AMCS Written Preliminary Exam Part I, May 2, 2014

1. Show that the sum

$$f(x) = \sum_{n=1}^{\infty} \log \left[1 + \left(\frac{x}{n}\right)^2 \right]$$

converges uniformly for x in any finite interval (-N, N). Show that f(x) is differentiable, and give a formula for its derivative (possibly as a sum)?

2. Suppose that f(z) is an entire function (analytic in all of \mathbb{C}), and let

(1)
$$M(R) = \max\{|f(z)| : |z| = R\}.$$

Suppose that $M(2R) \le 2^N M(R)$. Show that *f* is a polynomial of degree at most *N*.

- 3. Suppose that $f(z) = z^n + z^3 + z + 2$. Show that all roots of f tend to the unit circle as $n \to \infty$.
- 4. For which real values of *a* does

(2)
$$\lim_{\epsilon \to 0^+} \int_{\epsilon}^{\frac{1}{2}} \frac{dx}{x |\log x|^a}$$

exist?

5. Let

(3)
$$A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$$
 $B = \begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix}$ and $x = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

What is

(4)
$$\lim_{N \to \infty} \frac{\|A^N x\|}{\|B^N x\|}?$$

6. Find all 3×3 matrices A with eigenvalues 2 and 3 (and no others) such that the equations

(5)
$$(A - 2 \operatorname{Id})v = 0 \text{ and } (A - 3 \operatorname{Id})w = 0$$

each have a 1-dimensional solution space.

- 7. Let X_1 be a random variable uniformly distributed in [0, 1]. For $n \ge 1$, let X_{n+1} be equal to X_n times an independent random variable chosen uniformly on [0, 1].
 - (a) Compute EX_n .
 - (b) What is the limit as $n \to \infty$ of $P(X_n > (0.25)^n)$? Hint: Take a log.