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Abstract

This supplement provides theoretical and numerical comparisons of the three

oracle tests and presents more extensive simulation results comparing the numerical

performance of the proposed test with that of other tests in the non-sparse cases

as well as for non-Gaussian distributions. We also prove Propositions 1-3 and the

technical results, Lemmas 3 and 4, which are used in the proofs of the main theorems.

1 Comparison of the Oracle Tests

In this section, we consider both the theoretical and numerical performance of the three

oracle maximum-type tests. The results show that the test Φα(Ω) significantly outper-

forms the other two tests under the sparse alternatives in the oracle setting.

1.1 Theoretical Comparisons of the Three Oracle Tests

The test Φα(Ω) is shown in Section 3.2 to be minimax rate optimal for testing against

sparse alternatives. We now compare the power of the test Φα(Ω) with that of Φα(Ω
1
2 )
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and Φα(I) under the same alternative H1 as in Section 3.2. Let

A = {1 ≤ i ≤ p : (Ω
1
2 )ij = 0 for all j �= i}.

That is, i ∈ A if and only if all the entries in the i-th row of Ω
1
2 are zero except for the

diagonal entry.

Proposition 1 (i) Suppose (C1)-(C3) hold. Then under H1 with r < 1/6, we have

lim
p→∞

PH1(Φα(Ω) = 1)

PH1(Φα(I) = 1)
≥ 1. (1)

(ii) Suppose (C1)-(C3) hold. Assume there exists a constant �0 > 0, such that for each

i ∈ Ac at least one non-diagonal element in the i-th row of Ω
1
2 has a magnitude larger

than �0. Then, under H1 with kp = O(pτ ) for all 0 < τ < 1, we have

lim
p→∞

PH1(Φα(Ω) = 1)

PH1(Φα(Ω
1
2 ) = 1)

≥ 1. (2)

The condition on Ω
1
2 is mild. In fact, by the definition of A, there is at least one

nonzero and non-diagonal element in each i-th row of Ω
1
2 with i ∈ Ac. In Proposition 1,

we assume that these nonzero and non-diagonal elements have magnitudes larger than �0.

Proposition 1 shows that, under some sparsity condition on δ, Φα(Ω) is uniformly at

least as powerful as both Φα(Ω
1
2 ) and Φα(I).

We now briefly discuss the different conditions on r in the theoretical results. For the

maximum type test statistics, the range r < 1/2 is nearly optimal. Indeed, in the mean

testing problem, the case r > 1/2 is treated as the dense setting and r < 1/2 as the

sparse setting, similar to other sequence estimation problems. In the dense setting, the

sum square type test statistics may outperform the maximum type test statistics under

certain conditions. The different conditions imposed on r in this section are due to the

technical arguments used in the proofs. We believe these ranges for r can be improved to

r < 1/2 but the proof would be difficult. When the assumption on r does not hold, the

tests are still valid but the comparison results may fail.
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The test Φα(Ω) can be strictly more powerful than Φα(Ω
1
2 ) and Φα(I). Assume that

H
�

1 : δ has m = pr, r < 1/2 nonzero coordinates with

|δi|√
σi,i

=

�
2β log p

n
, where β ∈ (0, 1) (3)

if δi �= 0. The nonzero locations l1 < l2 < · · · < lm are randomly and uniformly drawn

from {1, 2, . . . , p}.

Proposition 2 (i). Suppose that (C1) and (C2) hold. Then, under H
�
1 with β ≥ (1 −

√
r)2 + ε for some ε > 0, we have

lim
p→∞

PH
�
1

�
Φα(I) = 1

�
= 1.

If β < (1−
√
r)2, then

lim
p→∞

PH
�
1

�
Φα(I) = 1

�
≤ α.

(ii). Suppose that (C1) and (C3) hold and r < 1/4. Then, under H
�
1 with

β ≥ (1−
√
r)2/( min

1≤i≤p

σi,iωi,i) + ε for some ε > 0, (4)

we have

lim
p→∞

PH
�
1

�
Φα(Ω) = 1

�
= 1.

The condition r < 1/4 can be weakened if we assume some stronger condition on Ω.

In fact, based on the proof, we can see that it can be weakened to r < 1/2 if Ω is sp-sparse

and sp = O(pτ ), ∀τ > 0.

Note that σi,iωi,i ≥ 1 for 1 ≤ i ≤ p. When the variables are correlated, ωi,i can

be strictly larger than 1/σi,i. For example, let Σ = (φ|i−j|) with |φ| < 1. Then

min1≤i≤p σi,iωi,i ≥ (1 − φ2)−1 > 1. That is, MΩ is strictly more powerful than MI under

H
�
1.
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In Proposition 2, the comparison between Φα(Ω) and Φα(I) is restricted to H
�
1, which

is special. However, the proof of Proposition 2 in fact implies the following more general

result. Suppose that min1≤i≤p σi,iωi,i ≥ 1 + ε1 for some ε1 > 0. Let β0 and β1 be any

constants satisfying

(1−
√
r)2

min1≤i≤p σi,iωi,i

+ � ≤ β0 < β1 < (1−
√
r)2

for some � > 0. Replacing (3) by
�

2β0 log p
n

≤ |δi|√
σi,i

≤
�

2β1 log p
n

, we have

lim
p→∞

PH
�
1

�
Φα(Ω) = 1

�
= 1,

and

lim
p→∞

PH
�
1

�
Φα(I) = 1

�
≤ α.

We now turn to the comparison of the power of Φα(Ω) with that of Φα(Ω
1
2 ) under the

alternative

H1
�� : δ has m = pr, r < 1/7 nonzero coordinates with

max
j

|ajiδi| =
�

2β log p

n
, where β ∈ (0, 1) (5)

if δi �= 0, where Ω
1
2 = (aij). The nonzero locations l1 < l2 < · · · < lm are randomly and

uniformly drawn from {1, 2, . . . , p}.

Proposition 3 (i) Suppose (C1) holds. Then under H
��
1 with β < (1−

√
r)2, we have

lim
p→∞

P
H

��
1

�
Φα(Ω

1
2 ) = 1

�
≤ α.

(ii) Suppose that (C1) and (C3) hold. Then under H
��
1 with

β ≥ (1−
√
r)2/( min

1≤i≤p

(ωi,i/max
j

a2
ji
)) + ε for some ε > 0,

we have

lim
p→∞

P
H

��
1

�
Φα(Ω) = 1

�
= 1.
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It is easy to check that ωi,i/(maxj a2ji) ≥ 1 for all 1 ≤ i ≤ p. When the variables are

correlated, ωi,i can be much larger than maxj a2ji. For example, if for every row of Ω
1
2 ,

there are at least 2 nonzero aij, then ωi,i =
�

p

j=1 a
2
ij

> maxj a2ji. In this case, MΩ is

strictly more powerful than M
Ω

1
2
.

As the discussion below Proposition 2, the condition (5) can be generalized. Suppose

that min1≤i≤p(ωi,i/maxj a2ji) > 1 + ε1 for some ε1 > 0. Let β0 and β1 be any constants

satisfying

(1−
√
r)2

min1≤i≤p(ωi,i/maxj a2ji)
+ � ≤ β0 < β1 < (1−

√
r)2

for some constant � > 0. If (5) is replaced by
�

2β0 log p
n

≤ maxj |ajiδi| ≤
�

2β1 log p
n

, then

lim
p→∞

P
H

��
1

�
Φα(Ω) = 1

�
= 1

and

lim
p→∞

P
H

��
1

�
Φα(Ω

1
2 ) = 1

�
≤ α.

1.2 Numerical Comparisons of the Three Oracle Tests

We now make a numerical comparison of the three oracle tests Φα(Ω), Φα(Ω
1
2 ) and Φα(I).

Models 1 and 4 in Cai, Liu and Xia (2013) are considered. Besides, we also study the

following two additional models.

• Model 9: Σ∗ = (σ∗
ij
) where σ∗

i,i
= 1, σ∗

ij
= 0.5 for i �= j. Σ = D1/2

Σ
∗D1/2.

• Model 10: Σ
∗ = (σ∗

ij
) where σ∗

i,i
= 1, σ∗

ij
= Unif(0, 1) for i < j and σ∗

ji
= σ∗

ij
.

Σ = D1/2(Σ∗ + δI)/(1 + δ)D1/2 with δ = |λmin(Σ
∗)|+ 0.05.

