
Spectral element methods for simulating pulsatile flow in human arteries

Zhen Xiong

A THESIS

in

Mathematics

For the Graduate Group in Applied Mathematics and Computational Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Master of Arts

2019

Supervisor of Dissertation

Paris Perdikaris, Assistant Professor

Graduate Group Chairperson

Pedro Ponte Castaneda, Professor

ACKNOWLEDGEMENT

I can remember the back of Professor Perdikaris when he wrote clear notes on blackboard

during his course ENM 360 Introduction to Data-driven Modeling” in Fall 2018. It’s very

impressive for me that Professor Perdikaris can always express things very clearly by fol-

lowing the order: problem set up, model and solutions. From then on, I learn from him and

work under his supervision in the following semester doing my master thesis.

I was very happy to work with Professor Perdikaris during the time in Spring 2019 and

Summer 2019. Although I didn’t finish a very good work during this time, it’s still very

amazing to me that I can start from zero to finally make the simulation happens. This would

not happen without the advisement and patient help from Professor Perdikaris. Under

his supervision, I learned many technical skill from this project, like how to use remote

Linux server to perform numerical simulation, how to use relevant software and some basic

knowledge on CFD and so on. However, these are not the most important things I learn

from him. One of the most invaluable thing learning from him is the philosophy of ”start

from small”. At the very beginning, Professor Perdikaris first guided me through some

basic use of related software of simulation and run simple examples but not directly expose

me with more complicated blood flow simulation. I can feel that he wants me to learn

something but not quickly get the job done. Also, in later experiments, when I was stuck

with difficulties, he always suggested me to take a step back and understand the simpler

case first. With this strategy, I accumulated small progress step by step and finally had a

better understanding how things work.

From the experience working with Professor Perdikaris, I can strongly feel that what he

wants me to do is not quickly achieve success but how to learn something from failure.

I have made many careless mistakes and progressed very slowly when doing this project,

however, Professor Perdikaris never blame me with that but always remind me what I learn

from that. I believe by following this way, people can build a solid foundation and achieve

i

longer and stable success in the future. From my perspective, Professor Perdikaris is a real

teacher that can make his student not only a good researcher but also a better person. I

have to say that I always owe a sincere thanks to Professor Perdikaris.

In addition to expressing thanks to my advisor Professor Perdikaris, I would also like to

thank my partner, my truly friend Shanshan Luo sincerely. Without her accompany and

help, I can’t finish some difficult coursework here at Upenn and this thesis. Without her

accompany, my life maybe be gray living in a foreign country alone.

I would also like to say sincere thanks to Spyros for guiding me to do research in application

of deep learning in medical image segmentation, to Professor Monique for giving me a good

course in discrete optimization, to yansong for taking me to gym and let me become a

body builder, to jiaming for helping me solve many difficult homework questions in some

advanced pure math courses.....

At last, I would like to thank my family. Without their general support, I can’t have my

journey pursuing knowledge and live a good life here at Upenn. Everything I achieved is

eventually from their support.

ii

ABSTRACT

Cardiovascular flow simulation using computational method can help medical researchers

better understanding of arteries diseases. In this thesis, we will introduce the fundamental

work flow of blood flow simulation using spectral element method. We will review both the

basic theory and show practical examples to provide new learners a concrete foundation

for understanding essential knowledge on blood flow simulation. For theory part, we will

introduce basic knowledge in spectral element method for solving differential equations on

complex geometry domain and framework for solving Navier-Stokes equation. For practice

part, we will show how to use open source software to implement simulation and some

advice for avoid potential mistakes. Hope this thesis could be a friendly tutorial for new

learners who want to enter the field of blood flow simulation.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENT . i

