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Abstract

This supplement provides theoretical and numerical comparisons of the three
oracle tests and presents more extensive simulation results comparing the numerical
performance of the proposed test with that of other tests in the non-sparse cases
as well as for non-Gaussian distributions. We also prove Propositions 1-3 and the

technical results, Lemmas 3 and 4, which are used in the proofs of the main theorems.

1 Comparison of the Oracle Tests

In this section, we consider both the theoretical and numerical performance of the three
oracle maximum-type tests. The results show that the test ®,(2) significantly outper-

forms the other two tests under the sparse alternatives in the oracle setting.

1.1 Theoretical Comparisons of the Three Oracle Tests

The test ®,(2) is shown in Section 3.2 to be minimax rate optimal for testing against

sparse alternatives. We now compare the power of the test ®,(€2) with that of @a(ﬂé)
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and @, (I) under the same alternative H; as in Section 3.2. Let
A={1<i<p: (Q2); =0forall j #i}.

That is, i € A if and only if all the entries in the i-th row of Q2 are zero except for the

diagonal entry.

Proposition 1 (i) Suppose (C1)-(C3) hold. Then under Hy with r < 1/6, we have

P, (Pa($2) = 1)
—1)

(i) Suppose (C1)-(C3) hold. Assume there exists a constant €y > 0, such that for each

lim

o @M=D) ~ " @

1 € A° at least one non-diagonal element in the i-th row of Q2 has a magnitude larger

than €y. Then, under Hy with k, = O(p™) for all 0 < 7 < 1, we have

o Prn(@a(2) = 1)

lim > 1. ()
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The condition on €2 is mild. In fact, by the definition of A, there is at least one
nonzero and non-diagonal element in each i-th row of Q2 with i € A°. In Proposition 1,
we assume that these nonzero and non-diagonal elements have magnitudes larger than €.

Proposition 1 shows that, under some sparsity condition on §, ®,(£2) is uniformly at
least as powerful as both CIDQ(Q%) and @, (I).

We now briefly discuss the different conditions on 7 in the theoretical results. For the
maximum type test statistics, the range r < 1/2 is nearly optimal. Indeed, in the mean
testing problem, the case r > 1/2 is treated as the dense setting and r < 1/2 as the
sparse setting, similar to other sequence estimation problems. In the dense setting, the
sum square type test statistics may outperform the maximum type test statistics under
certain conditions. The different conditions imposed on 7 in this section are due to the
technical arguments used in the proofs. We believe these ranges for r can be improved to
r < 1/2 but the proof would be difficult. When the assumption on r does not hold, the

tests are still valid but the comparison results may fail.



The test ®,(£2) can be strictly more powerful than @Q(Q%) and &, (I). Assume that

’

H,: 6 hasm=p", r < 1/2 nonzero coordinates with
0; 261
0] [2Bloep e g e (0,1) (3)
O'm' n
if 6; # 0. The nonzero locations l; < ly < --+ < [,,, are randomly and uniformly drawn

from {1,2,...,p}.

Proposition 2 (i). Suppose that (C1) and (C2) hold. Then, under H, with 3 > (1 —
V)2 + € for some € > 0, we have

lim P, (@a(I) - 1) —1.

If B < (1 —+/r)?, then

fim Py, ((I)a(I) - 1) <a

p—0o0

(ii). Suppose that (C1) and (C8) hold and v < 1/4. Then, under H; with

g>(1- \/7_")2/(112113 oiw;i) +€  for somee >0, (4)
ISP

we have

lim P, (@a(ﬂ) - 1) ~ 1.

p—o0

The condition r < 1/4 can be weakened if we assume some stronger condition on €.
In fact, based on the proof, we can see that it can be weakened to r < 1/2 if € is s,-sparse
and s, = O(p"), V7 > 0.

Note that o;;w;; > 1 for 1 < ¢ < p. When the variables are correlated, w;; can
be strictly larger than 1/0;;. For example, let ¥ = (¢/"7!) with |¢| < 1. Then
ming <;<p 0;,w;; > (1 — ¢»?)~! > 1. That is, Mg is strictly more powerful than M under

!

H,.



In Proposition 2, the comparison between ®,(2) and ®,(I) is restricted to Hy, which
is special. However, the proof of Proposition 2 in fact implies the following more general
result. Suppose that min;<;<, 0;,w;; > 14 €1 for some ¢; > 0. Let 3y and ; be any
constants satisfying

(1= V7Y

mMing <;<p 04w ;

+e< Bo< B < (1—r)?
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for some € > 0. Replacing (3) by 4/ QBOiogp < = <Y/ 2,317110gp7 we have

lim Py (®a(2) = 1) —1,
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and

fim Py, ((I)a(I) - 1) <a
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We now turn to the comparison of the power of ®,(€2) with that of @a(ﬂé) under the

alternative
H,": 8 has m = p", r < 1/7 nonzero coordinates with
261
max |a;;0;] = 1/ b ng, where 5 € (0,1) (5)
j n
if 6; # 0, where 0 = (a;;). The nonzero locations Iy < Iy < --- < l,,, are randomly and

uniformly drawn from {1,2,... p}.
Proposition 3 (i) Suppose (C1) holds. Then under H, with f < (1 —\/r)?, we have

i Py (cpa(ﬂé) - 1) <a.

p—0o0

(ii) Suppose that (C1) and (C3) hold. Then under H, with

B> (1—+/r)*/(min (w;;/ maxa3)) +e for somee >0,

1<i<p

we have

lim P, ((I)a(Q) - 1) —1.
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It is easy to check that w;;/(max;a3;) > 1 for all 1 <4 < p. When the variables are

2
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there are at least 2 nonzero a;;, then w;; = =1 i > Max; aj;. In this case, Mq is

correlated, w;; can be much larger than max;a%. For example, if for every row of Q%,
strictly more powerful than M ol

As the discussion below Proposition 2, the condition (5) can be generalized. Suppose
that min;<;<,(w;;/ max; a?i) > 1+ ¢; for some 1 > 0. Let 5y and (3; be any constants
satisfying

(1 v

minlgigp (Wi,z‘/ max; a?z)

for some constant € > 0. If (5) is replaced by \/% < max; |aj;0;] < \/m, then

lim Py (@a(0) =1) =1

p—o0

+e< By < B <(1—+/r)?

and

Tim P,/ (cba(ﬂé) - 1) < a.
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1.2 Numerical Comparisons of the Three Oracle Tests