We can see from Table 1 that the estimated sizes are reasonably close to the nominal

level 0.05 for all three tests, and the test Φα(Ω) has the highest power in all four models

over all dimensions ranging from 50 to 200 and outperforms both Φα(I) and Φα(Ω
1
2 ).
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p 50 100 200 50 100 200 50 100 200 50 100 200

Model 1 Model 4 Model 9 Model 10

Size

Φα(I) 0.06 0.05 0.04 0.03 0.04 0.04 0.03 0.02 0.02 0.03 0.04 0.04

Φα(Ω
1
2 ) 0.05 0.05 0.03 0.04 0.04 0.04 0.03 0.04 0.04 0.03 0.04 0.04

Φα(Ω) 0.05 0.04 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.03 0.03 0.05

Power when m = 0.05p

Φα(I) 0.11 0.22 0.42 0.08 0.10 0.29 0.03 0.10 0.08 0.04 0.18 0.37

Φα(Ω
1
2 ) 0.23 0.63 0.87 0.16 0.20 0.64 0.03 0.36 0.26 0.06 0.44 0.79

Φα(Ω) 0.32 0.73 0.94 0.22 0.29 0.81 0.04 0.37 0.26 0.05 0.60 0.92

Power when m =
√
p

Φα(I) 0.18 0.32 0.49 0.15 0.29 0.51 0.08 0.06 0.18 0.11 0.26 0.18

Φα(Ω
1
2 ) 0.57 0.80 0.92 0.33 0.80 0.88 0.21 0.22 0.66 0.87 0.66 0.33

Φα(Ω) 0.70 0.89 0.96 0.47 0.97 0.97 0.21 0.22 0.66 1.00 1.00 0.48

Table 1: Empirical sizes and powers for three oracle maximum-type tests for Model 1, 4,

9 and 10 with α = 0.05 and n = 100. Based on 1000 replications.

2 Additional Simulation Results

In this section we present additional simulation results comparing the numerical perfor-

mance of the proposed test with that of other tests. Non-Gaussian distributions are also

considered. In addition, we compare the performance of the proposed test with the pro-

cedure using the covariance matrix estimators given in Ledoit and Wolf (JMVA, 2004)

and Kubokawa and Srivastava (JMVA, 2008).

More extensive simulations are carried out for a range of non-sparse settings. Specifi-

cally, we consider non-sparse covariance structures by adding to the covariance/precision

matrices in Models 1-5 a perturbation of a non-sparse matrix E, where E is a symmet-

ric matrix with 30% random nonzero entries drawn from Unif(−0.2, 0.2). Furthermore,

we carried out simulations for five additional general non-sparse covariance models. The

comparisons were consistent with the cases reported in Cai, Liu and Xia (2013).
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2.1 Non-Sparse Cases

We now consider additional non-sparse covariance models. We will first study Models

1
�
-6

�
, where the covariance matrix or the precision matrix is a sparse matrix considered

in Cai, Liu and Xia (2013) with a non-sparse perturbation, and then consider five more

general non-sparse models, Models 11-15.

Let E be a symmetric matrix with the support of the off-diagonal entries chosen

independently according to the Bernoulli(0.3) distribution with the values of the nonzero

entries drawn randomly from Unif(−0.2, 0.2). The following 6 models are considered,

where each of them is a sparse matrix with a perturbation of the matrix E. Thus all of

these covariance/precision matrices are non-sparse.

• Model 1
�
: Σ

∗ = (σ∗
ij
) where σ∗

i,i
= 1, σ∗

ij
= 0.8 for 2(k − 1) + 1 ≤ i �= j ≤ 2k,

where k = 1, ..., [p/2] and σ∗
ij
= 0 otherwise. Ω

∗ = Σ
∗−1 + E. Ω = Ω

∗ + δI with

δ = |λmin(Ω
∗)|+ 0.05.

• Model 2
�
: Σ

∗ = (σ∗
ij
) where σ∗

ij
= 0.6|i−j| for 1 ≤ i, j ≤ p. Ω

∗ = Σ
∗−1 + E.

Ω = Ω
∗ + δI with δ = |λmin(Ω

∗)|+ 0.05.

• Model 3
�
: Ω

∗ = (ωij) where ω∗
i,i

= 2 for i = 1, ..., p, ω∗
ii+1 = 0.8 for i = 1, ..., p − 1,

ω∗
ii+2 = 0.4 for i = 1, ..., p − 2, ω∗

ii+3 = 0.4 for i = 1, ..., p − 3, ω∗
ii+4 = 0.2 for

i = 1, ..., p− 4, ω∗
ij
= ω∗

ji
for i, j = 1, ..., p and ω∗

ij
= 0 otherwise. Ω = Ω

∗ +E + δI

with δ = |λmin(Ω
∗)|+ 0.05.

• Model 4
�
: Σ

∗ = (σ∗
ij
) where σ∗

i,i
= 1, σ∗

ij
= 0.8 for 2(k − 1) + 1 ≤ i �= j ≤ 2k,

where k = 1, ..., [p/2] and σ∗
ij

= 0 otherwise. Σ = D1/2
Σ

∗D1/2 + E + δI with

δ = |λmin(D
1/2

Σ
∗D1/2 +E)|+ 0.05.

• Model 5
�
: Ω = (ωij) where ωij = 0.6|i−j| for 1 ≤ i, j ≤ p. Σ = D1/2

Ω
−1D1/2+E+δI

with δ = |λmin(D
1/2

Ω
−1D1/2 +E)|+ 0.05.

• Model 6
�
: Ω1/2 = (aij) where ai,i = 1, aij = 0.8 for 2(k− 1)+1 ≤ i �= j ≤ 2k, where

k = 1, ..., [p/2] and aij = 0 otherwise. Ω = D1/2
Ω

1/2
Ω

1/2D1/2 andΣ = Ω
−1+E+δI
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with δ = |λmin(Ω
−1 +E)|+ 0.05.

Simulations results for sizes and powers are reported in Table 2. For reasons of space,

we only list the case when the magnitudes of the signals can vary for the power analysis.

When the magnitude is fixed, the performance of the tests is similar. For those non-sparse

models, similar phenomenon has been observed as the sparse cases. It can be seen from

Table 2 that the new test Φα(�Ω) still outperforms all the sum of square type tests. Thus,

our method is not restricted to the sparse cases.

p 50 100 200 50 100 200 50 100 200

Model 1
�

Model 2
�

Model 3
�

T 2 0.05 0.05 − 0.06 0.05 − 0.06 0.05 −

BS 0.06 0.07 0.07 0.06 0.07 0.07 0.06 0.06 0.04

SD 0.06 0.07 0.07 0.06 0.07 0.07 0.06 0.06 0.04

CQ 0.06 0.07 0.08 0.06 0.07 0.07 0.06 0.06 0.04

Φα(�Ω) 0.04 0.04 0.05 0.04 0.04 0.05 0.08 0.04 0.05

Model 4
�

Model 5
�

Model 6
�

T 2 0.05 0.05 − 0.04 0.03 − 0.05 0.06 −

BS 0.07 0.07 0.05 0.05 0.05 0.07 0.06 0.07 0.06

SD 0.08 0.05 0.06 0.05 0.05 0.07 0.06 0.07 0.07

CQ 0.07 0.07 0.05 0.05 0.06 0.07 0.06 0.07 0.07

Φα(�Ω) 0.05 0.05 0.05 0.06 0.07 0.07 0.03 0.04 0.05

Table 2: Empirical sizes based on 1000 replications with α = 0.05 and n = 100.

We now study five more general non-sparse models. Let D = (dij) be a diagonal

matrix with diagonal elements di,i = Unif(1, 3) for i = 1, ..., p. The following five models

are studied where the magnitude of the signals can vary. Three different numbers of

nonzero entries of the signal are considered: 0.05p,
√
p and 0.4p. In the last case, the

signal is also not sparse.