ABSTRACT . iii

LIST OF ILLUSTRATIONS . viii

1 Introduction . 1

1.1 Background and survey . 1

1.2 Motivation . 2

1.2.1 Motivation for using CFD in blood flow simulation 2

1.2.2 Motivation for using spectral element method 2

1.3 Open Challenge . 3

1.4 Overview of the thesis . 4

2 Method . 6

2.1 Introduction to spectral/hp element method 6

2.1.1 Finite element method . 6

2.1.2 High-order finite element method 7

2.1.2.1 The h-version finite element method 7

2.1.2.2 The p-version finite element method 7

2.1.2.3 The hp-version finite element method 8

2.1.3 Spectral methods . 8

2.1.4 Spectral/hp element methods 9

2.2 Introduction to weak form of differential equation 9

2.3 Introduction to Galerkin formulation 11

2.4 Numerical method for integration . 13

2.5 Velocity correction scheme for solving unsteady incompressible Navier-

Stokes equation . 15

iv

2.5.1 Temporal discretization of the equation 16

2.5.2 Derivation of weak form of Poisson equation. 18

2.5.3 Solve pressure from weak form of Poisson equation 19

2.5.4 Solving Helmholtz equation for computing velocity field . . 21

2.5.5 Space discretization using Spectral elements methods . . . 22

2.6 Numerical experiments of two dimension Kovasznay flow using Nek-

tar++ . 22

2.6.1 Geometry and mesh of the simulation 23

2.6.2 Nektar++ condition file . 26

2.6.3 Numerical simulation and result 29

2.6.4 H-type convergence experiments 30

2.6.5 P-type convergence . 32

3 Realization . 35

3.1 Womersley boundary condition . 35

3.2 Windkessel model . 36

3.2.1 Two-element Windkessel model 37

3.2.2 Three-element Windkessel model 38

3.3 Simulation on cylinder with parabolic velocity 39

3.3.1 Geometry and mesh of computational domain 39

3.3.2 Nektar++ condition file . 39

3.3.3 Simulation result . 42

3.4 Simulation on vessel model with Womersley boundary condition . . 45

3.4.1 Geometry and mesh of computational domain 45

3.4.2 Setting the Womersley boundary condition 45

3.4.3 Nektar++ condition file . 47

3.4.4 Simulation result . 49

4 Future work . 53

4.1 Unfinished work . 53

v

4.2 Looking towards new paradigm of scientific computing 53

vi

LIST OF ILLUSTRATIONS

FIGURE 1 : Frequently used basis functions for classical finite element methods.27 9

FIGURE 2 : Lagrange polynomial basis functions of order six for spectral ele-

ment methods. Although the order is six, it’s still a relative low-

order polynomial expansions in spectral element methods.28 . . . 10

FIGURE 3 : The 2D geometry for Kovasznay flow simulation. 23

FIGURE 4 : The 2D mesh for Kovasznay flow simulation. 24

FIGURE 5 : Pressure. 30

FIGURE 6 : Size of velocity in X-axis direction. 31

FIGURE 7 : Size of velocity in Y-axis direction. 31

FIGURE 8 : Five meshes with increasing density. 33

FIGURE 9 : This plot shows convergence of u,v,p with denser mesh. The X-axis

represents number of elements in mesh. The Y-axis is logarithm

relative error. 34

FIGURE 10 : P-type convergence. 34

FIGURE 11 : Windkessel model use electronic component to model rest part of

arterial network. 37

FIGURE 12 : Windkessel model analogy.30 . 37

FIGURE 13 : Circuit analogy of two-element Windkessel model. P(t) represents

the pressure, Q(t) is the flow, C is capacitor and R is resistance.30 38

FIGURE 14 : Cuircuit analogy of three-element Windkessel model.[30] 39

FIGURE 15 : 3D cylinder in Gmsh. 40

FIGURE 16 : Visualization of velocity of inlet in Z-axis direction. 42

FIGURE 17 : Evolution of velocity at outlet in direction of Z-axis. 43

FIGURE 18 : Calculator in Paraview. 43

FIGURE 19 : Setting parameters with Glyph filter of Paraview. 44

vii

FIGURE 20 : Visualization of velocity at inlet. 44

FIGURE 21 : Evolution of velocity at outlet. 44

FIGURE 22 : 3D vessel model in Gmsh. 45

FIGURE 23 : Visualization for ’w’ variable at a certain time step when using

Womersley boundary condition. 49

FIGURE 24 : Evolution of velocity on vessel model with Womersley boundary

condition. 50

FIGURE 25 : Plot of velocity at a point of inlet from simulation results. 51

FIGURE 26 : Velocity of the Womersley boundary condition at inlet. 51

FIGURE 27 : A failed case on cylinder. 52

viii

1. Introduction

1.1. Background and survey

Heart or arteries related diseases are one of the most dangerous threat to human health.