We now make a numerical comparison of the three oracle tests ®,(2), @Q(Q%) and @, (1I).
Models 1 and 4 in Cai, Liu and Xia (2013) are considered. Besides, we also study the

following two additional models.

e Model 9: 3" = (07;) where 07, = 1, 0; = 0.5 for i # j. X = D'/’ D'V?,

ij
e Model 10: ¥* = (o7;) where o7, = 1, o7; = Unif(0,1) for i < j and o}, = o}
Y = DY?(Z* + 61)/(1 + 6)DY? with § = [Amin ()| + 0.05.
We can see from Table 1 that the estimated sizes are reasonably close to the nominal
level 0.05 for all three tests, and the test ®,(£2) has the highest power in all four models
over all dimensions ranging from 50 to 200 and outperforms both ®,(I) and @a(ﬂé).



p 50 100 200 | 50 100 200 | 50 100 200 | 50 100 200

Model 1 Model 4 Model 9 Model 10

Size
CI)a(I) 0.06 0.05 0.04 [0.03 0.04 0.04 |0.03 0.02 0.02 |0.03 0.04 0.04
fba(Q%) 0.05 0.05 0.03 [0.04 0.04 0.04 |0.03 0.04 0.04 |0.03 0.04 0.04

®,(22) [0.05 0.04 0.03 [0.03 0.03 0.04 |0.04 0.04 0.04 [0.03 0.03 0.05

Power when m = 0.05p
o,(I) (0.11 0.22 042 |0.08 0.10 0.29 |0.03 0.10 0.08 [0.04 0.18 0.37

‘ba(ﬂé) 0.23 0.63 0.87 |0.16 0.20 0.64 [0.03 0.36 0.26 |0.06 0.44 0.79
d,(Q2) ]0.32 0.73 094 [0.22 0.29 0.81 |0.04 0.37 0.26 [0.05 0.60 0.92

Power when m = /P
0.18 0.32 0.49 |0.15 0.29 0.51 |0.08 0.06 0.18 [0.11 0.26 0.18

O, (I
D, (0
D,(Q) (070 0.89 0.96 [0.47 0.97 097 [021 022 0.66 [1.00 1.00 0.48

~—

N

) [0.57 0.80 0.92 [0.33 0.80 0.88 [0.21 0.22 0.66 [0.87 0.66 0.33

Table 1: Empirical sizes and powers for three oracle maximum-type tests for Model 1, 4,

9 and 10 with o = 0.05 and n = 100. Based on 1000 replications.

2 Additional Simulation Results

In this section we present additional simulation results comparing the numerical perfor-
mance of the proposed test with that of other tests. Non-Gaussian distributions are also
considered. In addition, we compare the performance of the proposed test with the pro-
cedure using the covariance matrix estimators given in Ledoit and Wolf (JMVA, 2004)
and Kubokawa and Srivastava (JMVA, 2008).

More extensive simulations are carried out for a range of non-sparse settings. Specifi-
cally, we consider non-sparse covariance structures by adding to the covariance/precision
matrices in Models 1-5 a perturbation of a non-sparse matrix E, where E is a symmet-
ric matrix with 30% random nonzero entries drawn from Unif(—0.2,0.2). Furthermore,
we carried out simulations for five additional general non-sparse covariance models. The

comparisons were consistent with the cases reported in Cai, Liu and Xia (2013).



2.1 Non-Sparse Cases

We now consider additional non-sparse covariance models. We will first study Models
1'-6", where the covariance matrix or the precision matrix is a sparse matrix considered
in Cai, Liu and Xia (2013) with a non-sparse perturbation, and then consider five more
general non-sparse models, Models 11-15.

Let E be a symmetric matrix with the support of the off-diagonal entries chosen
independently according to the Bernoulli(0.3) distribution with the values of the nonzero
entries drawn randomly from Unif(—0.2,0.2). The following 6 models are considered,
where each of them is a sparse matrix with a perturbation of the matrix E. Thus all of

these covariance/precision matrices are non-sparse.

e Model 1': ¥* = (0};) where 0], = 1, of; = 0.8 for 2(k — 1) + 1 < i # j < 2k,

where k = 1,...,[p/2] and o}; = 0 otherwise. Q* = X*' + E. Q = Q" + 61 with
6 = |Amin (29)| + 0.05.

e Model 2: * = (0};) where of; = 0.6/ for 1 < i,j < p. Q" =3¥"'+ E,

]
Q= Q" + I with § = [Apnin (27)| + 0.05.

e Model 3: Q* = (w;;) where wi;=2fori=1,...,p, wy, =08fori=1..p—1,
Wi =04 fori=1,...,p—2 wj,3 =04fori=1,...,p—3, wj 4 = 0.2 for
i=1,.,p—4 wj;=wjfori,j=1..,pand v =0 otherwise. 2 =Q" + E + 41
with 0 = [Apin (27)| + 0.05.

e Model 41 ¥* = (0;) where 0}, = 1, of; = 0.8 for 2(k — 1) + 1 < i # j < 2k,
where k = 1,...,[p/2] and ¢}; = 0 otherwise. X = D'*3*DY? + E 4 61 with

0 = Amin(DY?2*DY? + E)| 4 0.05.

e Model 5": © = (w;;) where w;; = 0.6/l for 1 <4,j <p. ¥ = D'?*Q'D'?+ E+41
with § = [Ain(DY2Q7'D'? + E)| 4 0.05.

e Model 6: Q2 = (a,;) where a;; = 1, a;; = 0.8 for 2(k — 1) +1 < i # j < 2k, where
k=1,..,[p/2] and a;; = 0 otherwise. @ = D'2Q'2Q2D'"? and ¥ = Q'+ E+61
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with § = [Auin (27" + E)| + 0.05.

Simulations results for sizes and powers are reported in Table 2. For reasons of space,
we only list the case when the magnitudes of the signals can vary for the power analysis.
When the magnitude is fixed, the performance of the tests is similar. For those non-sparse
models, similar phenomenon has been observed as the sparse cases. It can be seen from

Table 2 that the new test ®,(€2) still outperforms all the sum of square type tests. Thus,

our method is not restricted to the sparse cases.

