
q6t4

qt7 q2t6 q3t5
q4t4 q7t3

26
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Ft° ¢t P
ot

o |
3 ¢t Ot
q't g
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4 n =3: Bsi(q,t) as a positive linear combination
of sly-strings

In this section we will state and prove the recurrence relation of Bs(q,1/q) and
B3 (1,t) written as a positive linear combination of sly-strings according to the as-
sumptions, respectively. Before each formal proof, we will give an example a small
k to help understanding. Finally, in the end of this section, we will give a candidate

description of Bsy(q,t) as a positive linear combination of sly-strings.

4.1 Recurrence relation of B;;(q,1/q)
Note that by (2.1),

3

k+5
q3k+6B3,k(Q7 ]-/Q) = [ :| ;
q2

Hence

Bsr(g,1/a) = (["57] )/ (a**F)

= (1= (@) )1 = (@) A = (@) )/ (1= )1 = (@*)*) (1 = (¢°)*)g**°)

We now simplify this formula and write it as a sum of sly-strings. The main result of

this part is the recurrence relation stated as follows:

Theorem 4.1. Bs(q,1/q) follows the following recursive form:
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(1) B31(q,1/q)

B3,1(q7 1/(1) = [10]q,1/q + [G}q,l/q + [4]q,1/q'

(2) Suppose By = .[ilq1/q, then

Bsit1(q:1/q) = Z[% +3]g1/q + Rapy1(q, 1/q)

7

where R3 11 1s additional terms for k > 1 as follows:

[1]%1/11 + [5](171/(1 + [k + 3]q,1/q k=2 mod4
[6] 1/ + [10]%1/(1 +o [k + 3](1,1/(1 k=3 mod4
Rspir(q,1/q)=¢ "
[S]q,l/q +[Tgisg+ - +[k+3lg1g k=0 mod4

[4]q,1/q + [8]%1/(1 + [k + 3]q,1/q k=1 mod4

\

We will prove the theorem by induction. We will first give an example for k = 4
to help understand the frame of the proof, and then we will state the mathematical

proof strictly.
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4.1.1 Example: B;4(q,1/q)

Example 4.2. Suppose we have that the relation holds for £ = 1 through k£ = 3, which

gives

Bs1(q,1/q) = [10]41/4 + [6]g,1/¢ + [4lg,1/4
B3,2<QJ 1/9) = [13]%1/!1 + [9]11,1/(1 + [7]1171/11 + [5](171/(1 + [1]11-,1/<1

B3,3<Qa 1/‘1) = [16]%1/(1 + [12]%1/61 + [10]%1/61 + [S]q,l/q + [4]%1/(1 + [6]1171/11

Now we want to proof that the relation holds for £ = 4, i.e.

B3 a(q,1/q) = [19]g,1/¢+[15]g,1/¢+ [13lg,1/a +[11]g,1 /0 +[g1/0 + [Tlg1/a +[T]g 170+ [Blg.1 /4
(4.1)
As a notation, we let the right hand side of (4.1) be By ,(q,1/q).

Note that we have

1 (g2VE+5) (1 — (g2 )h+4) (1 —(g2)k+3
BB,k((Ll/Q) = ! (1(11)2)(1),(((]25(21)21,(()1(2)3)(qq3k)+6 )

_ (0=((1/9)*)* ) A ((1/9)) ) (1 ((1/9)*)*+?)
(1-(1/9)?) (1= ((1/9)?)*) (1-((1/2))®)(1/q)3*+6

which means that both Bs4(q,1/q) and Bs,(q,1/q) have the same coefficients for

¢™ and (1/¢q)™ for any m € N*. Hence we only need to prove that Bs4(q,1/q) —



By (g, 1 /q) has coefficient 0 for any ¢™, m € N*, which is equivalent to

(¢"*)Bs4(q,1/q) — ¢"* B} 4(¢,1/g) =0 mod ¢"°.

Now we list every term of ¢'®*Bj 4(q, 1/q) as follows:

31
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¢ [19,,1 | ¢ (18], 1 | ¢[13],0 | ¢y | ¢, | ¢ (Tl | @[Tl | @3],
1 1
7 1
Tt 1 1
¢ 1 1 1
e 1 1 1 1
g 1 1 1 1 1
g 1 1 1 1 1 1 1
g4 1 1 1 1 1 1 1
q's 1 1 1 1 1 1 1 1
' 1 1 1 1 1 1 1 1
¢ 1 1 1 1 1 1 1 1
> 1 1 1 1 1 1 1
¢ 1 1 1 1 1 1 1
¢ 1 1 1 1 1
¢ 1 1 1 1
> 1 1 1
2 1 1
q34 1
q36 1

Also note that according to assumption, ¢'°Bs3(q,1/q) is as follows:



q¢°[16],1 | ¢[12], 1 | q"[10], 1 | ¢*°[8],1 | ¢[6],r | ¢" 4],
1 1
¢ 1
gt 1 1
¢ 1 1 1
¢ 1 1 1 1
g 1 1 1 1 1
g2 1 1 1 1 1 1
g1 1 1 1 1 1 1
g's 1 1 1 1 1 1
g8 1 1 1 1 1 1
g2 1 1 1 1 1
q* 1 1 1 1
¢t 1 1 1
e 1 1
¢ 1
¢ 1

As shown in the blue part of the graph above,

7l

m]qﬂ/q = qls[m + 3]qyl/qr mod ¢'*

33



for m = 16,12, 10,8, 6,4. Hence we only need to prove that

q1833,4(q, 1/9) = q15Bg73(q, 1/(]) + 6118R3,4(C], 1/9)