Cardiovascular system is the crucial point to understand those diseases. Some work has

been done to reveal and understand cardiovascular system and arteries disease from differ-

ent perspective, for example, modeling cardiovascular dynamics,21,14 view of arteries flow

from mechanical perspective17 and clinical perspective.15,1, 9, 6 These studies indicate that

understanding some key point of hemodynamic like velocity and pressure of blood flow and

wall mechanics of arteries can help people reveal the truth of cardiovascular diseases.

Some invasive measurement method of blood flow monitoring has been proposed to under-

stand the cardiovascular system. One of the traditional method of blood flow measurement

is inserting catheters into radial-artery with guide of pulse palpation and anatomic knowl-

edge for placement.20,23 Base on this, researchers develop a more advanced method using

ultrasound to guide the placement of radial-artery catheters to decrease the rate of failed

artery cannulation.20,23,22,2, 18 Although the invasive measurement method is getting its

popularity theses year and can be both accurate and safe to some extent, in addition to be

expensive, there is still a possibility to induce risk of complications.23

Given the limitations of invasive measurement method, with the development of medical

imaging techniques, non-invasive method like X-rays, electro-cardiograms(ECG), computed

tomography(CT) and magnetic resonance imaging(MRI) are routinely used in clinical en-

vironment.5 MRI is especially popular today. Unlike X-rays or CT, MRI can get accurate

information of inner human body without introducing any radiation, thus safer to patients.

Recent research proposed more advanced MRI technique which is called 4D MRI.13 The

4D MRI can combine temporal evolution of blood flow and spatial geometry of blood vessel

together to represent the full three-dimension velocity flow field.8

1

1.2. Motivation

1.2.1 Motivation for using CFD in blood flow simulation

Although imaging technique like 4D MRI can provide us velocity profile of the flow and

accurate geometry structure of the vessel, some important diagnosis indicators like pressure,

vorticity can not be measured by these non-invasive methods. In order to measure those

important variables in cheaper and safer way, computer numerical simulation methods could

be our choice. With combining the geometry information from MRI image, computational

fluid dynamics simulation can numerically calculate those important variables out. Such

method is also called Image based computational fluid dynamics(IB-CFD).15

The work flow of IB-CFD is as following: people first take MRI images of aorta and using

geometric modeling method to build geometry model of the vessel which is the computa-

tional domain for simulation, then we apply computational fluid dynamics algorithms to

perform simulation. The situations vary among different patients, however, MRI image

will exactly keep the patient-specific vessel geometry information and this makes IB-CFD

adapts each individual case and makes it a very practical method in hospital environment.

In addition to clinical reason, IB-CFD method can be also meaningful to pure research

purpose. With the stable and reproducible numerical results in the same condition. We

can change the parameters like boundary conditions or initial conditions to provide more

insight of hemodynamics and physics.

1.2.2 Motivation for using spectral element method

Finite element method, was first introduced into structural mechanics and then it got success

in fluid mechanics. By subdividing the computational domain and interpolating with low

order functions, finite element method is good at solving equations with complex geometry

domain. However, due to the low order approximation, when we deal with time-dependent

simulation of Navier-Stokes equations, in order to keep the same error level, we need to

2

increase the number of subdomains for longer time simulation, which require more com-

putational resources.17 On the other hand, spectral method using a high order truncated

series expansion for approximation can mitigate this increasing resolution demand due to its

exponential convergence property, thus is computationally more efficient. However, spectral

method may lose its advantage when the computational domain is irregular.17 By combing

with finite element method, we can easily keep the advantage of the spectral method because

each element is a relatively regular domain and we can apply spectral in each element. This

is also called spectral element method, which provide us a better strategy for convergence.

1.3. Open Challenge

Although using computational method to perform simulation of blood flow has many ad-

vantages as mentioned previously, some challenges still remain.