• Model 11: Σ
∗ = (σ∗

ij
) where σ∗

i,i
= 1 and σ∗

ij
= |i − j|−5/2 otherwise. Σ =

D1/2
Σ

∗D1/2.
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p
50

10
0

20
0

50
10
0

20
0

50
10
0

20
0

50
10
0

20
0

50
10
0

20
0

50
10
0

20
0

m
=

0.
05
p

M
od

el
1�

M
od

el
2�

M
od

el
3�

M
od
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4�

M
od

el
5�

M
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6�

T
2

0.
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−
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−
0.
18

0.
26

−
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14

0.
37
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0.
18

0.
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13

0.
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−

B
S

0.
07

0.
10

0.
10

0.
07

0.
09

0.
16

0.
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0.
08

0.
09

0.
10

0.
22
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24

0.
09

0.
27

0.
34

0.
07

0.
09

0.
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S
D

0.
06

0.
12

0.
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0.
07

0.
10

0.
17

0.
16

0.
09

0.
10

0.
10

0.
21

0.
26

0.
11

0.
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0.
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0.
07
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09

0.
10

C
Q

0.
07

0.
09

0.
10

0.
07

0.
09

0.
16

0.
16

0.
08

0.
09

0.
10

0.
22

0.
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0.
09

0.
26

0.
34

0.
07

0.
08
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(� Ω

)
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0.
07
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p
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M
od

el
5�
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0.
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−

B
S

0.
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10
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0.
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0.
14
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0.
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0.
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0.
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0.
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0.
12

0.
14
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Q

0.
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0.
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0.
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0.
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16

0.
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14
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24
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0.
61

0.
44

0.
66

0.
53
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0.
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=
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0.
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• Model 12: Σ
∗ = (σ∗

ij
) where σ∗

i,i
= 1, σ∗

ii+1 = σ∗
i+1i = 0.5 and σ∗

ij
= 0.05 otherwise.

Σ = D1/2
Σ

∗D1/2.

• Model 13: Σ = D1/2(F +2uu�)D1/2, where F = (fij) is a p×p matrix with fi,i = 1,

fii+1 = fi+1i = 0.5 and fij = 0 otherwise, and u is a standardized vector.

• Model 14: Σ
∗ = (σ∗

ij
) where σ∗

i,i
= 1, σ∗

ii+1 = σ∗
i+1i = 0.5, σ∗

ii+2 = σ∗
i+2i = 0.4 and

σ∗
ij
= 0.05 otherwise. Σ = D1/2

Σ
∗D1/2.

• Model 15: Σ = D1/2(F + u1u�
1 + u2u�

2 + u3u�
3)D

1/2, where F = (fij) is a p × p

matrix with fi,i = 1, fii+1 = fi+1i = 0.5 and fij = 0 otherwise, and ui are orthogonal

standardized vectors for i = 1, 2, 3.

For Model 11, the entries of Σ are decaying when they are further and further away from

the diagonal. The corresponding Σ and Ω are not sparse. For Model 12 and 14, all the

entries of Σ have magnitude at least equal to 0.05 and thus both Σ and Ω are not sparse.

For Model 13 and 15, Σ is a sparse matrix plus one or three rank one non-sparse matrices

and thus it is not sparse. The corresponding precision matrix Ω is also not sparse. We

can see from Table 4 that for those non-sparse models and non-sparse alternatives, similar

phenomena as the sparse cases are observed. Our test still performs reasonably well and

it outperforms all the sum of square type tests.
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p 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200

Model 11 Model 12 Model 13 Model 14 Model 15

Size

T 2 0.05 0.05 − 0.06 0.05 − 0.05 0.06 − 0.04 0.06 − 0.04 0.04 −

BS 0.07 0.06 0.05 0.05 0.06 0.06 0.08 0.05 0.06 0.05 0.07 0.06 0.06 0.06 0.06

SD 0.08 0.06 0.05 0.05 0.06 0.06 0.08 0.05 0.06 0.05 0.06 0.06 0.05 0.05 0.06

CQ 0.07 0.06 0.06 0.05 0.06 0.06 0.08 0.05 0.06 0.05 0.06 0.07 0.06 0.06 0.06

Φα(�Ω) 0.02 0.02 0.03 0.03 0.03 0.03 0.02 0.03 0.04 0.04 0.03 0.04 0.03 0.02 0.03

Power when m = 0.05p

T 2 0.17 0.43 − 0.32 0.33 − 0.23 0.99 − 0.06 0.16 − 0.31 0.40 −

BS 0.09 0.12 0.20 0.14 0.14 0.23 0.12 0.12 0.67 0.06 0.10 0.13 0.07 0.10 0.16

SD 0.09 0.13 0.20 0.14 0.14 0.23 0.12 0.12 0.68 0.05 0.09 0.14 0.07 0.09 0.16

CQ 0.09 0.12 0.20 0.14 0.13 0.22 0.12 0.12 0.67 0.05 0.10 0.13 0.07 0.11 0.16

Φα(�Ω) 0.14 0.41 0.80 0.26 0.50 0.64 0.25 0.82 1.00 0.04 0.11 0.25 0.20 0.50 0.84

Power when m =
√
p

T 2 0.49 0.59 − 0.87 0.96 − 0.99 1.00 − 0.46 0.56 − 0.53 1.00 −

BS 0.16 0.18 0.20 0.24 0.43 0.46 0.24 0.31 0.52 0.10 0.16 0.16 0.11 0.15 0.16

SD 0.16 0.17 0.20 0.24 0.43 0.46 0.25 0.31 0.52 0.11 0.17 0.17 0.12 0.14 0.16

CQ 0.15 0.18 0.20 0.24 0.42 0.45 0.24 0.30 0.51 0.10 0.16 0.16 0.11 0.14 0.16

Φα(�Ω) 0.37 0.57 0.53 0.75 0.88 0.98 0.73 0.96 1.00 0.34 0.43 0.27 0.38 0.73 0.85

Power when m = 0.4p

T 2 0.77 1.00 − 0.99 0.99 − 1.00 1.00 − 0.98 0.99 − 1.00 1.00 −

BS 0.24 0.68 0.99 0.32 0.78 0.99 0.86 0.99 1.00 0.44 0.75 0.99 0.35 0.67 0.93

SD 0.29 0.78 0.99 0.40 0.87 0.99 0.86 0.99 1.00 0.57 0.84 0.99 0.39 0.81 0.96

CQ 0.24 0.67 0.99 0.31 0.78 0.99 0.86 0.99 1.00 0.43 0.74 0.98 0.34 0.67 0.93

Φα(�Ω) 0.50 0.93 1.00 0.84 0.93 1.00 0.99 1.00 1.00 0.59 0.90 0.97 0.95 1.00 1.00

Table 4: Empirical sizes and powers for Model 11-15 with α = 0.05 and n = 100. Based

on 1000 replications.
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2.2 Non-Gaussian Distributions

For Model 6, we generate two independent random samples {Xk}n1
k=1 and {Y k}n2

k=1 from

multivariate models Xk = ΓZ(1)
k

+ µ1 and Y k = ΓZ(2)
k

+ µ2, with ΓΓ
�
= Σ, where

the components of Z(i)
k

= (Zk1, ..., Zkp)� are i.i.d. standardized Gamma(10,1) random

variables. We consider the case when µ1 − µ2 has m =
√
p nonzero elements with the

same signal strength for each coordinate. The results are summarized in Table 5.

p 50 100 200 50 100 200

Empirical Sizes Empirical Powers

T 2 0.041 0.051 − 0.716 0.456 −

BS 0.055 0.069 0.062 0.153 0.183 0.192

SD 0.060 0.063 0.063 0.170 0.177 0.207

CQ 0.058 0.072 0.064 0.152 0.180 0.186

Φα(�Ω) 0.050 0.039 0.048 0.875 0.722 0.597

Table 5: Sizes and Powers of tests based on 1000 replications with α = 0.05 and n = 100

for Model 6. µ1 − µ2 has m =
√
p nonzero elements. Signal strength keeps the same.

2.3 The Effects of Covariance Matrix Estimators

In this section we consider the effects of the covariance matrix estimators on the test by

comparing the proposed procedure with the test using the covariance estimator given in

Ledoit and Wolf (JMVA, 2004) and the Stein-type estimator in Kubokawa and Srivastava

(JMVA, 2008). The size and power results for our test Φα(�Ω) and tests based on these

two estimators (LW and KS in short) are shown in Table 6. It can be seen that LW either

suffers from serious size distortions or has powers much lower than that of the proposed

test, while KS always suffers from serious size distortions. We only list the case when the

magnitudes of the signals vary and when dimension p = 200, because KS mainly focuses
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on the case when p > n1 + n2 − 2.

Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Size

Φα(�Ω) 0.06 0.06 0.07 0.05 0.04 0.04 0.03 0.03

LW 0.06 0.09 0.07 0.06 0.96 0.11 0.24 0.20

KS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Power: m = 0.05p

Φα(�Ω) 0.90 0.82 0.80 1.00 1.00 0.63 0.67 0.89

LW 0.28 0.48 0.60 0.65 1.00 0.37 0.46 0.44

KS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Power: m =
√
p

Φα(�Ω) 0.97 0.93 0.89 0.99 1.00 0.64 0.59 0.94

LW 0.31 0.63 0.71 0.59 1.00 0.40 0.50 0.59

KS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 6: Size and power based on 1000 replications with p = 200 and n = 100.
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3 Proof of Technical Lemmas

Lemma 1 (Bonferroni inequality) Let A = ∪p

t=1At. For any k < [p/2], we have

2k�

t=1

(−1)t−1Et ≤ P(A) ≤
2k−1�

t=1

(−1)t−1Et,

where Et =
�

1≤i1<···<it≤p
P(Ai1 ∩ · · · ∩ Ait).

Lemma 2 [Berman (1962)] If X and Y have a bivariate normal distribution with expec-

tation zero, unit variance and correlation coefficient ρ, then

lim
c→∞

P
�
X > c, Y > c

�

[2π(1− ρ)
1
2 c2]−1 exp

�
− c2

1+ρ

�
(1 + ρ)

1
2

= 1,

uniformly for all ρ such that |ρ| ≤ δ, for any δ, 0 < δ < 1.

Lemma 3 Suppose (C1) holds. Then for pr-sparse δ, with r < 1/4 and nonzero locations

l1, ..., lm, m = pr, randomly and uniformly drawn from {1, ..., p}, we have, for any 2r <

a < 1− 2r, as p → ∞,

P
�
max
i∈H

���
(Ωδ)i√
ωi,i

−√
ωi,iδi

��� = O(pr−a/2)max
i∈H

|δi|
�
→ 1, (6)

and

P
�
max
i∈H

���(Ω
1
2δ)i − ai,iδi

��� = O(pr−a/2)max
i∈H

|δi|
�
→ 1, (7)

where Ω
1
2 =: (aij) and H is the support of δ.

Proof. We only need to prove (6) because the proof of (7) is similar. We re-order

ωi1, . . . ,ωip as |ωi(1)| ≥ ... ≥ |ωi(p)| for i = 1, ..., p. Let a satisfy 2r < a < 1 − 2r with

r < 1/4. Define I = {1 ≤ i1 < ... < im ≤ p} and

I0 =
�
1 ≤ i1 < ... < im ≤ p : there exist some 1 ≤ k ≤ m and some j �= k with 1 ≤ j ≤ m,

such that |ωikij
| ≥ |ωik(pa)|

�
.
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We can show that

|I0| = O
�
p · pa

�
p

pr − 2

��
and |I| =

�
p

pr

�
.

Therefore

|I0|/|I| = O(pa+2r−1) = o(1). (8)

For 1 ≤ t ≤ m, write

(Ωδ)lt =
p�

k=1

ωltkδk = ωltltδlt +
m�

j=1,j �=t

ωltljδlj .

Note that for every (l1, ..., lm) ∈ Ic

0,

m�

j=1,j �=t

|ωltlj | ≤ pr

�
C0

pa
.

It follows that for H ∈ Ic

0 and i ∈ H,

���
(Ωδ)i√
ωi,i

−√
ωi,iδi

��� = O(pr−a/2)max
i∈H

|δi|. (9)

By (8) and (9), (6) is proved.

Let Y1, . . . , Yn be independent normal random variables with EYi = µi and the same

variance Var(Yi) = 1.

Lemma 4 Let an = o((log n)−1/2). We have

sup
x∈R

max
1≤k≤n

���P
�
max
1≤i≤k

Yi ≥ x+ an
�
− P

�
max
1≤i≤k

Yi ≥ x
���� = o(1) (10)

uniformly in the means µi, 1 ≤ i ≤ n. If Yi is replaced by |Yi|, then (10) still holds.

Proof. We have

P
�
max
1≤i≤k

Yi ≥ x+ an
�

= 1−
k�

i=1

�
1− P(Yi ≥ x+ an)

�

= 1− exp
� k�

i=1

log
�
1− P(Yi ≥ x+ an)

��
.
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Let 0 < ε < 1/2 be any small number and M be any large number. Define

E = {1 ≤ i ≤ k : P(Yi ≥ x+ an) ≥ ε}.

We first consider those n and k such that Card(E) ≤ ε−2 and

k�

i=1

P(Yi ≥ x+ an) ≤ M.

For i ∈ Ec, by the inequality | log(1− x) + x| ≤ x2 with |x| < 1/2, we have

���
log

�
1− P(Yi ≥ x+ an)

�

−P(Yi ≥ x+ an)
− 1

��� ≤ ε. (11)

Write an = εn(log n)−1/2, where εn → 0. Let bn = |εn|−1/2(log n)
1
2 . We have for any large

α > 0,

P(Yi ≥ x+ an) =

�

y≥x−µi+an

1√
2π

e−
y2

2 dy

=

�

y≥x−µi

1

2
√
π
e−

(y−an)2

2 dy

=

�

y≥x−µi,|y|≤bn

1√
2π

e−
(y−an)2

2 dy +

�

y≥x−µi,|y|>bn

1√
2π

e−
(y−an)2

2 dy

= (1 + o(1))

�

y≥x−µi,|y|≤bn

1√
2π

e−
y2

2 dy +O(n−α)

= (1 + o(1))P(Yi ≥ x) +O(n−α), (12)

where O(1) and o(1) are uniformly in i and µi. Thus, we have

�

i∈Ec

log
�
1− P(Yi ≥ x+ an)

�

≤ −(1− 2ε)
�

i∈Ec

P(Yi ≥ x) +O(n−α+1)

≤ (1− 2ε)(1 + 2ε)−1
�

i∈Ec

log
�
1− P(Yi ≥ x)

�
+O(n−α+1), (13)

where in the last inequality we used (11) with an = 0. By (12),

�

i∈E

log
�
1− P(Yi ≥ x+ an)

�
=

�

i∈E

log
�
1− P(Yi ≥ x)

�
+ o(1)ε−2. (14)
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Combining (13) and (14), we have

k�

i=1

log
�
1− P(Yi ≥ x+ an)

�
≤

k�

i=1

log
�
1− P(Yi ≥ x)

�
+ 4εM + o(1)ε−2.

Hence

P
�
max
1≤i≤k

Yi ≥ x+ an
�
≥ P

�
max
1≤i≤k

Yi ≥ x
�
− |e4εM+o(1)ε−2 − 1|. (15)

Note that if
�

k

i=1 P(Yi ≥ x+ an) > M , then

P
�
max
1≤i≤k

Yi ≥ x+ an
�
≥ 1− e−M . (16)

If Card(E) > ε−2, then

P
�
max
1≤i≤k

Yi ≥ x+ an
�
≥ 1− (1− ε)ε

−2 ≥ 1− e−ε
−1
. (17)

By (15)-(17), we have

P
�
max
1≤i≤k

Yi ≥ x+ an
�
≥ P

�
max
1≤i≤k

Yi ≥ x
�
− |e4εM+o(1)ε−2 − 1|− e−ε

−1 − e−M .

Similarly, we can prove

P
�
max
1≤i≤k

Yi ≥ x+ an
�
≤ P

�
max
1≤i≤k

Yi ≥ x
�
+ |e4εM+o(1)ε−2 − 1|+ e−ε

−1
+ e−M .

By letting n → ∞ first, following by ε → 0 and then M → ∞, the lemma is proved.

The following lemma comes from Baraud(2002).

Lemma 5 Let F be some subset of l2(J). Let µρ be some probability measure on

Fρ = {θ ∈ F , �θ� ≥ ρ}

and let

Pµρ =

�
Pθdµρ(θ).

Assuming that Pµρ is absolutely continuous with respect to P0, we define

Lµρ(y) =
dPµρ

dP0
(y).
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For all α > 0, ν ∈ [0, 1− α], if

E0(L
2
µρ∗

(Y )) ≤ 1 + 4(1− α− ν)2,

then

∀ρ ≤ ρ∗, inf
φα

sup
θ∈Fρ

Pθ(Φα = 0) ≥ ν.