P 50 100 200 | 50 100 200 | 50 100 200
Model 1’ Model 2’ Model 3’
T2 0.05 0.05 — 10.06 0.05 — 10.06 0.05 —

BS 0.06 0.07 0.07 |0.06 0.07 0.07 [0.06 0.06 0.04
SD 0.06 0.07 0.07 |0.06 0.07 0.07 [0.06 0.06 0.04
CQ 0.06 0.07 0.08 |0.06 0.07 0.07 [0.06 0.06 0.04
o,(2) [0.04 0.04 0.05 [0.04 0.04 0.05 |0.08 0.04 0.05

Model 4 Model 5’ Model 6

72 (005 0.05 — [0.04 003 — [0.05 0.06 —
BS [0.07 0.07 0.05 [0.05 0.05 0.07 [0.06 0.07 0.06
SD  [0.08 0.05 0.06 [0.05 0.05 0.07 |0.06 0.07 0.07
CQ [0.07 0.07 0.05 [0.05 0.06 0.07 [0.06 0.07 0.07
$,(2) [0.05 0.05 0.05 [0.06 0.07 0.07 [0.03 0.04 0.05

Table 2: Empirical sizes based on 1000 replications with a = 0.05 and n = 100.

We now study five more general non-sparse models. Let D = (d;;) be a diagonal
matrix with diagonal elements d;; = Unif(1,3) for i = 1,...,p. The following five models
are studied where the magnitude of the signals can vary. Three different numbers of
nonzero entries of the signal are considered: 0.05p, /p and 0.4p. In the last case, the

signal is also not sparse.

e Model 11: X" = (0};) where o}, = 1 and o}; = |i — j|7°/2 otherwise. X =
D1/2E*D1/2.
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e Model 12: ¥ = (0};) where 0}, =1, 0, = 07,;; = 0.5 and ¢}; = 0.05 otherwise.

> = D'?2*D'Y2,
e Model 13: 3 = DY?(F+2uu/)D"?, where F = (fi;) is a px p matrix with f;; = 1,

fiit1 = fir1s = 0.5 and f;; = 0 otherwise, and w is a standardized vector.

e Model 14: 3" = (0;) where o7, = 1, 0}, = 07y; = 0.5, 0,5 = 07,5, = 0.4 and

o%; = 0.05 otherwise. & = D'/?5*D'/?,
e Model 15: 3 = DY2(F 4 wu) + uguy + uguy) DY/?, where F = (f;;) is a p x p
matrix with f;; = 1, fiis1 = fir1s = 0.5 and f;; = 0 otherwise, and w; are orthogonal

standardized vectors for i = 1,2, 3.

For Model 11, the entries of 3 are decaying when they are further and further away from
the diagonal. The corresponding 3 and €2 are not sparse. For Model 12 and 14, all the
entries of 3 have magnitude at least equal to 0.05 and thus both 3 and €2 are not sparse.
For Model 13 and 15, X is a sparse matrix plus one or three rank one non-sparse matrices
and thus it is not sparse. The corresponding precision matrix €2 is also not sparse. We
can see from Table 4 that for those non-sparse models and non-sparse alternatives, similar
phenomena as the sparse cases are observed. Our test still performs reasonably well and

it outperforms all the sum of square type tests.
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D 50 100 200 | 50 100 200 | 50 100 200 | 50 100 200 | 50 100 200
Model 11 Model 12 Model 13 Model 14 Model 15
Size
T2 0.05 0.05 — 10.06 0.05 — 10.05 0.06 — 10.04 0.06 — 10.04 0.04 —
BS 0.07 0.06 0.05 |0.05 0.06 0.06 [0.08 0.05 0.06 [0.05 0.07 0.06 |0.06 0.06 0.06
SD 0.08 0.06 0.05 |0.05 0.06 0.06 [0.08 0.05 0.06 [0.05 0.06 0.06 |0.05 0.05 0.06
CcQ 0.07 0.06 0.06 |0.05 0.06 0.06 [0.08 0.05 0.06 [0.05 0.06 0.07 |0.06 0.06 0.06
@a(ﬁ) 0.02 0.02 0.03 |0.03 0.03 0.03 [0.02 0.03 0.04 [0.04 0.03 0.04 |0.03 0.02 0.03
Power when m = 0.05p
T2 0.17 0.43 — 10.32 0.33 — 10.23 0.99 — 10.06 0.16 — 10.31 0.40 —
BS 0.09 0.12 0.20 |0.14 0.14 0.23 |0.12 0.12 0.67 |0.06 0.10 0.13 |0.07 0.10 0.16
SD 0.09 0.13 0.20 |(0.14 0.14 0.23 |0.12 0.12 0.68 [0.05 0.09 0.14 |0.07 0.09 0.16
CcQ 0.09 0.12 0.20 |0.14 0.13 0.22 |0.12 0.12 0.67 |0.05 0.10 0.13 [0.07 0.11 0.16
@a(ﬁ) 0.14 0.41 0.80 |0.26 0.50 0.64 [0.25 0.82 1.00 |0.04 0.11 0.25 [0.20 0.50 0.84
Power when m = /p
T2 0.49 0.59 — |0.87 0.96 — 10.99 1.00 — 10.46 0.56 — 10.53 1.00 —
BS 0.16 0.18 0.20 |0.24 0.43 0.46 |0.24 0.31 0.52 (0.10 0.16 0.16 |0.11 0.15 0.16
SD 0.16 0.17 0.20 |0.24 043 0.46 [0.25 0.31 0.52 |0.11 0.17 0.17 |0.12 0.14 0.16
CQ 0.15 0.18 0.20 |0.24 042 045 |0.24 0.30 0.51 |0.10 0.16 0.16 |0.11 0.14 0.16
@a(ﬁ) 0.37 0.57 0.53 |0.75 0.88 0.98 [0.73 0.96 1.00 (0.34 0.43 0.27 |0.38 0.73 0.85
Power when m = 0.4p

T2 0.77 1.00 — 10.99 0.99 — |1.00 1.00 — 1098 0.99 — |1.00 1.00 —
BS 0.24 068 099 (032 0.78 0.99 [0.86 0.99 1.00 (0.44 0.75 0.99 |0.35 0.67 0.93
SD 0.29 0.78 0.99 |0.40 0.87 0.99 [0.86 0.99 1.00 [0.57 0.84 0.99 |0.39 0.81 0.96
CcQ 0.24 0.67 099 (031 0.78 0.99 [0.86 0.99 1.00 (043 0.74 0.98 |0.34 0.67 0.93
@a(ﬁ) 0.50 093 1.00 (0.84 0.93 1.00 {0.99 1.00 1.00 [0.59 0.90 0.97 |0.95 1.00 1.00

Table 4: Empirical sizes and powers for Model 11-15 with o = 0.05 and n = 100. Based

on 1000 replications.
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2.2 Non-Gaussian Distributions

For Model 6, we generate two independent random samples { X };2, and {Y;}}2, from
multivariate models X = FZS) +p, and Yy = FZ;f) + po, with I'T" = %, where
the components of ZS) = (Zy1, ..., Zyp) are iid. standardized Gamma(10,1) random
variables. We consider the case when p; — py has m = |/p nonzero elements with the

same signal strength for each coordinate. The results are summarized in Table 5.