The mesh quality of the geometry model is essential for a successful numerical simulation,

however, it’s hard to define what is a good quality mesh for the geometry model(computational

domain). Although there are many geometry processing techniques been developed, there

is no benchmark for judging which is better. Although, we can also notice some limitations

in existing open source geometry processing software like Gmsh.4 For example, Gmsh can

not do remeshing for complex or large geometry model. Those limitations may let geometry

modeling and processing laborious. The way to fully autonomous geometry processing is

still long.

The numerical simulation also has its inherent weakness, that is requiring many computing

resources and time consuming. For some large scale cardiovascular flow simulation which

requires computing many variables, we need distributed computing systems or super com-

puters. However, this is not always available for all the researchers. Also, if the computing

resources is limited, the simulation can take very long time. This may inconvenient in real

clinical setting because usually patients need diagnosis in short time.

Performing the simulation itself is not an easy thing as well. Even with existing software

3

package, people need to accumulate practical knowledge in trouble shooting of simulation

blowing up. The reasons of failed simulation can from any steps and may be difficult to

debug.

Last, validation of the simulation results is still a problem. Data getting from in-vivo

methods can be used for validation of the simulation results. However, this may be hindered

ethical considerations of invasive data collection.31 Without invasive data, validation of

simulation result can be less reliable.

1.4. Overview of the thesis

This thesis will show entry level blood flow simulation from new learners’ perspective in-

cluding both the fundamental theory and practical experiment using open source software.

The second part will introduce related basic theory in blood flow simulation. In the third

part, we will show concrete numerical simulation examples. The last part will analyze the

limitation of this thesis and discuss the future work.

In the theory part, we will introduce the basic knowledge of spectral element methods, ve-

locity correction scheme for solving Navier-Stokes equation and related model with pulsatile

flow. In the experiment part, we will use open source Nektar++3 perform the simulation.

Nektar++ is a scalable framework for solving partial differential equations using spectral

element methods. Nektar++ mainly contains three kinds of utilities: pre-processing utility,

numerical solver utility and post-processing utility. The pre-processing utility can deal with

mesh file from geometry processing software like Gmsh and feed the geometry information

into solver utility so that users can perform simulation on the geometry. Post-processing

can manipulate with simulation results and let the results can be visualized by other visu-

alization software like Paraview.4

Blood flow simulation domain involves a broad range of knowledge and accumulates many

specific knowledge. For this reason, this thesis hopes to provide a friendly tutorial for people

who wants to get into this field and see some simple but useful instances. For more advanced

4

information, readers need to explore deeper with the reference materials.

5

2. Method

2.1. Introduction to spectral/hp element method

Here we will introduce Spectral/hp element method. We will start from classical finite ele-

ment method, then the high-order finite element method. This will prepare the foundation

for understanding Spectral/hp element method.

2.1.1 Finite element method

The two main ideas of finite element method are discretization and approximation. In many

real problems like structural mechanics that require to solve (partial)differential equation

on a complex geometry with boundary conditions, it’s very difficult to solve directly. The

finite element method will first divide computational domain into a collection of subdomains

which are called elements. This step is called discretization. In practice, this step need us

to represent the geometry by mesh. The elements of the mesh are connected by nodes. In

2-dimension case, people commonly use triangle element, quadrilateral element or polygonal

element in mesh. In 3-dimension case, we can use tetrahedron element, hexahedron element

or polyhedron element. The Mesh can be very important to finite element method. A good

mesh can efficiently capture local structure, thus may help to decrease errors. This is one of

the advantage of finite element method. In the second step. the approximation will happen

in element level. Unlike the global case, finite element method will divide the total problem

into simpler case which will be solved in each element and then recombine the solution from

each element into the final answer. This can avoid directly solving the very difficult problem,

which is another advantage of finite element method. A more comprehensive introduction

of finite element method can be found in.16,53,54,55,56,57,58,59,60

6

2.1.2 High-order finite element method

In the section 2.1.1, we already know some of the advantage that general finite element

method has. However, in the classical approach, the approximation in each element is using

linear interpolation functions. When we require higher level of accuracy, we need high-order

finite element method. High-order finite element method will use high order polynomials

to approximate unknown solution in each element. However the name ’high-order’ in the

method doesn’t mean using high order polynomials but refer to the order of convergence

rate of approximation with respect to mesh-refinement. In other words, the solution of

high-order finite element method can converge to the real solution faster comparing with

the classical one. There are generally three type of high-order finite element method: h-

version finite element method, p-version finite element method and hp-version finite element

method.