Let (Z1, . . . , Zp)
�
be a zero mean multivariate normal random vector with covariance

matrix Ω = (ωij)1≤i,j≤p and the diagonal ωi,i = 1 for 1 ≤ i ≤ p.

Lemma 6 Suppose that max1≤i �=j≤p |ωij| ≤ r < 1 and λmax(Ω) ≤ C0. We have

P
�
max
1≤i≤p

Z2
i
− 2 log p+ log log p ≤ x

�
→ exp

�
− 1√

π
exp(−x/2)

�
, (18)

and

P
�
max
1≤i≤p

Zi ≤
�

2 log p− log log p+ x
�
→ exp

�
− 1

2
√
π
exp(−x/2)

�
, (19)

for any x ∈ R as p → ∞.

4 Proof of Propositions

Proof of Proposition 1 (i). Let U be a multivariate normal random vector with zero

mean and covariance matrixΣ. Let Z = δ+U , where δ and U are independent. Without

loss of generality, we assume that σi,i = 1 for 1 ≤ i ≤ p. Then ωi,i ≥ 1 for 1 ≤ i ≤ p. Set

A = {max1≤i≤p |δi| ≤ 6
√
log p}. By Lemma 3, we have

P
�
max
1≤i≤p

|(Ωδ)i/
√
ωi,i| ≥ (1− o(1)) max

1≤i≤p

|δi|
�
→ 1. (20)

Thus by Theorem 1 we have

P
�
MΩ ∈ Rα,A

c

�
≥ P

�
max
1≤i≤p

|(ΩU )i/
√
ωi,i|− 4

�
log p ≥

�
2 log p,Ac

�
+ o(1)
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= P(Ac) + o(1). (21)

Similarly, we have

P
�
MI ∈ Rα,A

c

�
= P(Ac) + o(1). (22)

We next consider P
�
MΩ ∈ Rα,A

�
and P

�
MI ∈ Rα,A

�
. For notation briefness, we

denote P(BA|δ) and P(B|δ) by Pδ,A(B) and Pδ(B) respectively for any event B. Let

H = supp(δ) = {l1, ..., lm} with m = pr and Hc = {1, ..., p} \H. We have

Pδ,A(MI ∈ Rα) = Pδ,A(max
i∈H

|Zi| ≥
√
xp) + Pδ,A(max

i∈H
|Zi| <

√
xp,max

j∈Hc
|Zj| ≥

√
xp), (23)

where xp = 2 log p− log log p+ x. Define

Hc

1 = {j ∈ Hc : |σij| ≤ p−ξ for any i ∈ H}, H1 = Hc −Hc

1

for 2r < ξ < (1− r)/2. It is easy to see that Card(H1) ≤ Cpr+2ξ. It follows that

P
�
max
j∈H1

|Zj| ≥
√
xp

�
≤ pr+2ξP

�
|N(0, 1)| ≥ √

xp

�
= O(pr+2ξ−1) = o(1). (24)

We claim that

Pδ,A

�
max
i∈H

|Zi| <
√
xp,max

j∈Hc
1

|Zj| ≥
√
xp

�

≤ Pδ,A

�
(max
i∈H

|Zi| <
√
xp

�
Pδ,A

�
max
j∈Hc

1

|Zj| ≥
√
xp

�
+ o(1). (25)

Throughout the proof, O(1) and o(1) are uniformly for δ. To prove (25), we set E =

{maxi∈H |Zi| <
√
xp}, F j = {|Zj| ≥

√
xp}, j ∈ Hc

1. Then by Bonferroni inequality, we

have for any fixed integer k > 0,

Pδ,A

� �

j∈Hc
1

{E ∩ F j}
�
≤

2k−1�

t=1

(−1)t−1
�

i1<···<it∈Hc
1

Pδ,A

�
E ∩ F i1 ∩ · · · ∩ F it

�
. (26)

Let W = (wij) be the covariance matrix of the vector (Zi, i ∈ H,Zi1 , . . . , Zit)
�
given

δ. Note that W satisfies |wij| ≤ p−ξ for i ∈ H and j = i1, . . . , it ∈ Hc

1. Define the

matrix W̃ = (w̃ij) with w̃ij = wij for i, j ∈ H, w̃ij = wij for i, j = i1, . . . , it ∈ Hc

1 and

w̃ij = w̃ji = 0 for i ∈ H and j = i1, . . . , it ∈ Hc

1. Set z = (ui, i ∈ H, zi1 , . . . , zit)
�
and

R = {|ui + δi| ≤
√
xp, i ∈ H, |zi1 | ≥

√
xp, . . . , |zit | ≥

√
xp},
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R1 = R ∩ {|z|∞ ≤ 8
�

t log p},

R2 = R ∩ {|z|∞ > 8
�

t log p}.

We have

Pδ,A

�
E ∩ F i1 ∩ · · · ∩ F it

�
=

I{A}
(2π)pr+t|W | 12

�

R
exp

�
− 1

2
z

�
W−1z

�
dz. (27)

By (C1) we have C−1
0 ≤ λmin(W̃ ) ≤ λmax(W̃ ) ≤ C0. Note that �W − W̃ �2 = O(pr−ξ)

and |W | = (1 +O(pr−ξ))p
r+t|W̃ | = (1 +O(p2r−ξ))|W̃ |. This implies that

1

(2π)pr+t|W | 12

�

R1

exp
�
− 1

2
z

�
W−1z

�
dz

= (1 +O(p2r−ξ log p))
1

(2π)pr+t|W̃ | 12

�

R1

exp
�
− 1

2
z

�
W̃

−1
z
�
dz. (28)

Furthermore, it is easy to see that

1

(2π)pr+t|W | 12

�

R2

exp
�
− 1

2
z

�
W−1z

�
dz = O(p−32t),

1

(2π)pr+t|W̃ | 12

�

R2

exp
�
− 1

2
z

�
W̃

−1
z
�
dz = O(p−32t). (29)

Thus, it follows from (27)-(29) that

Pδ,A

�
E ∩ F i1 ∩ · · · ∩ F it

�
= (1 +O(p2r−ξ log p))Pδ,A(E)Pδ

�
F i1 ∩ · · · ∩ F it

�
+O(p−32t).

As the proof of Lemma 6, we can show that

�

i1<···<it∈Hc
1

Pδ

�
F i1 ∩ · · · ∩ F it

�
= (1 + o(1))π− t

2
1

t!
exp

�
− tqα

2

�
.

It follows from (26) that

Pδ,A

� �

j∈Hc
1

{E ∩ F j}
�
≤ αPδ,A(E) + o(1).

This, together with (23) and (24), implies that

Pδ,A(MI ∈ Rα) ≤ αI{A}+ (1− α)Pδ,A(E
c) + o(1),

20



where o(1) is uniformly for δ. Hence, we have

P(MI ∈ Rα,A) ≤ αP(A) + (1− α)P(Ec,A) + o(1)

and

P(MI ∈ Rα) ≤ αP(A) + P(Ac) + (1− α)P(Ec,A) + o(1). (30)

We next prove that

P(MΩ ∈ Rα,A) ≥ αP(A) + (1− α)P(Ẽ
c

,A) + o(1), (31)

and hence

P(MΩ ∈ Rα) ≥ αP(A) + P(Ac) + (1− α)P(Ẽ
c

,A) + o(1), (32)

where Ẽ = {maxi∈H |Zo

i
| < √

xp}, Zo = (Zo

1 , . . . , Z
o

p
)
�
, and Zo

i
= (ΩZ)i√

ωi,i
. It suffices to show

that

Pδ,A(MΩ ∈ Rα) ≥ αI{A}+ (1− α)Pδ,A(Ẽ
c

) + o(1). (33)

Define H̃c

1 = {j ∈ Hc : |ωij| ≤ p−ξ for any i ∈ H} for 2r < ξ < (1− r)/2. It is easy to see

that Card(H̃c

1) ≥ p−O(pr+2ξ). Then

Pδ,A(MΩ ∈ Rα) = Pδ,A(max
i∈H

|Zo

i
| ≥ √

xp) + Pδ,A(max
i∈H

|Zo

i
| < √

xp,max
j∈Hc

|Zo

j
| ≥ √

xp)

≥ Pδ,A(max
i∈H

|Zo

i
| ≥ √

xp) + Pδ,A(max
i∈H

|Zo

i
| < √

xp,max
j∈H̃c

1

|Zo

j
| ≥ √

xp).