= QI5B3,3<‘17 1/9) + q18[7]q,1/q + q18[3]q71/q mod qls‘

Note that
18 _ (1=¢")A -1 —¢")
q¢°Bsa(q,1/q) = 1—g) 1 -1 - ¢
15 _ (=40 —¢")(1—¢")
q¢°Bss(q,1/q) = 1— ) (1—g")1— ¢
Hence

(1-¢")(1—q")
(1—=¢*)(1—q*)

q"*Bs.4(q,1/q) — ¢"° B3 3(q,1/q) = ¢"

From the previous calculation we know that

(1—¢"%)(1—q¢")
(1—-¢*)(1—q*q

BQ,5(Q7 1/q) =

Hence

12 = [13]q71/q + [9]61,1/61 + [5]q71/q + [1]11,1/11

34

¢"*Bs4(q,1/q) — ¢"°Bs3(q,1/q) = ¢"*(¢"*[13]41/q + ¢ 9g1/q + 42 Blasg + a2 [Ug1/q)

Also Note that

0" R34(q.1/9) = ¢"*(¢°[T)g1/q + ¢°[3l4.1/q)
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We have

¢"*Bs4(q,1/q) — ¢"*Bs3(q,1/q) — R34(q,1/q)
= 912(q12[13]q,1/q + q12[9]q71/q + q12[5]q71/q + q12[1]q,1/q —q° [7]%1/(1 - 96[3]61,1/61)

= q12(q12[13]q,1/q - qﬁmq,l/q) + q12(q12[9}q71/q - q6[3]q,1/q) + qlz(q12[5]q,1/q + q12mq,1/q)

Note that

1341/ — ClMgrg =1+ +¢" -+ =1+ +¢" +-¢*) =0 mod ¢°

0°Og1/e— CBlaig=0"+" 4+ = (" +¢°+-¢*) =0 mod ¢°
q12[5]q71/q + q12[1]q71/q — q8 + qlo + q12 + q16 + q18 _|_ q12 = O mOd q6

Hence

q¢"°B34(¢,1/9) — ¢ Bs3(¢,1/q) — R3a(q.1/q) =0 mod ¢
Which proves (4.2).
4.1.2 Formal proof of the recurrence relation

Now we give the formal proof as follows:

Proof. Prove by induction.
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(1) First, prove the relation holds for k£ = 1.

1— 12 1— 10 1— 8
B3,1 ((L 1/Q) = ((1—22)()5—qg)(1)(—q6()1qg

=" +q" +2¢° +3¢° + 3¢+ 3¢ + 3¢ +2¢° + ¢+ ¢

= [10]%1/(1 + [6]6171/61 + [4]q,1/q'

(2) Suppose that the relation holds for & < j. Now we prove that it also hold for
k=7 (j=2).

Suppose Bs ;1 =) .[%i|q1/4- As a notation, we let

B;i(q,1/q) = Z[% + 3lg1/q + R35(q,1/q)

)

Note that Bj ;(q,1/q) is a sum of sly-strings, and that we have

1— 2\k+5 1— 2\k+4 1— 2\k+3
B3,k(Qa 1/(]) = (1(gq)2)(1)_((q2§g)21_(31(2)3)(;3k)+6 )

_ 01/ ) A-((1/9))" ) A ((1/9)*)**+?)
(1=(1/9)*)(1=((1/9)*)*)(1=((1/9)*)*)(1/q)***¢

which gives that both Bs (¢, 1/¢) and B3 (g, 1/q) has the same coefficients for ¢™ and
(1/q)™ for any m € N*. Hence we only need to prove that B ;(q,1/q) — Bj ;(q,1/q)

has coefficient 0 for any ¢, m € N*, which is equivalent to

(¢¥*°)Bs;(q.1/q) = ¢”*°B ;(¢,1/q) mod ¢¥7*°.

Now we consider Bs;_1(g,1/q).
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Case (a) j =0,1,2 mod 4

Recall
¢ By (e, 1/9) = D67 wilgag
and
Bil’),j (¢:1/q) = Z[wz + 3](1,1/:1 + Ry (¢,1/q).
Compare
q3j+3 [xi]q,l/q — q3j+4—$z‘ 4 q3j+6—$i N q3j+fﬂi 4 q3j+2+$z'
and

q3j+6 [:EZ + 3]%1/(] — q3j+4—xi + q3j+6—9€i et q3j+6+xi + q3j+8+$i’

We have
q3j+6 [xz + 3]%1/(1 . q3j+3[xi]q,1/q — q3j+4+xi + q3j+6+x¢ e q3j+6+xi + q3j+8+x¢.

Note that j—1 = 1,2,3 mod 4, which gives that all z; > 3, Hence 3j+4+x; > 37+6,

q3j+6 [z; + 3](1,1/(1 - q3j+3[xi]q,1/q =0 mod q3j+6'
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Hence we only need to prove that

¢Bs (0. 1/q) = ¢ By j_1(0,1/q) + ¢ Ry ;(q. 1/q) mod ¢¥70. (4.4)

Note that

(1 _ q2j+10)(1 _ q2j+8)(1 _ q2j+6)
(1—=¢*)(1—q*)(1—4q%

¢”*°Bs ;(q,1/q) =

(1 —g¥*8)(1 — ¢¥*0)(1 — ¢¥*?)

q3j+3B37j—1<Qa 1/Q) - (1 _ q2)(1 — q4)(1 — q6)