2.1.2.1 The h-version finite element method The h-version finite element method

fix the degree of polynomial interpolation functions and enhance accuracy by means of mesh

refinement. The refinement of mesh doesn’t need to be globally. This can happen locally

when the part need Here h in the name of ’h-version’ means the characteristic length of

mesh. Intuitively, this method will achieve higher level accuracy when it uses a denser mesh.

2.1.2.2 The p-version finite element method The p-version finite element method

only change the degree of polynomial basis functions and keeps the mesh refinement fixed to

enhance accuracy. The degree or order of polynomial in different element is unnecessary the

same. For some parts of the geometry which require higher accuracy may have higher order

interpolation polynomials. Here the p in the name ’p-version’ means the degree or order

of the interpolation polynomial. When people mention p-version finite element method, we

generally assume that p > 1.

7

2.1.2.3 The hp-version finite element method The hp-version finite element method

is the combination of h-version and p-version finite element method. The work10 first dis-

cover the method and found it converges exponentially. The method is very flexible. It can

do the h-refinement and p-refinement at the same time. For example, the method can di-

vide an element into smaller subelements(h-refinement) and increase the polynomial degrees

inside each subelements(p-refinement). Also, there are many combinations for polynomial

degrees. For example, if an element is divided into three subelements and the polynomial

degrees are allowed to vary by two, then in each subelements we have three choices of

polynomial degree, which give us 27 refinement candidates.

2.1.3 Spectral methods

Spectral methods61,62,63,64,65,66,67 are a class of techniques to solve differential equations.

The main idea of spectral method are approximating the solution using a sum of certain

basis functions like Fourier series with coefficients which can be adjusted to satisfy the

differential equations as well as possible. There are two main differences between spectral

methods and finite element methods. First, spectral methods use a global approach(the

sum of basis functions is applied on the whole computational domain) while the interpo-

lation polynomial of finite element methods have local support(each element has its own

polynomial). Second, spectral methods generally use higher order expansions than finite

element methods do. In traditional finite element community, four-order elemental expan-

sions are already considered as high order but in spectral methods community, sometimes

a sixteen-order global expansion may be considered as a low-order approximation. With

global high-order expansions, spectral methods can converge extremely fast(exponentially)

when the solution is smooth. However, spectral methods are not good at dealing with

computational domains with complex geometries.

8

Figure 1: Frequently used basis functions for classical finite element methods.27

2.1.4 Spectral/hp element methods

Previous sections build the foundation for us to understanding Spectral/hp element methods

by introducing hp-version finite element method and spectral methods. Roughly speaking,

finite element methods are adaptive to complex geometries but may not be accurate with

low-order expansions, however, spectral methods taking high-order global expansions can

achieve high-order accuracy but may be inaccurate with complex geometries. Combining

the advantage of both method, Spectral/hp element methods use high-order polynomial in

each elements can deal with complex geometries better and converge to true solution very

fast. Formally speaking, spectral/hp element method is a formulation of hp-version finite

element method using high-order piecewise polynomial functions(like Lagrange polynomial)

as basis functions. Comparing Figure 1 and Figure 2, we can notice the difference between

basis function of classical finite element method and spectral element method and can expect

that spectral element methods have better ability to fit the solution.

2.2. Introduction to weak form of differential equation

A weak solution of a differential equation is a function for which the derivatives may not

all exist but can still satisfy the equation in some precisely defined sense. More intuitively,

the weak solution is not as smooth as the real solution or it can not differentiate as many

times as the real solution but they are still very close. In fact, this is the advantage of weak

9

Figure 2: Lagrange polynomial basis functions of order six for spectral element methods.
Although the order is six, it’s still a relative low-order polynomial expansions in spectral
element methods.28

10

solution because many real problems don’t admit very smooth solutions and the weak form

of equation will be the only way to solve the problem. In finite(spectral) element method,

weak form is very commonly used. One of the most popular way to derive the weak form of

differential equation in finite(spectral) element method is using Galerkin formulation which

will be introduced next.