Note that on A, max
j∈H̃c

1
|(Ωδ)j| = max

j∈H̃c
1

���
�

i∈H ωjiδi
��� ≤ 4pr−ξ

√
log p. It follows from

the same arguments as above and using the left hand side of Bonferroni inequality that

Pδ,A(max
i∈H

|Zo

i
| < √

xp,max
j∈H̃c

1

|Zo

j
| ≥ √

xp)

≥ Pδ,A

�
max
i∈H

|Zo

i
| < √

xp,max
j∈H̃c

1

|Zo

j
− (Ωδ)j/

√
ω
jj
| ≥ √

xp + Cpr−ξ
�
log p

�

≥ αPδ,A(Ẽ) + o(1)

Hence, (33) is proved.
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We next compare P(Ẽ
c

,A) with P(Ec,A). Without loss of generality, we assume

that for any i ∈ H, δi > 0. By Lemma 3 we also can assume that, on the event A,

(Ωδ)i√
ωi,i

:= δo
i
≥ δi −O(pr−a/2) for some 2r < a < 1− 2r. Note that

���Pδ,A(max
i∈H

|Zi| ≥
√
xp)− Pδ,A(max

i∈H
Zi ≥

√
xp)

��� ≤ Pδ,A(min
i∈H

Zi ≤ −√
xp) = o(1)

and

���Pδ,A(max
i∈H

|Zo

i
| ≥ √

xp)− Pδ,A(max
i∈H

Zo

i
≥ √

xp)
��� ≤ Pδ,A(min

i∈H
Zo

i
≤ −√

xp) = o(1).

It suffices to show that

P(max
i∈H

Zi ≥
√
xp,A) ≤ P(max

i∈H
Zo

i
≥ √

xp,A) + o(1). (34)

Let I0 = {(i1, ..., im) : ∃1 ≤ l < j ≤ m, such that |σil,ij
| ≥ p−ξ} and let I = {(i1, ..., im) :

1 ≤ i1 < · · · < im ≤ p}. We can show that

|I0| ≤ O
�
p · p2ξ

�
p

pr − 2

��
.

By some simple calculations, for ξ < 1
2(1 − 2r), we have |I0|/|I| = o(1). Thus, P(δ ∈

I0) = o(1). For δ ∈ Ic

0 with 2r < ξ < 1
2(1− 2r), using the same arguments from (27) to

(29), we obtain that

Pδ,A(max
i∈H

Zi ≥
√
xp) = I{A}− I{A}

�

i∈H

�
1− Pδ(Zi ≥

√
xp)

�
+ o(1).

Similarly, let I1 = {(i1, ..., im) : ∃1 ≤ l < j ≤ m, such that |ωil,ij
| ≥ p−ξ}, then we can

get |I1|/|I| = o(1), and for δ ∈ Ic

1,

Pδ,A(max
i∈H

Zo

i
≥ √

xp)

= I{A}− I{A}
�

i∈H

�
1− Pδ(Z

o

i
≥ √

xp)
�
+ o(1)

≥ I{A}− I{A}
�

i∈H

�
1− Pδ(Zi ≥

√
xp +O(pr−a/2))

�
+ o(1), (35)

for any a satisfying 2r < a < 1− 2r. By Lemma 4, we have for δ ∈ Ic

0 ∩ Ic

1,

Pδ,A(max
i∈H

Zo

i
≥ √

xp) ≥ I{A}− I{A}
�

i∈H

�
1− Pδ(Zi ≥

√
xp)

�
+ o(1),
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which, together with the fact P(δ ∈ I0) = o(1) and P(δ ∈ I1) = o(1), proves (34).

Proposition 1 (i) is proved by (30),(32) and (34).

Proof of Proposition 1 (ii). DefineM
�
Ω = maxi∈Ac |(ΩZ)i/

√
ωi,i|,M

��
Ω = maxi∈A |(ΩZ)i/

√
ωi,i|,

M
�

Ω
1
2
= maxi∈Ac |(Ω

1
2Z)i|, and M

��

Ω
1
2
= maxi∈A |(Ω

1
2Z)i|. By the definition of A, we see

that M
�
Ω and M

��
Ω are independent. Hence we have

P
�
MΩ ≥ √

xp

�
= P

�
M

��

Ω ≥ √
xp

�
+ P

�
M

��

Ω <
√
xp

�
P
�
M

�

Ω ≥ √
xp

�

= P
�
M

��

Ω
1
2
≥ √

xp

�
+ P

�
M

��

Ω
1
2
<

√
xp

�
P
�
M

�

Ω ≥ √
xp

�
.

We next prove that

P
�
M

�

Ω ≥ √
xp

�
≥ P

�
M

�

Ω
1
2
≥ √

xp

�
+ o(1). (36)

From the proof of Proposition 1(i), we can assume that max1≤i≤p |δi| ≤ 6
√
log p. Set

A = {maxi∈Ac(maxj |aijδi|) <
√
2β0 log p} for some β0 < 1 being sufficiently close to 1.

Because ωi,i =
�

p

j=1 a
2
ij
and

�
p

i=1 a
2
ij
≥ maxj a2ij + �21 for i ∈ Ac with some �1 > 0, we

have by Lemma 3,

P
�
max
i∈Ac

���
(Ωδ)i√
ωi,i

��� ≥ (1 + 2�2)max
i∈Ac

(max
j

|aijδi|) + o(1)
�
→ 1,

for some constant �2 > 0. Thus we have

P
�
M

�

Ω ∈ Rα,A
c

�
≥ P

�
|Zo

i0
| ≥ √

xp,A
c

�

≥ P
�
Zo

i0
− δo

i
≥ √

xp − (1 + �2)
�
2β0 log p,A

c

�
− o(1)

= P(Ac)− o(1), (37)

where i0 = argmaxi∈Ac(maxj |aijδi|). We next consider P
�
M

�
Ω ∈ Rα,A

�
and P

�
M

�

Ω
1
2
∈

Rα,A
�
. Let Z∗

i
= (Ω

1
2Z)i and δ∗

i
= (Ω

1
2δ)i. Then

Pδ,A(M
�

Ω
1
2
∈ Rα) = Pδ,A( max

i∈H∩Ac
|Z∗

i
| ≥ √

xp) + Pδ,A( max
i∈H∩Ac

|Z∗
i
| < √

xp, max
j∈Hc∩Ac

|Z∗
j
| ≥ √

xp)

= Pδ,A( max
i∈H∩Ac

|Z∗
i
| ≥ √

xp) + Pδ,A( max
i∈H∩Ac

|Z∗
i
| < √

xp)Pδ,A( max
j∈Hc∩Ac

|Z∗
j
| ≥ √

xp).
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Let H = {i1, . . . , im} be uniformly drawn from {1, 2, . . . , p}. We divide Hc into two sets

H1 and H2, where

H1 = ∪m

k=1{1 ≤ j ≤ p : |aikj| > |aik(p4r)|, j �= ik} =: ∪m

k=1H1k, H2 = Hc \H1.

It is easy to see that Card(H1)≤ p5r. We next show that |(Ω
1
2δ)i| ≤

√
2β0 log p + o(1)

uniformly for i ∈ H1 with probability tending to one. As in the proof of Lemma 3, we

modify the definition of I0 to

I0 =
�
1 ≤ i1 < ... < im ≤ p : there exist some ik and ij �= ik

such that |ai,ij | > |ai,(p4r)| for some i ∈ H1k

�
.

It’s easy to show that Card(I0)≤ p1+9rCm−2
p

= o(1)Cm

p
since m = pr and r is arbitrarily

small. Note that, for i ∈ H1k and (i1, . . . , im) ∈ Ic

0,

(Ω
1
2δ)i =

m�

j=1

ai,ijδij = ai,ikδik +
m�

j �=k

ai,ijδij = ai,ikδik +O(p−r
�
log p).

This implies that on A, Pδ,A

�
maxi∈H1∩Ac |(Ω

1
2δ)i| ≤

√
2β0 log p + O(p−r

√
log p)

�
→ 1,

which in turn yields that for supp(δ) ∈ Ic

0,

Pδ,A

�
max

i∈H1∩Ac
|Z∗

j
| ≥ √

xp

�
≤ Card(H1)P

�
|N(0, 1)| ≥ √

xp −
�

2β0 log p+O(p−r
�
log p)

�
+ o(1)

= o(1).