Hence

(1= ¢¥*%)(1 = ¢7*%)
(1—=¢*)(1—q*)

q3j+6BS,j(Qa 1/61) - q3j+3B3,j71(Q> 1/9) = q2j+4

From the previous calculation we know that

(1= %) (1 = ¢¥*7)
(1—=¢*)(1 —q")g¥+*

Bs 1 (¢,1/q) = = [2j+5]q,1/q+[2j+1]q,1/q+' ) '+[1]q,1/q(or [3]q,1/q)

Hence

¢ %Bs;(¢,1/9)—¢¥""Bs j-1(¢,1/q) = ¢7 (¢¥ T [25+5]g 170 -+ T [1g1/q(0r [3l,1/0)-

Case (al) =0 mod 4
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q3j+6R3,j (¢,1/9) = ¢ (¢ 2[5 + Blgasg+ o+ qj+2[3]q71/q)

We have

¢ "By (¢,1/q) — 4”7’ Bs ;(q,1/9) — Rs ;(q,1/q)
= q2j+4(q2j+4 25 + 5]q,1/q + q2j+4 25 + 1]q,l/q +ot q2j+4[1]q71/q
— @+ 3lg1 = — @ Blgsq)
= U G25 + Blgsg — @25+ Blgyg) + ¢TGN A+ gy — @ = Uanse)

+oeeet (q2j+4[j + 5]q71/q - qj+2 [S]q,l/q) + q2j+4(q2j+4[j + 1]q,l/q +ooet q2j+4[1]q,1/q)

Note that

G 245]00/g= 0 P [ +3lg1/g = 1@ +4" ¢ — (14" ¢+ g7 =0 mod ¢

G2 g1 = P = Ugage = ¢+ -+ = (" +¢°+- - ¢¥) =0 mod ¢/

g~ Blae =+ A+ (TP =0 mod ¢

Also note that

g@ T [2]41/ =0 mod g2
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for any © < j + 1. Hence we can conclude that

By ;(q,1/q) — ¢***Bs;_1(q,1/q) — Rs(¢,1/¢) =0 mod ¢**°

Which proves (4.4).

Similarly, we can prove the cases (a2) and (a3).

Case (a2) j=1 mod 4

q3j+6R3,j (¢,1/9) = ¢ (¢ *[j + Blgajg+ o+ qj+2[4]q71/q)

We have

¢**°Bs;(q,1/q) — ¢ Bs ;(¢,1/q) — Rs;(¢,1/q)
_ q2j+4(q2j+4[2j + 5](171/(1 + q2j+4[2j 4 1]q71/q 44 q2j+4[3]q,1/q
— ¢+ 3 — = P Ag/0)
= q2j+4<‘12j+4[2j =+ 5]q,1/q - QHQ [J + 3]q,1/q) + q2j+4<q2j+4[2j + 1]q,l/q - qj+2 [J - 1]q,1/q)

Tt (q2j+4[j + 6]q,1/q - qHZ [4]q,1/q) + q2j+4(q2j+4[j + 2]q,l/q +-ot q2j+4[3]q71/q)

Note that

q2j+4[2j+5]q,1/q—qj+2[j+3]q,1/q — 1+q2+q4 . .+q4j+8_(1+q2+q4+. . q2j+4) =0 mod qj+2
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N2+ g1 — Pl = gy = ' +° -+ = (¢*+¢°+- - ¢¥) =0 mod ¢

G H6]01/0— 0" P Algrsg = @ T AT (T T P+ =00 mod ¢

Also note that

q2j+4[$]q,1/q =0 mod qj+2

for any x < 7 4+ 2. Hence we can conclude that

¢ Bs(q,1/q) — ¢ Bs;-1(¢,1/q) — Rs;(¢,1/q) =0 mod ¢¥*

Which proves (4.4).

Case (a3) =2 mod 4

q3j+6R3,j (¢,1/9) = ¢ (¢ 2[5 + Blgasg+ o+ qj+2[1]q71/q)
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We have

¢ B3 4(q,1/q) — ¢***Bs ;(q,1/q) — Rsj(q,1/q)
= ¢ 25 + Bgnsg + 25+ gy + o+ @7 gy
— ¢+ 3g1s — = P [Ugs)
= ¢ g2 + Blaasg — @1+ Blaasa) + @2+ Ugasg — 0 — Uaasa)

et (q2j+4[j + 3]q,1/q - qj+2[1]q,1/q) + q2j+4(q2j+4[j - 1]q,l/q +-o+ q2j+4[1]q,1/q)

Note that

G2 45]0,1/0 =@ Pl H3lg1 /0 = 140" g (1P g - gPT) =0 mod ¢/

q2j+4[2j+1]q,1/q_qj+2[j_1]q,1/q = q4+q6 e '+q4j+4_(q4+q6+' i CZQj) =0 mod C]j+2

P+ s~ @ Marsa = @ P () =0 mod g

Also note that

q2j+4[x]q71/q =0 mod ¢’

for any x < 7 — 1. Hence we can conclude that

¢7°Bs;(q,1/q) — ¢ Bs;-1(q,1/q) — R33(¢,1/q) =0 mod ¢***



43
Which proves (4.4).
Case (b) j =3 mod 4
This case is slightly different from (a).

Compare

3j+3[ 3j+4—x; + q3j+6_33i 4+ q3j+$i + q3j+2+$i

7 [Tilgnsq = q

and

q3j+6[37i + 3]q,1/q — q3j+4*$i =+ q3j+671i 4+t q3j+6+xi + q3j+8+$i,

we have

q3j+6 [xz + 3](171/(1 . q3j+3[xi]q,1/q — q3j+4+ri + q3j+6+3:7; N q3j+6+zi 4 q3j+8+ri‘