2.3. Introduction to Galerkin formulation

In section 2.2, we introduced the weak solution of differential equations. This section

will introduce the most commonly used way, the Galerkin method, to derive the weak

form of partial differential equations and convert continuous operator problems(differential

equations) into discrete problems(matrix computation). The details of Galerkin formulation

is far beyond of our scope and here we will use an example to illustrate how the Galerkin

method works. More detailed information of Galerkin method is in.12

We divide the description of Galerkin method into three steps. The first step is deriving

the weak form of the equation. Consider a steady linear differential equation in a domain

Ω denoted by

L(u) = f (1)

subject to appropriate boundary conditions. Here the f is a known function, L denote

linear differential operator and u is the function we want to solve. To derive the weak form,

the Galerkin method multiplies a test function v from test function space V on both sides

of the equation and then do integration over the entire domain Ω, which arrives: Find a

u ∈ U such that ∫
Ω
vL(u)dx =

∫
Ω
vfdx, ∀v ∈ V (2)

where U is trial space containing possible solution function. For now, instead of solving the

original differential equation, we need to solve its weak form which is an integral equation

11

now. In order to make things succinct, we rewrite the equation (2) as

a(v, u) = (v, f), ∀v ∈ V (3)

where a(v, u) is a bilinear form representing
∫

Ω vL(u)dx and (v, f) represents
∫

Ω vfdx which

is also called inner product of v and f .

The second step of Galerkin method is dimension reduction of trial(U) and test(V) space.

Rather than using infinite dimension function space, we cut trial and test space into finite

dimension function which is spanned by finite numbers of basis function Φn(n ∈ N). In the

classical Galerkin method, we adopt same set of basis functions for both trial and test space.

The reduced finite dimension trial and test space are denoted by U δ and V δ With finite

dimension trial space, the approximation of solution u is denoted by uδ which is represented

as linear combination of basis functions in trial space:

uδ =
∑
n∈N

Φnûn (4)

where ûn are the coefficients we need to solve. With the new presentation of equation (4),

we can update equation (3) as:

a(vδ, uδ) = (vδ, f) (5)

If we substitute uδ in equation (5) with equation (4), then we get: Find ûnsuch that,

∑
n∈N

a(vδ,Φn)ûn = (vδ, f), ∀vδ ∈ V δ (6)

Since vδ is also the linear combination of basis function in test space, we can write equation

(6) into an equivalent form: Find ûnsuch that,

∑
n∈N

a(Φm,Φn)ûn = (Φm, f), ∀m ∈ N (7)

12

The third step of Galerkin method will transform (7) into matrix form so that we can get

the final answer by computers. If we let û be the vector of coefficients ûn, A be a matrix

with elements

A[m][n] = a(Φm,Φn) =

∫
Ω

ΦmL(Φn)dx (8)

and f be the vector with elements

f[m] = (Φm, f) =

∫
Ω

Φmfdx, (9)

then we can just solve û in the following matrix equation:

Aû = f. (10)

2.4. Numerical method for integration

Since we need to evaluate integral like (8) and (9) in the Galerkin method, we need tech-

niques of numerical integration. There are plenty of numerical method for integration. In

this thesis, we focus our attention on introducing the way that Nektar++ employs to com-

pute integration numerically by an one-dimension example. Consider the following integral:

∫ 1

−1
u(ξ)dξ, (11)

here the u(ξ) may be made up of products of polynomial bases just like (8) and (9). The

main numerical integration method used in Nektar++ is called Gaussian Quadrature. First,

it represent the integrand as a Lagrange polynomial using q points ξi,

u(ξ) =

q−1∑
i=0

u(ξi)hi(ξ) + ε(u), (12)

13

where ε(u) is the approximation error. Second, instead of evaluating (11), we substitute

(12) into (11) and get: ∫ 1

−1
u(ξ)dξ =

q−1∑
i=0

u(ξi)wi +R(u), (13)

where

wi =

∫ 1

−1
hi(ξ)dξ, (14)

R(u) =

∫ 1

−1
ε(u)dξ (15)