For i ∈ H2, we have (Ω
1
2δ)i =

�
m

j=1 ai,ijδij = O(p−r
√
log p). Thus,

Pδ,A( max
j∈Hc∩Ac

|Z∗
j
| ≥ √

xp) = P
�

max
j∈H2∩Ac

|Yj| ≥
√
xp

�
I{A}+ o(1) =: αpI{A}+ o(1),

where Y1, . . . , Yp are i.i.d. N(0, 1) random variables. Let E∗ = {maxi∈H∩Ac |Z∗
i
| < √

xp}.

We have

Pδ,A(M
�

Ω
1
2
∈ Rα) ≤ αp + (1− αp)Pδ,A(E

∗c) + o(1). (38)

Without loss of generality, we assume that for any i ∈ H, δi > 0. By Lemma 3, we have

δo
i
≥ δ∗

i
−O(pr−a/2) with some 2r < a < 1−2r. Similarly as (33) and (34), it follows from

Bonferroni’s inequality that

Pδ,A(MΩ ∈ Rα) ≥ αp + (1− αp)Pδ,A( max
i∈H∩Ac

Z∗
i
≥ √

xp) + o(1). (39)
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By Lemma 3 and δi > 0, we have P
�
mini∈H δ∗

i
≥ 0−O(pr−a/2)

�
→ 1. Hence

Pδ,A

�
min
i∈H

Z∗
i
≤ −√

xp

�
≤ P

�
min

1≤i≤m

Yi ≤ −√
xp +O(pr−a/2)

�
= o(1).

This implies that

���Pδ,A( max
i∈H∩Ac

|Z∗
i
| ≥ √

xp)− Pδ,A( max
i∈H∩Ac

Z∗
i
≥ √

xp)
��� ≤ Pδ,A(min

i∈H
Z∗

i
≤ −√

xp) = o(1).(40)

By (37)-(40), (36) is proved. Hence we have P
�
MΩ ≥ √

xp

�
≥ P

�
M

Ω
1
2
≥ √

xp

�
+ o(1)

and this proves Proposition 1(ii).

Proof of Proposition 2 (i). We first prove that for β ≥ (1−
√
r)2 + ε,

P
�
MI ∈ Rα

�
→ 1. (41)

Let (Z1, . . . , Zp)� be a multivariate normal random vector with pr-sparse (r < 1
2) mean

√
nδ =

√
n(δ1, ..., δp)� and covariance matrix Σ = (σij). We assume that the diagonal

σi,i = 1 for 1 ≤ i ≤ p, and Σ satisfies condition (C1) and (C2). Then it suffices to show

P
�
max1≤i≤p |Zi| ≥

√
xp

�
→ 1, where xp = 2 log p − log log p + qα, and qα is the 1 − α

quantile of exp(− 1√
π
exp(−x/2)). Note that

P
�
max
1≤i≤p

|Zi| ≥
√
xp

�
≥ P

�
max
i∈H

(sign(δi)Zi) ≥
√
xp

�
,

where H = {i : δi �= 0, 1 ≤ i ≤ p}. Thus,

P
�
max
1≤i≤p

|Zi| ≥
√
xp

�
≥ P

�
max
i∈H

Ui ≥
√
xp − a

�
,

where a =
√
2β log p for β ≥ (1−

√
r)2+� and Ui, 1 ≤ i ≤ p, are N(0, 1) random variables

with covariance matrix Σ. Because

√
xp − a =

�
2 log p− log log p+ qα −

�
2β log p

≤ (
√
2−

�
2β)

�
log p <

�
2r log p− log log pr −M

for any M ∈ IR, we have by Lemma 6

P
�
max
i∈H

Ui ≥
√
xp − a

�
≥ P

�
max
i∈H

Ui ≥
�
2 log pr − log log pr −M

�
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→ 1− exp
�
− 1

2
√
π
exp(M/2)

�
,

for arbitrary large M . By letting M → ∞, we have P
�
maxi∈H Ui ≥

√
xp− a

�
→ 1. Thus

P
�
MI ∈ Rα

�
→ 1 for any β ≥ (1−

√
r)2 + �. It remains to prove that for β < (1−

√
r)2,

lim
p→∞

P
�
MI ∈ Rα

�
≤ α.

By noting that P
�
MI ∈ Rα

�
≤ P(maxi∈H Z2

i
≥ xp) + P(maxi∈Hc Z2

i
≥ xp), it suffices to

show that for β < (1−
√
r)2,

lim
p→∞

P(max
i∈Hc

Z2
i
≥ xp) ≤ α, (42)

and

P(max
i∈H

Z2
i
≥ xp) → 0. (43)

Note that δi = 0 for i ∈ Hc. It follows from Lemma 6 that (42) holds. For (43), we have

P(max
i∈H

Z2
i
≥ xp) ≤ prP(|N(0, 1)| ≥ √

xp −
�
2β log p) ≤ Cpr−(1−

√
β)2(log p)2,

where C is a positive constant. Because β < (1−
√
r)2, we have (43). Combing (42) and

(43), Proposition 2 (i) is proved.

Proof of Proposition 2 (ii). To prove Proposition 2 (ii), we only need to prove the

following lemma.

Lemma 7 Consider H
�
1: δ has m = pr, r < 1/4 nonzero coordinates with

√
ωi,i|δi| ≥�

2β� log p
n

, where β� > 0 if δi �= 0. The nonzero locations l1 < l2 < · · · < lm are randomly

and uniformly drawn from {1, 2, . . . , p}. If β� ≥ (1−
√
r)2 + � for some � > 0, then

P
�
MΩ ∈ Rα

�
→ 1.

Note that
√
ωi,i|δi| = |δi|√

σi,i
·√σi,iωi,i =

�
2β log p

n
·√σi,iωi,i =

�
2β∗ log p

n
, where β∗ = βσi,iωi,i

and β ≥ (1−
√
r)2/(min1≤i≤p σi,iωi,i) + ε, we have β∗ ≥ (1−

√
r)2 + ε. Thus by Lemma

7, we have P
�
MΩ ∈ Rα

�
→ 1.
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We next prove Lemma 7. As the proof of (41), it suffices to show that

P
�
min
i∈H

|(Ωδ)i|√
ωi,i

≥
�

2β log p

n

�
→ 1

for some β ≥ (1−
√
r)2 + �. This follows from Lemma 3 immediately.

Proof of Proposition 3 (i). Let (Z1, . . . , Zp)� be a multivariate normal random vector

with mean δo =
√
nΩ

1
2δ and covariance matrix Ip. Let H = {i1, . . . , im} be the support

of δ. Define

H1 = ∪m

k=1{1 ≤ j ≤ p : |aikj| > |aik(pr1 )|} =: ∪m

k=1H1k,

where r1 > 0 satisfies
√
r1 + r < 1−

√
β. We have

P(max
1≤i≤p

|Zi| ≥
√
xp) ≤ P(max

i∈H1

|Zi| ≥
√
xp) + P(max

i∈Hc
1

|Zi| ≥
√
xp).

Thus it suffices to show

P(max
i∈H1

|Zi| ≥
√
xp) → 0, (44)

and

lim
p→∞

P(max
i∈Hc

1

|Zi| ≥
√
xp) ≤ α. (45)

Define

I1 =
�
1 ≤ i1 < ... < im ≤ p : there exist some ik and ij �= ik

such that |ai,ij | > |ai,(pa)| for some i ∈ H1k

�
,

where a > 2r satisfies 3r + r1 + a < 1. Then Card(I1)≤ p1+r+r1+aCm−2
p

= o(1)Cm

p
. It

follows that for i ∈ H1k and (i1, . . . , im) /∈ I1,

√
n|(Ω

1
2δ)i| =

√
n
���

p�

k=1

aikδk
��� =

√
n
���ai,ikδik +

�

j∈H,j �=ik

aijδj
���

≤
�

2β log p+O(pr−a/2(log p)
1
2 ).
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Thus P
�
maxi∈H1 |Zi| ≥

√
xp

�
≤ Cpr+r1−(1−

√
β)2(log p)2+o(1) = o(1) and this proves (44).