Note that j —1 =2 mod 4, which gives that xg = 1 and all other x; > 3.
For those x; > 3, 37 +4 + x; > 37 + 6,
3j+6_

q3j+6[$i + 3](1,1/(1 - q3j+3[fvi]q,1/q =0 mod g

for xg =1,

q3j+6[4]q’1/q - q3j+3[1]q71/q = q3j+5 mod q3j+6_
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Hence we need to prove that

¢**°By (4, 1/q) = 7By y1(a,1/a) + ¢ (Raj(a, 1/g) +1/q) mod ¢¥*°. (4.5)

Note that [2],1/, = ¢ + 1/q, By letting R5 ;(q,1/q) = Rs;(q,1/q) + [2lg.1/q, (4.5) is

equivalent to

¢*°Bs;(q.1/q) = ¢ Bsj1(q¢. 1/q) + ¢ *°(Rs ;(q,1/q)) mod ¢ (4.6)

Now the proof is similar to case (a).

¢ Bsj(q,1/q) — ¥ By j1(q, 1/q) = ¢ (¢¥ (25 + 5lgayg + - + 67 Blansg

q3j+6Rg,j(q7 1/q) = q2j+4(qj+2 U+ 3lg1yg+ -+ ¢*? [6]g,1/q + ¢+ 2]4,1/4)

We have

¢¥7"°Bs ;(¢,1/9) — ¢”**Bs (9, 1/q) — Ry ;(q,1/q)
= ¢TGP 2) 4 Blgasg + @725+ Ugayg + -+ ¢ Blansg
— ¢+ lgisg— = ¢*? 2]4,1/4)
= ¢TGP H25 + Blgse — P+ Blaase) + 25+ gase — @ — Uaase)

+eeet (q2j+4 [J + 4]q,l/q - qj+2 [Q]q,l/q) + q2j+4(q2j+4[j]q,1/q +ooet q2j+4 [3]11,1/11)
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Note that

a7 254501 /a— 0 P31/ = 14+ A= (14 4¢P =0 mod ¢

¢ 2 g =@ Pl Ugsg = 0" 0" +¢ " = (" 44"+ ¢¥) =0 mod ¢’

P+ sy — @ 2oasg = TP T — (T ) =0 mod ¢

Also note that

q2j+4[9c]q71/q =0 mod ¢

for any x < 7 4+ 2. Hence we can conclude that

¢ °Bs;(q,1/q) — ¢’ Bsj_1(q,1/q) — R3;(¢,1/¢) =0 mod ¢ *°

Which proves (4.6).

And now we’ve completed the proof. O

4.2 Area statistic and Bs;(1,1)
The shifted Dyck path can start from (1 — k,0), (—=k,1), (—=k —1,2) or (—k — 2, 3).

e case 1: starting from (—k —2,3). Apparently, the only path here is taking every
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(3.3)

D

(1-K,

0) (©,

step East.

Z area _ t3k+6.

7r€53’k;
start point =(—k—2,3)

e case 2: starting from (—k,1). There are k + 1 choices to take the step North.

Z jarea t2k+2(1 +t 4+ t2 4+ 4 tk+3) = t2k+2[k‘ —+ 4]t-

7r€53’k,
start point =(—k—1,2)

e case 3 starting from (k, 1). There are k + 1 choices to take the first step North,

and then the situation reduces to one in case 2.

D

7r€53,k’
start point =(—k,1)

garea — 2R 4 3], + 2Pk + 2], + - - 4+ tF[2),.

e case 4 starting from (1 — k,0). There are k choices to take the first step North,
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and then the situation reduces to one in case 3.

S e 4= BT 2 £ o o+ 10020
AR [ 1+ R+ £0]2],)
+e A O3]+ 10201)-
= 12Uk 4 2], + 2R32] [k + 1, + t2F75[3), k),

oo R3] + O[] [2),

Hence by adding them up together we have

B3,k(17 t) = Zﬂ—eéj&k e

= P2k 4+ 5], + 2Rk + 3], + 2R 2]k + 2] + 2R 3(3) [k + 1],
125 [4), (K], + - - R A 1)e[3] 4 0k + 1]4[2),

= $2H42[f 4 5], 4+ (Zfill t2RE3=2) [k + 4 — d)) + Ok + 1)4[2];.

4.3 Recurrence relation of B;;(1,1)

We now simplify this formula and write it as a sum of sly-strings. The main result of

this part is the recurrence relation stated and proved as follows:

Theorem 4.3. Bs(1,t) follows the following recursive form:
(1) B31(1,1)

3371(1, t) = [10]t + t[6]t + t[4]t.
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(2) Suppose Bsi(1,t) = > . t™[x;];, then

Bspi1(1,t) = Z " [z 4 3]s + Rapy1(1,1)

(]

where Rs, is additional terms for k > 2 as follows:

tH 1k 4 3], + 9k — 1], Rk — 5],

3k—4

ot Bl tE[1), Kk

Il
[\

mod 4

o[k + 3], + t*Hk — 1], +t*3[k — 5],

3k—9 3k—5

+---+t72 (10 +t72 [6); k=3 mod4

ngk(l,t) - <
tk [k 4 3]16 + tk+1[/€ _ 1]7& +tk+3[1€ _ 5]1&

3k—6

+oo -tz [T+t

3k—2
2

B k=0 mod 4
tk [k’ + 3]t + tk+1[k _ 1]t —l—tk+3[k‘ _ 5]75

3k—T7 3k—3

+-o+t72 8+t [4; k=1 mod4

We will prove the theorem by induction. Again, we will first give an example
for K = 6 to help understand the frame of the proof, and then we will state the

mathematic proof strictly.