P 50 100 200 50 100 200
Empirical Sizes Empirical Powers
72 10.041 0.051 — (0.716 0.456 -

BS [0.055 0.069 0.062 [0.153 0.183 0.192
SD ]0.060 0.063 0.063 |0.170 0.177 0.207

CQ 10.058 0.072 0.064 |0.152 0.180 0.186

@a(ﬁ) 0.050 0.039 0.048 |0.875 0.722 0.597

Table 5: Sizes and Powers of tests based on 1000 replications with o = 0.05 and n = 100

for Model 6. p; — py has m = /p nonzero elements. Signal strength keeps the same.

2.3 The Effects of Covariance Matrix Estimators

In this section we consider the effects of the covariance matrix estimators on the test by
comparing the proposed procedure with the test using the covariance estimator given in
Ledoit and Wolf (JMVA, 2004) and the Stein-type estimator in Kubokawa and Srivastava
(JMVA, 2008). The size and power results for our test ®,(£2) and tests based on these
two estimators (LW and KS in short) are shown in Table 6. It can be seen that LW either
suffers from serious size distortions or has powers much lower than that of the proposed

test, while KS always suffers from serious size distortions. We only list the case when the

magnitudes of the signals vary and when dimension p = 200, because KS mainly focuses

12



on the case when p > n; + ny — 2.

Models|Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Size

@a(ﬁ) 0.06 0.06 0.07 0.05 0.04 0.04 0.03 0.03
Lw 0.06 0.09 0.07 0.06 0.96 0.11 0.24 0.20

KS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Power: m = 0.05p

(I)a(ﬁ) 0.90 0.82 0.80 1.00 1.00 0.63 0.67 0.89
LW 0.28 0.48 0.60 0.65 1.00 0.37 0.46 0.44

KS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Power: m = VD

o,(2)| 097 0.93 0.89 0.99 1.00 0.64 0.59 0.94
Lw 0.31 0.63 0.71 0.59 1.00 0.40 0.50 0.59

KS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 6: Size and power based on 1000 replications with p = 200 and n = 100.
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3 Proof of Technical Lemmas

Lemma 1 (Bonferroni inequality) Let A =U{_| A,. For any k < [p/2], we have

2k 2k—1

D (-U)TE < PA) < Y (-1)E,

t=1 t=1

where By, = Zl§i1<_“<it§p P(A; N---NA;,).

Lemma 2 [Berman (1962)] If X and Y have a bivariate normal distribution with expec-

tation zero, unit variance and correlation coefficient p, then

P(X>C,Y>C)

lim =1

=% [270(1 — p)2c®]~exp ( - ffp) (1+p)

Y

[

uniformly for all p such that |p| < 6, for any 6, 0 < 6 < 1.

Lemma 3 Suppose (C1) holds. Then for p"-sparse 8, with r < 1/4 and nonzero locations
Iy ooy lm, m = p", randomly and uniformly drawn from {1,...,p}, we have, for any 2r <

a<1l—2r, asp— oo,

(Qé)l _ r—a/2
P(l}g}_}{’ \/QT,Z \/ww‘;% _ O(p )I}éa}’;(wlo — ]-7 (6)
and
P((max [(©46); — ais6i| = O */2) max 5i]) -1, 7)

where Q2 =: (a;j) and H is the support of d.

Proof. We only need to prove (6) because the proof of (7) is similar. We re-order
Wity - -, Wip S Wiy = ... > |wi| for ¢ = 1,...,p. Let a satisfy 2r < a < 1 — 2r with
r < 1/4. Define Z = {1 < iy < ... < i, < p} and

Iy = {1§i1<...<im§p: there exist some 1 < k < m and some j # k with 1 < j < m,

such that |w;,,,| > ]wik(pa)\}.
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We can show that

= 0fpw (7)) ama 1= (1),

Therefore
Zol/|Z] = O(p*™* 1) = o(1). (8)

For 1 <t < m, write

Zwltkék = w1, 01, + Z wiy1,01;-

Jj=1,j#t
Note that for every (ly,...,1,) € I,
= C
Z Wiy | < p" _(S'
=1t p
It follows that for H € Z§ and 7 € H,
Qo
‘( S | = 0 /) max 5] (9)
VWi i€H
By (8) and (9), (6) is proved. 1
Let Y7,...,Y, be independent normal random variables with EY; = u; and the same
variance Var(Y;) = 1.
Lemma 4 Let a, = o((logn)~/?). We have
sup max P( max Y; > x + an> - P( max Y; > x)‘ =o(1) (10)
weR 1<k<n | \1<i<k 1<i<k

uniformly in the means p;, 1 <i <n. IfY; is replaced by |Y;|, then (10) still holds.

Proof. We have

k
P(max}ﬁzx—i—an) = H( Y>w—l—an)>

1<i<k
=1
k

= 1—exp<Zlog (1—P(Y2 Zx—l—an))).

i=1
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Let 0 < £ < 1/2 be any small number and M be any large number. Define
E={1<i<k:PY;>z+a,) >c}

We first consider those n and & such that Card(E) < &2 and

k
ZP(YZ‘Z!E—F%)SM-

i=1
For i € E°, by the inequality |log(1 — ) + z| < z? with |z| < 1/2, we have

log <1 —PY; >z + an)>
‘ —PY;>x+a,)

- 1( <e. (11)

Write a, = &, (logn) "2, where €, — 0. Let b, = |e,|"*/2(logn)z. We have for any large

a >0,

PY;>z+a,) = / e~ T dy
)

1 7(@/*;77.) d +/ 1 7(9*;77.)2
= € Y € Y
y>a—ps,ly|<b, V2T y>a—ps,ly[>b, V2T

1 2 a
— (1+0(1)) /yzx_mmn ey + Ol )
= (1+0(1))P(Y; >2)+0O(n™*), (12)

where O(1) and o(1) are uniformly in 7 and p;. Thus, we have

Zlog (1 —PY; > x—l—an)>

Z < —(1—2¢) Z P(Y; > x) +O(n >t
< (1=20)(1+22) 7 > log (1 P(¥; 2 2)) + O(n "), (13)

where in the last inequality we used (11) with a,, = 0. By (12),

Zlog (1 —PYi>z+ an)> = Zlog (1 —P(Y; > 33)) +o(1)e™2. (14)

