AMCS Written Preliminary Exam Part I, May 2, 2014

1. Show that the sum

$$
f(x)=\sum_{n=1}^{\infty} \log \left[1+\left(\frac{x}{n}\right)^{2}\right]
$$

converges uniformly for x in any finite interval $(-N, N)$. Show that $f(x)$ is differentiable, and give a formula for its derivative (possibly as a sum)?
2. Suppose that $f(z)$ is an entire function (analytic in all of \mathbb{C}), and let

$$
\begin{equation*}
M(R)=\max \{|f(z)|:|z|=R\} \tag{1}
\end{equation*}
$$

Suppose that $M(2 R) \leq 2^{N} M(R)$. Show that f is a polynomial of degree at most N.
3. Suppose that $f(z)=z^{n}+z^{3}+z+2$. Show that all roots of f tend to the unit circle as $n \rightarrow \infty$.
4. For which real values of a does

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0^{+}} \int_{\epsilon}^{\frac{1}{2}} \frac{d x}{x|\log x|^{a}} \tag{2}
\end{equation*}
$$

exist?
5. Let

$$
A=\left(\begin{array}{ll}
3 & 2 \tag{3}\\
2 & 3
\end{array}\right) \quad B=\left(\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right) \text { and } x=\binom{3}{2}
$$

What is

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{\left\|A^{N} x\right\|}{\left\|B^{N} x\right\|} ? \tag{4}
\end{equation*}
$$

6. Find all 3×3 matrices A with eigenvalues 2 and 3 (and no others) such that the equations

$$
(A-2 \mathrm{Id}) v=0 \text { and }(A-3 \mathrm{Id}) w=0
$$

each have a 1-dimensional solution space.
7. Let X_{1} be a random variable uniformly distributed in [0, 1]. For $n \geq 1$, let X_{n+1} be equal to X_{n} times an independent random variable chosen uniformly on [0, 1].
(a) Compute $E X_{n}$.
(b) What is the limit as $n \rightarrow \infty$ of $P\left(X_{n}>(0.25)^{n}\right)$? Hint: Take a log.