49

4.3.1 Example: Bsg(1,1)

Ezample 4.4. As a notation, we let Bj,(1,%) be the right hand side of the recursive

form. Then

By, (1,t) =Bsi(1,t) = [10]; + t[6], + t[4]:. (4.7)
By, (1,t) =[13], + t[9]¢ + ¢[7]¢ + t*[5], + t°[1]. (4.8)
B 5(1,t) =[16]; + t[12], + ¢[10], + ¢*[8], + ¢*[4], + ¢°[6]. (4.9)
By ,(1,t) =[19]; + ¢[15], 4 t[13]); + £*[11], 4+ £3[9], + £2[7]e + ¢*[7), + £°[3].  (4.10)
By 5(1,t) =[22]; + t[18], + t[16]; + t*[14], + t*[12];, + ¢*[10]; + t*[10], (4.11)

+ °[6]; + t°[8]; + t°[4],. (4.12)
Bje(1,t) =[25], + t[21], + t[19]; + ¢*[17], + t*[15], + t*[13], + ¢*[13], (4.13)

+ £°[9]; + t[11]; + tO[7]¢ + t°[9); + ¢7[5]; + 1], (4.14)

Now we prove Bjg(1,t) = B3 4(1,t) by induction. Suppose that Bsx(1,t) = Bj,(1,1)

for k=1,2,3,4,5. Now

By(1,t) = By s(1,t) = (14+t+ )2+ -t 4t -t 42 ¢ 443 412 443 110

10 4 5 8 5 B -t ) + 259] + 7[5, + 2[1];.
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Bys(1,t) = By y(1,t) = (1 +t 4+ )0+t + -t 442t 4747 44547
T+ 10 - t3) + 18], + tO[4],.
= (I+t+2)t0 Ft-tP 4t P 2t 17 13T
-t T 53 150 4t ) + £5[5], + tO[1],

Hence

Byg(1,t) = Bys(1,t) — t3(By5(1,t) — By 4(1,1))
= 519], + ¢[5]); + t°[1], — 3 (t°[5]: + tO[1],)
= (9], — t3[5);) + (£7[5), — t9[1];) + t°[1]; (4.15)
= O+ tT Pt T St
= 0] +tT -t

On the other hand, we have

Bsa(1,t) =t"[9], + t°[7]; + t"[2],[6]; + ¢*[3]¢[5)¢ + t*[4]¢[4]; + ¢[5]:[3]s
+ [5)4[21;.

Bs5(1,t) =t"[10]; + t"[8]; + ¢°[2)e[7)e + 7 [3]: 6] + ¢°[4)e[5] + *[5]:[4]:
+ 1[6]¢[3]: + [6]¢[2]:-

Bso(1,t) =t [11)¢ + ¢ (9] + " [2}¢[8]e + t°[3]e[7]e + ¢"[4)e[6]: + ¢°[5]:[5];

+ 13[6],[4]; + t[7]:[3]: + [7]:[2]..
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Then

Bsg(1,t) — Bys(1,t) = t2(#2 4+t + 10—t — 1)+ MO+ 0+ 8 -t — 1)
+O20(° + 8+t —t— 1)+ + BB+t -t — 1)

+[6]: (87 4+ t4 + 3 —t — 1) + ¢[7)¢[3]; + t5(1 + ¢).

By5(1,t) — Baa(1,t) = 0" + #0487 —t — 1)+ (" + 8 +t" —t — 1)
2L (B + O+t —t = 1) 4 B (-t — 1)
+t[6],[3]; + t°(1 + t).

Hence

Bsg(1,t) — By 5(1,t) — t*(Bs5(1,t) — B3a(1,1))
= (=D + " +O2 + -+ 3B 6] (80 + T+ —t— 1)
—(O 8= -2 —1)[3];, — (1 —t5)(1 + 1)
= (1+t)(t"(EP -+ 1)+t B - 1)+ - 1)+ 3 - 1))
+(t* + 207 4 35 + 37 + 3¢5 + 3t + 2610 + ¢ — ¢ — 242 — 23 — 24t — 265 — 240 —¢7)
+(t+ 2% + 383 + 261 + 15 — 18 — 209 — 2410 — 1) - (¢ 447 — 8 — 1)
= (Mt t 10 ) T 6 5 ) (1 8D 1 20+ 3T 18 13
= M4 10 9 1 4 27 44O

= tO9], + 7 — "%
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Compare with (4.15) we have

Bsg(1,t) — By 5(1,t) — t3(Bs5(1,t) — B3a(1,t))

= Big(Lt) = Bys(1,1) — 3(By5(1,t) — By,(1,1)).

Note that Bs(1,t) = Bj,(1,t) for k =4 and 5, we can conclude that

Bsg(1,t) = Byg(1,t).

4.3.2 Formal proof of the recurrence relation
Now we give the formal proof as follows:

Proof. Prove by induction.

(1) First, prove the relation holds for k£ = 1.

Bsi(1,t) =t*6]; + t*[4]; + t[2]:[3]: + [2]:]2]:

= [10]; + ¢[6]; + t[4];

(2) Suppose that the relation holds for k& < j. Now we prove that it also hold for
k=j+1(j>1).