S el
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Combining (13) and (14), we have

k k
Zlog (1 —PY;, >z + an)> < Zlog (1 —P(Y; > x)) +4eM + o(1)e™2
i=1 =1

Hence

P( max Y; > r + an> > P( max Y; > :U) — |eteMAoM="2 . (15)

1<i<k 1<i<k

Note that if Zle P(Y; > x+a,) > M, then

P<111<13<)§€Y;2x+an)21—e*M. (16)
If Card(E) > ¢72, then
P(lrgaé}/;zx—l—an) 21—(1—8)8_221—678_1. (17)

By (15)-(17), we have

P( max Y; > x + an> > P( max Y; > a:) - ‘645M+O(1)572 —1| - e —e M,
1<i<k 1<i<k

Similarly, we can prove

P< max Y; > x + an> < P< max Y; > :E) + |e4‘€]\/[+"(1)572 — 1|+ e L™,
1<i<k 1<i<k

By letting n — oo first, following by ¢ — 0 and then M — oo, the lemma is proved. &

The following lemma comes from Baraud(2002).

Lemma 5 Let F be some subset of lo(.J). Let u, be some probability measure on
Fp={0 € F. |16l = p}

and let

P, = / Pod, (6).

Assuming that P, is absolutely continuous with respect to Py, we define

Hp
dP,

L/—Lp (y) = d—/_-l);p (3/)

17



For alla >0, ve0,1—aqal, if

Eo(L;, (V) €1+4(1—a—v)?

then
Vp < p*, infsup Py(P, =0) > .
ba geF,
Let (Z1,...,7Z,) be a zero mean multivariate normal random vector with covariance

matrix € = (w;;)1<ij<p and the diagonal w;; =1 for 1 <i <p.

Lemma 6 Suppose that maxi<;zj<p |wij| < r <1 and Apax(2) < Cy. We have

1
2 —_— —_— —_— —_—
P( frgl?g);Zi 2logp + loglogp < :U) — exp ( Nz exp( x/2)>, (18)
and
P( max Z; < \/2logp — loglogp + x) — exp < _ ! eXp(—x/Q)) (19)
1<i<p 2\/7 ’

for any x € R as p — oo.

4 Proof of Propositions

Proof of Proposition 1 (i). Let U be a multivariate normal random vector with zero
mean and covariance matrix 3. Let Z = §4+U, where § and U are independent. Without
loss of generality, we assume that o;; =1 for 1 <4 <p. Then w;; > 1 for 1 <7 < p. Set
A = {maxi<;<, || < 6y/logp}. By Lemma 3, we have

P( max |(Q6);/+/wii] > (1 — o(1)) max |5i|) 1 (20)

1<i<p 1<i<p

Thus by Theorem 1 we have

P(Ma € RoyA%) = P( max [(QU)i/ /] —4/logp = /2logp, A7) +o(1)

1<i<p

18



— P(A°) + o(1). (21)
Similarly, we have
P(MI c Ra,A"’> — P(A%) + o(1). (22)

We next consider P(MQ € RQ,A> and P(MI € Ra,A). For notation briefness, we
denote P(BA|§) and P(B|d) by Ps a(B) and Ps(B) respectively for any event B. Let
H =supp(d) ={l1, ..., 1} with m =p" and H* = {1,...,p} \ H. We have

— > ,
P57A(MI € Ra) P(;’A(%%(‘ZZ’ = xp) -+ P57A(%%§(‘ZZ’ < l'p,?elg)g

Zil 2 V/rp), (23)
where z, = 2logp — loglog p + . Define

H{={j€H : |oyj|<p‘tforanyiec H}, H,=H"—HJ
for 2r < £ < (1 —r)/2. Tt is easy to see that Card(H;) < Cp™**. Tt follows that

P(max| 2] > y3) <P P(INO, 1) > ) = O ) =o(1).  (24)

JjEH1

We claim that

Pa,A<IiIgE<|Z¢| < \/x_p,grel%}g|2j| > \/x_p>
< P&,A((m%}qZﬂ < \/QTP) PJ,A<m%X|Zj| > \/x_p> +o(1). (25)
1€ j€ 1“

Throughout the proof, O(1) and o(1) are uniformly for §. To prove (25), we set E =
{max;cy |Zi| < /7p}, Fj = {|Z;] > \/zp}, j € H{. Then by Bonferroni inequality, we
have for any fixed integer k > 0,

2k—1

PM( U {Eij}) <N (-t Y P57A<EHFZ-1 mmF) (26)

JjeEHY t=1 11 <--<it€HY
Let W = (w,;;) be the covariance matrix of the vector (Z;,i € H,Z;,,...,Z;,) given
d. Note that W satisfies |w;;| < p~¢ for i € H and j = 4y,...,i; € H{. Define the
matrix W = (w;;) with w;; = wy; for 4,5 € H, w;; = wy; for 4,j = iy,...,4 € Hf and

UNJz'j :iji:OfOI'iEHade:il,...,itEHf. SetZ:<Ui,iEH,Zil,...,Zit>l and

R:{|ul+52| S vxlbie H7|Zi1| Z \/xp7"'7|zit| Z vxp}7
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R1=RN{|z|w < 8y/tlogp},
Re =R N{|z| > 8/ tlogp}.

We have

I{A 1,
P57A<EﬂFi1 N ﬂFit) = Ll/ exp < — -z W_1z>dz.
@2m)P Wz Jr 2

(27)

By (C1) we have C5' < Anin(W) < Amax (W) < Cy. Note that [|[W — W], = O(p"¢)

and [W| = (1+0(p" )P |W| = (1+ O(p*>¢))|W]|. This implies that

1 1,
—1/ exp ( ——z W_1z> dz
(27r)pT+t|W‘§ R1 2

1 1 /- -
= (1+0@p** logp))—/ exp < — 5% w 1z)dz.
R1

(2my W

Furthermore, it is easy to see that

1 1, _
W/R exXp ( — éz W 1z>dz = O(p 32t>,

1 1 /.- —1 _
W/R exp ( — 52 W Z)dZ = O(p 32t>.

Thus, it follows from (27)-(29) that

(28)

(29)

Ps.a <E NF;,N---N Fﬁ) = (1+0((p* *logp))Ps.a(E)Ps (Fi1 N---N Fn) +O(p3).