Set H2k = {1 ≤ j ≤ p : |aik(pr1 )| ≥ |aikj| > |aik(pr2 )|} and H2 = ∪m

k=1H2k. Let

I2 =
�
1 ≤ i1 < ... < im ≤ p : there exist some ik and ij �= ik

such that |ai,ij | > |ai,(pa)| for some i ∈ H2k

�
,

where a > 2r and r2 > 2r satisfy 3r + r2 + a < 1. We have Card(I2)≤ p1+r+r2+aCm−2
p

=

o(1)Cm

p
. For i ∈ H2k and (i1, . . . , im) /∈ I2, we have

√
n|(Ω

1
2δ)i| =

√
n
���

p�

k=1

aikδk
��� =

√
n
���ai,ikδik +

�

j∈H,j �=ik

aijδj
���

= O(p−r1/2(log p)
1
2 ) +O(pr−a/2(log p)

1
2 ).

Hence

P
�
max
i∈H2

|Zi| ≥
√
xp

�
≤ CCard(H2)p

−1 + o(1) = o(1). (46)

For i ∈ H3 := (H1 ∪ H2)c, we have
√
n(Ω

1
2δ)i =

√
n
�

p

k=1 aikδk = O(pr−r2/2(log p)
1
2 ).

This, together with Lemma 6, implies that

lim
p→∞

P
�
max
i∈H3

|Zi| ≥
√
xp

�
≤ α. (47)

By (46) and (47), we prove (45) and complete the proof of Proposition 3 (i).

Proof of Proposition 3 (ii). It suffices to verify the condition in Lemma 7. Note that

for i ∈ H,

√
ωi,i|δi| = max

1≤j≤p

|aij||δi| ·
�

ωi,i/ max
1≤j≤p

a2
ij
=

�
2β log p

n
·
�
ωi,i/ max

1≤j≤p

a2
ij
=

�
2β∗ log p

n
,

where β∗ = βωi,i/max1≤j≤p a2ij. If β ≥ (1−
√
r)2/(min1≤i≤p(ωi,i/max1≤j≤p a2ij)) + ε, then

we have β∗ ≥ (1 −
√
r)2 + ε. Thus, by Lemma 7, we have P

�
MΩ ∈ Rα

�
→ 1. and the

proof of Proposition 3 (ii) is complete.

Proof of Proposition 1 in Section 3.2.2. The proof that CLIME satisfies (8) in

Section 3.2.2 follows from Cai, Liu and Luo (2011) and Cai, Liu and Zhou (2013). For the
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adaptive thresholding estimator, by the proof of Theorem 1 in Cai and Liu (2011), we have

�Σ̂� − Σ�L1 ≤ Cs2,p(log p/n)(1−q)/2 with probability tending to one. By the inequality

�(Σ̂�

)−1 −Ω�L1 ≤ �(Σ̂�

)−1�L1�Σ̂
� −Σ�L1�Ω�L1 and |(Σ̂�

)−1 −Ω|∞ ≤ �(Σ̂�

)−1�L1 |Σ̂
� −

Σ|∞�Ω�L1 , we prove (8) in Section 3.2.2 holds.

We now consider Σ ∈ Fα(M1,M2). Let |σi,(1)| ≥ . . . ≥ |σi,(p)| be an arrangement of

σi1, . . . , σip. Hence, we have maxi |σi,(j)| = O(j−1−α). By the proof of Lemma 2 in Cai

and Liu (2011), we have with probability tending to one,

max
1≤i,j≤p

| σ̂ij − σij

θ̂1/2
ij

| ≤ 2

�
log p

n
− 1√

n log p
.

Let M > 0 be a sufficiently large number and kn = [Mn log p]1/(2(1+α)). Then for any

j ≥ kn, |σi,(j)| ≤ CM−1
�

1/(n log p) and correspondingly, |σ̂i,(j)| ≤ λi,(j), where λij =

δ
�

θ̂ij log p
n

as defined in Cai, Liu and Xia (2013). Hence it is easy to see that, with

probability tending to one,

p�

j=1

|σ̂ijI{|σ̂ij| ≥ λij}− σij| ≤ C[Mn log p]1/(2(1+α))

�
log p

n
= o(

1

log p
) (48)

by the condition log p = o(nα/(4+3α)). By (48) and the above arguments, we prove (8) in

Section 3.2.2.

Proof of Theorem 5. Note that the CLIME estimator only depends on Σn. So Ω̂ is

independent with X̄ − Ȳ . Let xp = 2 log p− log log p+ qα. It yields that

PH0

�
MΩ̂ ≥ xp|Σn

�
= PH0

�
|(DnΩ̂ΣΩ̂Dn)

1/2Z|∞ ≥ xp|Σn

�
,

where Dn = (diag(Ω̂ΣnΩ̂))−1/2 and Z are standard multivariate normal random vec-

tor which is independent with Σn. By the Sidak’s inequality, we have on the event

{|diag(DnΩ̂ΣΩ̂Dn)− Ip|∞ = o(1/ log p)},

PH0

�
|(DnΩ̂ΣΩ̂Dn)

1/2Z|∞ ≥ xp|Σn

�
= 1− PH0

�
|(DnΩ̂ΣΩ̂Dn)

1/2Z|∞ < xp|Σn

�

≤ 1−
p�

i=1

P(|ξi| ≤ xp|Σn)
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= α + o(1),

where, given Σn, ξi is the centered normal variable with variance (diag(DnΩ̂ΣΩ̂Dn))i,i.

So it is enough to prove |diag(DnΩ̂ΣΩ̂Dn) − Ip|∞ = oP(1/ log p). By the definition of

Ω̂, we have P(�Ω̂�L1 ≤ Mp) → 1. So under M2
p
= o(

√
n/(log p)3/2), we have

|diag((Ω̂ΣnΩ̂))− diag((Ω̂ΣΩ̂))|∞ = oP(1/ log p).

By Lemma 1 in Cai, Liu and Zhou (2013), we have P(|Ω̂ΣnΩ̂− Ω̂|∞ ≤ CMp

�
log p/n) →

1. By the proof of Theorem 2 in Cai, Liu and Zhou (2013), P(|Ω̂−Ω|∞ ≤ CMp

�
log p/n) →

1. Hence, under the condition

M2
p
= o(

√
n/(log p)3/2), (49)

we have |diag(DnΩ̂ΣΩ̂Dn)− Ip|∞ = oP(1/ log p).

The above arguments imply that

P
�
nmax

i

(Ω̂(X̄ − Ȳ − δ)i)
2/ω̂(0)

i,i
≤ 2 log p

�
→ 1. (50)

To show that PH1(Φα(Ω̂) = 1) → 1, we first prove

P
�
max

i

p�

j=1

ω̂2
ij
≤ C

�
→ 1. (51)

Actually, with probability tending to one, we have

p�

j=1

ω̂2
ij

≤ 2
p�

j=1

(ω̂ij − ωij)
2 + 2

p�

j=1

ω2
ij

≤ CM2
n

�
log p

n
+ C. (52)

Hence (51) holds. By the proof of (6), we have maxi∈H |(Ω̂δ)i/ω̂
1/2
i,i

−ω̂1/2
i,i

δi| ≤ Cp−� maxi∈H |δi|

with probability tending to one. Without loss of generality, we can assume that maxi∈H |δi| ≤

C
�
log p/n for some large C > 0. Otherwise, maxi∈H |(Ω̂δ)i/ω̂

1/2
i,i

| ≥ C
�
log p/n for some

large C > 0 and by (50) we have PH1(Φα(Ω̂) = 1) → 1. Let i0 (may be random) be the

index such that |δi0/σ
1/2
i0i0

| ≥
�

2β log p/n. Then we have with probability tending to one,
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|(Ω̂δ)2
i0
/ω̂i0i0 | ≥ 2σi0i0ωi0i0(β+ o(1)) log p/n ≥ (2+ �1) log p/n for some �1 > 0. Note that,

by the independence between (X −µ1,Y −µ2) and the positions of nonzero locations in

δ,

P
�
n(Ω̂(X̄ − Ȳ − δ)i0)

2/ω̂(0)
i0i0

≥
�
log p

�

=
p�

i=1

P
�
n(Ω̂(X̄ − Ȳ − δ)i)

2/ω̂(0)
i,i

≥
�
log p

�
P(i0 = i)

= o(1).

This proves PH1(Φα(Ω̂) = 1) → 1.
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