Suppose B (1,t) = > e t™ [Tr]t- As a notation, we let

B (1,) = Z t" 2y + 3l + Rapy1(1,1)

1€SE



53
Now we have By(1,t) = B3, (1,t) for all k =1,2,---,j. Our goal is to prove that
B3,j+1(1>t) = Bé7j+1<1’t>'

First,

By i(1,t) = By (1,t) = (1 +t + tQ)(Z £ w54]e) + R (1,1).

iGSj

By (1,t) — By ;1 (1,t) = (L+t+t%)( Z t" b 4]e) + Rs (1, 1)

iGSj_l

=(1+t+ t2)(z tmj’i[Ij,i -3+ R37j(1, t),

JES;

where
(
to[k] + ¢ R — 4]+ [k - 8]
ot 2, +t2[-2, k=2 mod 4
t* k], + * Tk — 4), +t"3 [k — 8],
i _|_...+t3k§9[7]t+t3k{5[3]t k=3 mod4
Rs(1,t) =
th (K], + ¢ [k — 4], 5[k — 8,
+...+t¥[4]t k=0 mod4
th [k], + ¢ ke — 4], 5[k — 8,
+...+t3k{7[5]t +t3k2_3[1]t k=1 mod4
\
Hence

By i1 (1,8)= By ;(1,6)—t*(By ;(1,0) =By ;1 (1, 1)) = Ry a1, 6)—1*(Ry(1,1)) (4.16)
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Case (a): When j =2 mod 4, (4.16) will be

(41 + 4l = 8- 01510) + (¢9203], — £ 0411 — ) + (944 = 4} = 8- 69 = )

3j—4

b (£506), — 3455 2),) — 8 R =2,

(t2j+4 +t2j+3 +tj+2 +t]+1) + (t2j+1 _|_t2j _|_tj+3 +t]+2> + (t2j—1 +t2j_2 +tj+5 _|_t]+4)
35 35

o (T E T g ) 4 (2 )

= [+ 4] — T2 4 2

Similarly, we have

Case (b): When j =3 mod 4, (4.16) will be

G+ 4 — 2 [l + (2] — -0 = 4)) + (T — 4] = 7 - 70 = 8]y)

3j—5

_|_..._|_(t 2 [7]t—t3't 2 [3]t)+t%[3]t

(t2j+4 +t2j+3 +tj+2 +tj+1) + (t2j+1 —|—t2'] +tj+3 +t]+2) + (t2j71 _‘_t2j72 _|_tj+5 _|_tj+4)

3549 3j+7 3j—1 3j73) (t3j+5 3j+3 3j+1
2 2 )

+~--+(t2 +it72 4+t 4tz 2

= [+ 4] — T2 4 2
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Case (c¢): When j =0 mod 4, (4.16) will be

(41 + 4l = 8- 01510) + (99203], — £ 041]) = ) + (944 = 4} = 8- 69 = )

33 3j—6

e (TR — 83t [4),) 4+ £ 7 4],

—_ (t2j+4 +t2j+3 +tj+2 +t]+1) + (t2j+1 _|_t2j _|_tj+3 +t]+2> + (t2j—1 +t2j_2 +tj+5 _|_t]+4)

3 3 35

b (T I T ) (HE D 2 )

_ thrl[j + 4]15 . t2j+2 + tj+2.

Case (d): When j =1 mod 4, (4.16) will be

(G + 4 — 2t [le) + (2l — - 0 = 4)) + (T — 4] = - 705 — 8]y)

o (T Bl — 83t (1)) + 2 (1]
((2H 4 203 02 L) (2L g2 g ) ($R L 22 IS i

3j+7 ,3j+45 3j+1 3j=1 3j+3
2 )+ ()

SRR o (o R e Y

— tj+1[j—|—4]t—t2j+2+tj+2.

Hence to sum up, we have

By ;i (1,t) = By j(1,4) =t (By (1, ¢) = By ;1 (1,1)) = 71 [j 4]y — 72 + /%2, (4.17)
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Now on the other hand, we have

Bsja(1,t) = t¥[j + 4] + 5715 + 20, + 772 2[5 + 1] + 7P [3][4],
AL = e+ -+ 23] + £ [2)s
Bsi(1,8) = t%72[j + 5], + 25 + 3], + t¥ 2], [7 + 2] + 2335 + 1
+t2T A ) + -+t + 1 [3] + 0 + 1. (2],
By (L t) = 774 + 6]y + £ + Afy + 277 2]y [5 + 3] + 77 [3e[5 + 2]

HITALL U+ 1+ 203+ 100+ 2ef2e

Then

Bsj41(1,1) — B3 ;(1,1)
= t2j+2(tj+7 4 pgt6 L pth g 1)+ $25+1 (tj+5 LIt gt 1)
HT) (W S Tt — )+ B (S D+t =t = 1)

+t[ + (B + 1+ 83—t — 1) + t[j + 2]¢[3]s + /T (1 + t).

Bs;(1,t) — B3 j_1(1,1)
= t2j(tj+6 Lt gt g 1)+ t2j—1(tj+4 LIS gt 1)
+t2j73[2]t(tj+3 + $i+2 + 1l 1) W

FE[f]e (8 4+t 13—t — 1)+ t[f + 1)[3], + /(1 + 1)



57

Hence

By j1(1,t) = By j(1,1) — t*(Bs5(1,1) — B j-1(1,1))
= (=D 2 4+ B]) H (Pt P -t 1)
—(ET T - 2 —)[3], — (TP — (1 + 1)
= 1+ -1+t -1+t 3B - 1)+ -+ 3 — 1))
—(L+8)(t[F + 1) + [8]e(t4 ] + 1] — 7 — 943 1 1[3],) — 7+ — 743 p 42 4 pit]
= @+ U =772 = 2] — (L) + 1) + (T ¢+ )t +2]r)
I i 2 gt
= (M +1 =t =3[+ A+ ) () + )y + 2], — /T — ¢T3 4 912 4 i+
= P[4 1], — (22 I 8 gt o2 g

— t]—}—l[j +4]t _t2j+2 +tj+2.