As the proof of Lemma 6, we can show that
¢ 1 tqa
3 P(;(Fil n---nN F) = (1+0(1))nexp ( - %)
i1<--<it€H§ )
It follows from (26) that
P5,A< U {E N Fj}) < OzP(s’A(E) + 0(1).
jEHS

This, together with (23) and (24), implies that

P57A(MI € Ra) < Oé[{A} + (1 — (I)P57A(EC) + 0(1),
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where o(1) is uniformly for 8. Hence, we have
P(Mj € Ry, A) < aP(A) + (1 — a)P(E°, A) + o(1)
and
P(M; € R,) < aP(A) + P(A°) + (1 — a)P(E*, A) + o(1). (30)
We next prove that
P(Mg € Ra, A) > aP(A) + (1 — a)P(E, A) + o(1), (31)
and hence
P(Mq € Ry) > aP(A) +P(A°) + (1 — a)P(E", A) + o(1), (32)

T o o o 0\’ o NQZ);
where E = {maxicy |Z7| < \/Tp}, Z° = (Z7,...,2;) , and Z7 = % It suffices to show

that
Ps.a(Mg € Ry) > aI{A} + (1 — a)Ps 4(E) + o(1). (33)

Define H{ = {j € H¢ : |w;j| < p~¢ for any i € H} for 2r < £ < (1 —7)/2. It is easy to see
that Card(H¢) > p — O(p'™%). Then

PoaMa € Ro) = Poalugx|Zil 2 V) + Paalinge|Z0) < o el 251 2 /o)
> Psa(max|Z?| > \/T,) + Ps a(max |Z]| < /T, max|Z7| > \/z;).
i€H i€H ]er

Note that on A, max; g [(£20);| = max;c e | D_ep wjidi| < 4p"=¢+/log p. It follows from

the same arguments as above and using the left hand side of Bonferroni inequality that

Ps.a(max |Z?| < \/Tp, max |Z{| > \/T,)
i€H jeHs

> Po.a (e 201 <y max |2 — (8); /| = v + Oy loe)
! jeHs

> aPs a(E) + o(1)
Hence, (33) is proved.
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We next compare P(EC,A) with P(E° A). Without loss of generality, we assume
that for any ¢« € H, ; > 0. By Lemma 3 we also can assume that, on the event A,

89)i . 50 > §; — O(p'~*/2) for some 2r < a < 1 — 2r. Note that

VWii

Poa(max|Zi| > /&) — Ps.a(max Zi = /)| < P.almin Z < /@) = (1)

and

Po.amax |27] > /&) = Paa(max 20 > /)| < Psamin Z7 < — /&) = of1).

It suffices to show that

P(max Z; > \/7,, A) < P(max Z7 > \/x,, A) + o(1). (34)

icH ieH
Let Zo = {(i1, ..., im) : 31 <1< j <'m, such that |o;,;,| > p~*} and let Z = {(i1, ..., 0, :

1<y <+ <y < p}. We can show that

w0, "))

By some simple calculations, for £ < (1 — 2r), we have |Zy|/|Z| = o(1). Thus, P(8 €
Zy) = o(1). For & € I§ with 2r < £ < (1 — 2r), using the same arguments from (27) to
(29), we obtain that
P.a(max Z > /z) = 1{A} = {A} [ (1= Ps(Z = &) +o(1).
i€H
Similarly, let Z; = {(i1,...,4m) : I1 <1 < j < m, such that |w; ;| > p~¢}, then we can
get |Z;|/|Z] = o(1), and for & € I,

Ps,a(max Z > /)
= H{A} - HAM] (1-Ps(Z0 > i) +ol1)

> A}~ H{AY ] (1= PalZ > v, + O ~) +o(1).  (39)

for any a satisfying 2r < a <1 —2r. By Lemma 4, we have for § € Z§ N Z7,

Ps.almax 27 > /i) = [{A} = HAY [ (1= Ps(Z = ya) ) + (1),

1€H
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which, together with the fact P(6 € Zy) = o(1) and P(é € Z;) = o(1l), proves (34).
Proposition 1 (i) is proved by (30),(32) and (34). 1

Proof of Proposition 1 (ii). Define Mg, = max;c 4c |(QZ);/ /@], Mg = maxic4 |(R2Z);//wiil,
(Q2Z);|, and M, = maxes (22 Z);|. By the definition of A, we see

!/

M | = max;cge
Q2

that Mg and Mg, are independent. Hence we have

P(Ma > i) = P(Mg > i) +P(Mg < vz )P(Mg >\/x—p)
- oy = i) oy )= )

We next prove that

P(Mo > ya,) 2 P(M, > i) +o(1). (36)

From the proof of Proposition 1(i), we can assume that max;<;<,|0;] < 64/logp. Set
A = {max;e 4c(max; a;;0;]) < \/Qﬁo log p} for some By < 1 being sufficiently close to 1.

Because w;; = Y ©_.a? and > max; a -+ €2 for i € A° with some ¢; > 0, we
> 7=1"1j i=1 zg J 1

have by Lemma 3,

(20);
> Y
P(l;relgi( ol 2 (1 + 2¢) Eréi)c((mjax la;;0:|) + 0(1)> — 1,

for some constant €, > 0. Thus we have

P(My € R a?) > P(125] > vy, A°)
> P(22 - 67> Ty — (1+ )20 log ,Ac>—
P(A°) — o(1), (37)

where iy = arg max;e 4c(max; |a;;0;|). We next consider P(M;) € R,, A) and P<M’
Ra,A). Let ZF = (2 Z); and & = (35),. Then

' — > >
PoalMoy € Ro) = Poa(zax 1271 2 V) +Poal max |21 < Vow, e, 1251 2 o)
= Ps A(lr%%ﬁc \ZF| > \/Zp) + Ps.al Jnax |Z7| < \/_)P(;A( Jnax Z7| > /7).
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Let H = {iy,..., iy} be uniformly drawn from {1,2,...,p}. We divide H¢ into two sets
H, and H,, where

Hy = UL {1 <j < p:laggl > lag,pml, 7 i} = Ul Hi, Hy= H"\ H;.

It is easy to see that Card(H;)< p°". We next show that |(Q%6)z| < V2Bylogp + o(1)
uniformly for ¢ € H; with probability tending to one. As in the proof of Lemma 3, we
modify the definition of Z; to

To = {1 <1 < ... <1y < p: there exist some i, and i; # i

such that |a;;;| > |a; | for some i € Hlk}.