Compare with (4.17) we have

Bs1(1,t) — Bs;(1,t) — t*(Bs(1,t) — B3 ;-1(1,1))

= Bi;a(1Lt) = By ;(1,6) — 3(By ;(1,1) — By ; 4(1,1))

Note that Bs;(1,t) = Bj;(1,t) and Bs; 1(1,t) = B3, ,(1,t), we can conclude
that

B37J'+1(17 t) = Bé,j+1(17 t)'

And now we’ve completed the proof. O
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4.4 A candidate description of Bj;;(¢,t) as a positive linear
combination of sly-strings

By the conjectures above, we can give a candidate description of Bs(q,t) as a

sum of slo-strings as follows:

Theorem 4.5. B;(q,t) follows the following recursive form:
(1) Bsa(g,t)

Bs1(q,t) = [10]11775 + (qt)[6]q,t + (qt) [4]q,t'

(2) Suppose Bsr(q,t) = >, (qt)™ [xi|q:, then

By a(q:t) = Y ()™ i + 3oy + Rapia(g,1)

)

where R, is additional terms for k > 2 as follows:

(at)* [k + Bl + (a)" [k = g +(gt) [k — 5]

w
SIS

+---+(qgt)2 1],y k=2 mod4

(qt) [k + 3l + (qt) [k — Lo +(gt)" [k — 5],

3k—5

+---+(qt) 2 [6];+ k=3 mod4

Rsr(q,t) =
(qt)* [k + 3l + (g)* [k — Uge +(qt)" [k — 5]y

3k—2
2

+---+(qt) 7 3]t E=0 mod4

(qt)*[k + 3Jgs + (qt) [k = 1ge +(qt)"**[k — 5lqs

+--+(q¢t) 7 [4]gr k=1 mod4
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5 Writing B, ;(q,1/q) as a sum of sly-strings for all
n, k

In this section we will derive a recurrence relation for writing B, x(q,1/¢) as a sum

of sls-strings for all n, k.

5.1 Recurrence relation

Recall the given assumption 2.1

(il 2n+k—1
B = | 5.1)
q2
Note that by [1] Theorem 3.4, we have
n+1+m o [n+y
[ nt 1 } :qu{ " } ,  form,n >0. (5.2)
q 7=0 q
Now we define F,, ,,,(p) = [m:”}pp_”m/Q. (under this notation we have B, x(q,1/q) =

Frnie-1(¢?).) Using (5.2), we have

Fn,m(q2) = [m:n]qz q—nm
=X d [

= S [ e ey

n—1

— Z;n:() qfnm+(n+1)an_17j (q2) )
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Then by

3

Fn,m—l(q2) _ qfn(mfl)+(n+1)an71’j(q2)
J

I
o

We have the following recurrence relation:

Theorem 5.1.

5.2 Recurrence relation as a sum of sls-strings.

Now we try to write F}, ,,(¢*) as a sum of sly-strings. We will first state the recurrence

relation, and then give a sketch of the proof of the relation.

Theorem 5.2. F),,.(q?) follows the following recursive form:

(1) FO,m(q2) and Fn,O(QZ):
FO,m(qz) = Fn,O(QQ) = [1](1,1/(1, ‘v’n,m > 0.

(2) Suppose that

Fom-1(¢%) = Z [zilg1/q + Z [%ila,1/q

1, <n 4L,Ti>n

and

Fooam(@®) = > Wilosa+ D Wilaye

jvy]' Sm j»yj >m
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then
Fnym(q2) =A+B-C,
where
A= [z + g1/ + Z [i + nlg1/q,
2,2 <N 1,2 >N
= Z I:yj - m]qvl/q’
Jiyj>m
and

C= Z [ — 2ilg1/9

1, <n
It is easy to check that the case of £ = 2((3.1) and (3.1)) and k = 3 (Theorem
4.1) are special cases of Theorem 5.2.

Following is a few examples according to the theorem:
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Example 5.3.

Fom(@®) = Fao(d®) = [Uqgu/q

Fion(@®) = [m+2]g1/

F2,1(qz) =[1+ 2]q,l/q +[2- 1]q,l/q —[2- 1]q,1/q = [3]q71/q

F272(q2) =[3+ 2]q,l/q +[B- 2]q,l/q = [5]q71/q + mq,l/q

Fa3(¢%) =[5+ 3lg7g + [1+ 270 + [4 = 3lgsa — 2 = Ugasg = [Tarsa + Bloayg
F31(¢%) = [1+ 3Jg70 + 13 = Ugsg = 8= Ugye = [/

Fya(q%) = [4+ 3]g170 + 15— 24170 = [Tg170 + 184,174

F373(q2) = [7+ 3]q,l/q +[3+ 3]q,l/q +[7- 3]q,l/q - [10]«1,1/(1 + [6]q71/q + [4]q71/q
F4,1(qz) =[1+ 4]q,l/q +[4- 1]q,l/q —[4- 1]q,1/q = [5]q71/q

F472(q2) =[5+ 4]q,l/q +[7- 2]q,l/q +[3- 2]q,l/q = [9]q,1/q + [5]%1/(1 + [1]%1/(1
Fia(q®) = 9+ 4lgasq + 5+ 4lgasg + [1+ 4lgasg + [10 = Blasg + 6 — Blasg + [4 = 3las

- [4 - 1](1,1/(1 = [13]11,1/(1 + [9]q71/q + [7]q,1/q + [5]q,1/q + mq,l/q

Now we give the sketch of the proof to Theorem 5.2.