It’s easy to show that Card(Zy)< p'™ C1"~2 = o(1)C}" since m = p” and r is arbitrarily
small. Note that, for i € Hy, and (iy,..., i) € L,
20); = Z ;i 03, = @3, 04, + Z ;i 03, = @3, 04, + O(p_r\/@)-
=1 itk
This implies that on A, P5,A<maX¢€HmAc ](Q%é)z| < V2B logp + O(p‘”\/@)) — 1
which in turn yields that for supp(d) € Zg,

P57A< max |Z7| > \/_> < Card(H,)P <|N(0 | > /x, — /2B logp + O(p Vlogp)) +o(1)

i€H1NA®
= o(1).

For i € H,, we have (Qéé)i => " 3,0, = O(p~"\/logp). Thus,

Jj=1 %

Ps.a( max |Z7| > /z,) =P ( max

jeHNA® jEH2NAC

Vil = /) [{A} + o(1) = ap [ {A} + o(1),

where Y7,...,Y, are ii.d. N(0,1) random variables. Let E* = {maX;epnac |Z]| < \/Zp}-
We have
Pé’A(MS/]% S Ra) < ap + (1 - Oép)P(;,A(E*C) + 0(1) (38)

Without loss of generality, we assume that for any ¢ € H, §; > 0. By Lemma 3, we have
69 > 0F — O(p"~%/?) with some 2r < a < 1—2r. Similarly as (33) and (34), it follows from

Bonferroni’s inequality that

Ps,a(Mq € Ry) > ap + (1 — a,)Ps a( max ZF > /z,) + o(1). (39)

i€ HNAC
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By Lemma 3 and §; > 0, we have P(minieH of >0 — O(pr_“m)) — 1. Hence

Poa(mip 2 < —v3) <P(min ¥i < —ya + 0w "") = of1).

1<i<m

This implies that

Poal max 2] > &) = Ps.al max Z: > /)

i€ HNA® i€HNAC

< in zZ* < — - )
< Ps.almin 27 < = /&) = o(1).(10)

By (37)-(40), (36) is proved. Hence we have P<MQ > \/x_p) > P<Mﬂ% > \/m_p> + o(1)

and this proves Proposition 1(ii). &

Proof of Proposition 2 (i). We first prove that for 8 > (1 — \/7)? + ¢,
P(MI € Ra> 1. (41)

Let (Zi,...,Z,)" be a multivariate normal random vector with p’-sparse (r < 1) mean
Vnéd = \/n(dy,...,9,) and covariance matrix 3 = (0;;). We assume that the diagonal
oi; =1 for 1 <i < p, and ¥ satisfies condition (C1) and (C2). Then it suffices to show
P(maxlgigp |Z;| > \/:L‘_p> — 1, where z, = 2logp — loglogp + ¢, and ¢, is the 1 — «

quantile of eXp(—\/%r exp(—xz/2)). Note that

P((max |21 > y37) > P max(sign(6)2) > /75 ).

where H = {i: 6; # 0,1 <i < p}. Thus,

P(max | Z;| > \/x_p> > P(main > \/x_p—a>,

1<i<p icH

where a = /28 1ogp for B > (1—/r)*+eand U;, 1 <i < p, are N(0, 1) random variables

with covariance matrix Y. Because

Vi —a = +/2logp—loglogp+ ¢o — \/28logp
< (V2 —+/26)\logp < v/2rlogp — loglog pr — M

for any M € IR, we have by Lemma 6

P(main > \/a:_p—a> > P(%%;{Ui > \/210ng — log log p” —M)

i€H
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— 1—exp < - exp(M/Q)),

1
2/
for arbitrary large M. By letting M — oo, we have P(maxieH Ui 2 \JTp— a) — 1. Thus
P<MI € Ra) — 1 for any 8 > (1 —/r)*+ €. It remains to prove that for 8 < (1 —+/r)?,

mP<MleRa) <a

p—00

By noting that P(MI € Ra) < P(maxjey Z7 > x,) + P(max;eye Z2 > z,), it suffices to
show that for 8 < (1 — y/7)?,

2> <
,,IHEO Plnax 27 > x,) < (42)

and

P(%%;(Z > x,) — 0. (43)

Note that ¢; = 0 for i € H®. It follows from Lemma 6 that (42) holds. For (43), we have

P(max Z? > z,) < p"P(|N(0,1)| > /7, — v/28logp) < Cp" '~ VB (log p)?,

i€H

where (' is a positive constant. Because 8 < (1 — /7)?, we have (43). Combing (42) and
(43), Proposition 2 (i) is proved.

Proof of Proposition 2 (ii). To prove Proposition 2 (ii), we only need to prove the

following lemma.

Lemma 7 Consider Hy: & has m = p", r < 1/4 nonzero coordinates with \/w;;|0;| >
\/Qﬂ*nﬂ, where B, > 0 if §; # 0. The nonzero locations ly < ly < -+ < l,, are randomly
and uniformly drawn from {1,2,... . p}. If Bx > (1 — \/7)?> + € for some € > 0, then

P(Mﬂ e Ra> 1

Note that ,/w;;|0;] = N /T =1/ 2510?;” - /OiiWi =1/ 25 logp , where 8* = fo; w;;
and 3 > (1 — \/F)Q/(mmlggp oiwi;) + €, we have 8* > (1 — /r)? + . Thus by Lemma

7, we have P(MQ € Ra) — 1
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We next prove Lemma 7. As the proof of (41), it suffices to show that

Q6); 251
P(min [(£20)i] > b ng) — 1
1€H ‘/wi7i n

for some 8 > (1 — y/r)? + €. This follows from Lemma 3 immediately.

Proof of Proposition 3 (i). Let (Z,...,Z,)" be a multivariate normal random vector
with mean 6° = \/EQ%(S and covariance matrix I,. Let H = {iy,...,4,} be the support
of 4. Define

Hy = UL {1 <j < pagg| > laiorly = Uiy Hu,
where r; > 0 satisfies /71 + 7 < 1 — /3. We have

P(max |Z;] > \/7,) < P(max|Z| > /z,) + P(max|Z;] > /7).
1€H 1€ f

1<i<p

Thus it suffices to show

P(max|Z| > v/7p) = 0, (44)
and
Jim P(gggﬁg Zi| = \/zp) < . (45)
Define

I, = {1 <1 <...< 1y <p: there exist some i and i; # i

such that |a; | > |a; pe)| for some i € Hlk},

where a > 2r satisfies 3r + 7 + a < 1. Then Card(Z;)< p"" 1 *eCr=2 = o(1)C)r. It
follows that for i € Hyy, and (i1, ...,im) ¢ 73,

p

Zaik(Sk’ = nla;; 6, + Z aijo;

k=1 JEH jin

< V2Blogp + O(p"~"*(log p)?).