Proof. (Sketch)
Similar to the proof of Theorem 4.1, we Let F},,,(¢°) be the rational function of ¢
defined by the initial values and recurrence relation of Theorem 5.2 and Try to prove

that F,,.(¢°) = Fum(q®) for all n,m > 0. Note that both F, (¢°) and F,.(q¢*)
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can be written as the sum of sly-strings (and hence so is Fy,n(q*) — F, . (¢%)), it is
sufficient to prove that F,,,(¢*) — Fr’hm((f) is a polynomial with constant term 0.

We prove this by induction. Tt is easy to show that Fj,,(q?) — Fé,m(q2) =0,
Foo(q®) — F)o(¢°) = 0. Now we suppose that we have F,,(¢*) = F,,(¢°) for all
a+b < m+n, and our goal is to prove that F, ,,(¢*) — F, ,,,(¢*) is a polynomial with
constant term 0.

Let X = Fm-1(¢%), Y = F_1.m(¢%), A, B, C are as defined in Theorem 4.1. Then
Fom(@®) =q¢ "X +q™Y, F, 1m(i®?)=A+B-C.

(1) We first prove that (¢-"X + C) — A is a polynomial with constant term 0.

As a notation, let

X = Z [xi]qvl/q + Z [xj]q,l/q =Xi + Xy,

Z.>Ii<n i,.Ti Zn

A= Z [l‘z + n]q71/q + Z [Il + n]q71/q = Al + AQ.
1,x;<n 1,2, >N

(la) Consider each sly—string [v;] in Xo = >, -, [%i]g1/4- In this case we can

prove that ¢ "[x;]g1/4 — [%i + nlg1/4 is a polynomial with constant term 0. Hence

q "Xy — Ay (5.3)

is a polynomial with constant term 0.

(1b) For the sly—string [2;] in X1 =2, _ [ilg1/4, ¢ "[2ilg1/4 has only the terms
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of [&; +nlg1/q for ¢ of all I < —(n—x;), while [n—2;]41/, has the terms of [x; +n]y 1/,
or ¢ of all —(n — ;) <1< 0. This give ¢"[xilg1/q + [0 — @ilg1/q — [T + 1)1/ I8 a

polynomial with constant term 0. Hence

q_"Xl + C - A1 (54)

is a polynomial with constant term 0.

(5.3) + (5.4) we have (¢7"X + C) — A is a polynomial with constant term 0.

(2) Next we prove that ¢™Y — B is a polynomial with constant term 0.

Similarly, let

Y = Z [Wila1/a + Z [Wilg1/q = Y1+ Y.

Jyi<m Jyi>m

(2a) For each slp-string [y;]g,1/q In Y1 =32, <. [Uile1/a: a7 [Yila1/q itself is a polyno-
mial with constant term 0. Hence

q"Y (5.5)

is a polynomial with constant term 0.

(2b) For each sly-string [y;]q,1/4 in Yz = Zj,yj>m[yj](171/q? 0" [Wjlaasa — Y5 — Mlg1/q

is a polynomial with constant term 0. Hence

q"Y> — B (5.6)



is a polynomial with constant term 0.

(5.5) 4+ (5.6) we have ¢™Y — B is a polynomial with constant term 0.

Now by (1) and (2), we have

"X +C—A+q"Y = B = Fyp(d®) — Fl ()

is a polynomial with constant term 0, and the proof is completed.

65



66

6 Breaking down the area statistic

For the second assumption

Bn,k(Q; t) _ Z tarea(ﬂ)7

€Lk

we want to find a way to calculate the area statistic and rewrite as a sum of sls-
strings. There are different ways to break down the problem. Base on the result of
the recursive form of Bs, k(1,t) and B, x(q,1/q) in Section 5 and 6, one possible way
is to break down the problem as following.

See an example of &, ¢ first:

Example 6.1. We write the area statistic as the sum of the following:
(1) Set of paths X: path never touch the diagonal y = x except the endpoint

(4,4). Then the path is in the following region (Figure 7, wide line), which gives that

Z area 44 Z tarea(w) _ t4B475(17 t).

TeX mElL 5

(2) Set of path Y,,,(m = 0,1,2,3): path passing (m,m) but not (a,a) for any m <

Figure 7: Path never touch y = x except the endpoint.

a < k. For example, Y] is in the following region (Figure 8). As shown in the graph,
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Figure 8: Path last touching diagonal at (1,1).

we can conclude that

Z tarea(ﬂ) _ t4717i< Z tarea(ﬂ))( Z tarea(ﬂ’)) _ t4717iBi76(1’ t)C472fi(17 t)

TeY; €€ 6 TEDy_9_;

Adding (1) and (2), we have

Bug(1,t) = t'Bys(1,t) + t°Cy(1,1) + 2By 6(1,4)C1 (1,) + tBog(1,1) + Bsg(1,1).

Similarly, for any n,> 2,k > 1, we conclude that

n—1

Bok(1,t) = "By o1 (1,6) + Y "' Bis(1,4)Crai(1, 1),
=0

where we define C_;(1,¢) = Cy(1,t) = 1 and Box(1,t) = 1, Bno(1,t) = By_12(1,1)

here.
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