Vn|(9226),| = Vn
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Thus P<maXiGH1 | Zi| >, /a:p) < Oprtr=(1=vB) (log p)2+0(1) = o(1) and this proves (44).
Set Hgk = {1 S] S p: |a,~k(pr1)| Z |aikj| > |aik(pr2)|} and H2 = Uznlegk. Let

Ty = {1 <1 < ... <1ty < p: there exist some i, and i; # i

such that |a;;,| > |a; pe)| for some i € H2k},

where a > 2r and ry > 2r satisfy 3r +ry + a < 1. We have Card(Z,)< p1+’"+7"2+a0;”—2 =
o(1)Cy. For i € Hy, and (iy, ..., im) ¢ I, we have

’ = \/ﬁamk&k—i— E aijéj
]€H7]7£Zk

= O(p™""*(logp)z) + O(p"~“*(logp)?).

Vil(Q28),| = vn

Hence

(max|Z| > \/—> < CCard(Hy)p~" + o(1) = o(1). (46)

i€Ho

For i € Hy := (H; U H)¢, we have \/ﬁ(Q%J)i = VS agdy = O(pr/2(log p)?).
This, together with Lemma 6, implies that

lim P<max\Z]>\/_)<a (47)

p—00 1€ H.

By (46) and (47), we prove (45) and complete the proof of Proposition 3 (i).

Proof of Proposition 3 (ii). It suffices to verify the condition in Lemma 7. Note that
forv e H,

Zﬂlogp 26*logp
—5 | — el S 2 =/ 2L
VWiil0i = max |ag||d:] - | Jwii/ max af; = wii/ WX a} —

where 8* = fuw;;/ maxi<j<pal;. If > (1 —/r)*/(ming<;<p(wii/ maxi<j<, a3;)) + €, then
we have 8* > (1 — /r)* + €. Thus, by Lemma 7, we have P<MQ € Ra> — 1. and the

proof of Proposition 3 (ii) is complete. &

Proof of Proposition 1 in Section 3.2.2. The proof that CLIME satisfies (8) in
Section 3.2.2 follows from Cai, Liu and Luo (2011) and Cai, Liu and Zhou (2013). For the
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adaptive thresholding estimator, by the proof of Theorem 1 in Cai and Liu (2011), we have
|7 = ||, < Csap(logp/n)=9/2 with probability tending to one. By the inequality
IE7 = Qllzy < IED) 15 = Sz, 1912, and [(57)7 = Qoo < [(£7) 7|2, 27 -
3| |2, , we prove (8) in Section 3.2.2 holds.
We now consider X € Fo(My, My). Let |01y > ... > |0yp)| be an arrangement of
—1-a

Oi, ..., 0p. Hence, we have max; |0 ;| = O(J ). By the proof of Lemma 2 in Cai

and Liu (2011), we have with probability tending to one,

log p 1
n Vnlogp
Let M > 0 be a sufficiently large number and k, = [Mnlogp]"/0+%)  Then for any

J > kn, |oig| < CM~1\/1/(nlogp) and correspondingly, |6; ;)| < i), where \;; =
5/ @ as defined in Cai, Liu and Xia (2013). Hence it is easy to see that, with

c}ij — Jij
max | = <2
<i,j<p Qij

probability tending to one,

p
R . o log p 1
16311631 = A} = 03 < C[Mnlogp] /20 [Z8E — o) (48)

log p

j=1
by the condition log p = o(n®“+3). By (48) and the above arguments, we prove (8) in

Section 3.2.2. 1

Proof of Theorem 5. Note that the CLIME estimator only depends on 32,,. So Qs

independent with X — Y. Let x, = 2logp — loglogp + q,. It yields that
Pr (Mg > 2[5, ) = P, (I(D,220QD,) 22 > 1,/ ),

where D,, = (diag(%,Q))""/% and Z are standard multivariate normal random vec-
tor which is independent with 3,. By the Sidak’s inequality, we have on the event
{|diag(D,QEQD,) — I,|e = o(1/logp)},

Pu, (I(D.QZ0QD,) 2] > 3,)5,) = 1Py, (|(D.QBQD,) 2. < 2,[%,)

< 1-[]Pael <zl

=1
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= a+o(l),

where, given X,,, & is the centered normal variable with variance (diag(DnQEQDn))i,i
So it is enough to prove |diag(D,QXQD,,) — I,| = op(1/logp). By the definition of
Q, we have P(||2]|z, < M,) — 1. So under M2 = o(,/n/(log p)*/?), we have

| diag((Q22,82)) — diag((QEQ))| = 0p(1/ log p).

By Lemma 1 in Cai, Liu and Zhou (2013), we have P(|Q%,Q — Q| < CM,+/logp/n) —
1. By the proof of Theorem 2 in Cai, Liu and Zhou (2013), P(|Q2—8|. < CM,\/logp/n) —

1. Hence, under the condition

= o(v/n/(log p)*?), (49)

we have |diag(D,QEQD,) — I,|. = op(1/logp).
The above arguments imply that
P(n max(Q(X — Y — §),)2/a! ) < 210gp> — 1. (50)

7

To show that Py, (®4(2) = 1) — 1, we first prove
p
P(mZaXZd)i?j < c) 1 (51)
j=1

Actually, with probability tending to one, we have

p p p
doah < 2) (@ —wy)?+2) W
j=1 j=1 j=1
1
< oM /222 e (52)
n

1/2 A1/2
’LZ

Hence (51) holds. By the proof of (6), we have max;cy |(£26); /& 0| < Cp~“max;ecp |6

with probability tending to one. Without loss of generality, we can assume that max;e g |J;| <
C'\/log p/n for some large C' > 0. Otherwise, max;ec (£26) /w1/2| > C/log p/n for some
large C' > 0 and by (50) we have Py, (o () = 1) — 1. Let 4, (may be random) be the
index such that |6;,/ o/ ’| > v/2B1og p/n. Then we have with probability tending to one,

20?0
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|(f25)?0/d),~0i0| > 204410 Winio (B +0(1)) logp/n > (24 €1) log p/n for some €¢; > 0. Note that,
by the independence between (X — p,, Y — p,) and the positions of nonzero locations in

9,

P(n(QX — ¥ = 8),,)*/al)), > /logp)

p

n(QUX — Y = 8))2/2) > \flogp)Plio = )

|
]
-
—
(%)

This proves Py, ($o(Q) = 1) — 1.
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