In this step, we notice that u(ξi) are known value so if we can compute (14) and (15), we

can compute (13). For (14), since hi(ξ) are Lagrange basis polynomial, which means that

if we know all the ξi then we know all the hi(ξ). For (15), if u(ξ) is a polynomial of order

less than (q − 1), we would expect R(u) = 0 since we use polynomial of order (q − 1) to

approximate it. In fact, Gauss recognized that there exists a better choice of ξi that can

permit (13) with R(u) = 0 when u(ξ) is a polynomial higher order than (q − 1). So if we

choose a good set of ξi, we can compute (13) appropriately. In Nektar++, we have three

types of Gauss quadrature which choose the set of ξi differently. All those three types of

Gauss quadrature are related with Jacobi polynomial. Jacobi polynomial34,35,36,37,38,39 is

denoted as Pα,βP where α and β are two parameters and P is the order of Jacobi polynomial.

We denote ξα,βi,P as P zeros of Jacobi polynomial Pα,βP . Based on this, we can introduce all

three types of Gauss quadrature now.

The first type of Gauss quadrature is called Gauss-Legendre quadrature, where

ξi = ξ0,0
i,q i = 0, ..., q − 1 (16)

w0,0
i =

2

[1− (ξi)2]
[
d

dξ
(Lq(ξ))|ξ=ξi]

−2 i = 0, ..., q − 1 (17)

R(u) = 0 if u(ξ) ∈ P2q−1([−1, 1]) (18)

where P2q−1 denotes polynomials with order not higher than 2q-1 and Lq(ξ) denotes Leg-

14

endre polynomial(Lq(ξ) = P 0,0
q (ξ)).

The second type of Gauss quadrature is called Gauss-Radau-Legendre quadrature, where

ξi =

{−1 i=0

ξ0,1i−1,q−1 i=1,...,q−1

(19)

w0,0
i =

(1− ξi)
q2[Lq−1(ξi)]2

i = 0, ..., q − 1 (20)

R(u) = 0 if u(ξ) ∈ P2q−2([−1, 1]) (21)

The third type pf Gauss quadrature is called Gauss-Lobatto-Legendre, where

ξi =


−1 i = 0

ξ1,1
i−1,q−2 i = 1, ..., q − 2

1 i = q − 1

(22)

w0,0
i =

2

q(q − 1)[Lq−1(ξi)]2
i = 0, ..., q − 1 (23)

R(u) = 0 if u(ξ) ∈ P2q−3([−1, 1]) (24)

Although the above equations look intimidating, they just specify the set of ξi to choose

and also calculate wi so we can calculate (13) numerically(we can ignore R(u)). In fi-

nite(spectral) element method, we can’t always do integration on [-1,1](local region). The

way to fix this is to map the original region of integration into local region and do the

calculation in the way mentioned above and then map the result back to the original region

by Jacobian mapping.

2.5. Velocity correction scheme for solving unsteady incompressible Navier-Stokes equation

Unsteady incompressible Navier-Stokes equation is the governing equation for viscous New-

tonian fluids. In this thesis, we regard blood flow in aorta as incompressible viscous Newto-

15

nian fluid where the density and viscosity are constant. In this section, we will introduce a

method called velocity correction scheme to solve unsteady Navier-Stokes equation, which

is written as:



∂u

∂t
+ u · ∇u = −∇p+ ν∇2u

u = uD on ΓD

∂u

∂n
= un on Γn

(25)

∇ · u = 0 (26)

where u is velocity(need to solve) of the fluid, p is pressure(this pressure is the original

pressure divided by density, but we still denote this as pressure and we need to solve it)

of the fluid and ν is the kinematic viscosity(a constant obtained from dividing dynamic

viscosity by density). Usually we also specify the boundary conditions The solution of (25)

should also satisfy (26) because (26) means divergence of fluid velocity is zero, which is the

incompressible constraint(more details can be found from40,41,42,43,44,45,46,47,48,49,50).

The mean idea of velocity correction scheme is first solve pressure by solving a weak form

of Poisson equation and then use the information of pressure to solve velocity by solving

Helmholtz equation. We will divide the whole process in four subsections.

2.5.1 Temporal discretization of the equation

In order to derive weak form pf Poisson equation to solve pressure, we need to first discretize

equation (25). In order to write things conveniently, we denote u · ∇u as N(u)(also called

as convective term) and denote ∇2u as L(u). So the equation (25) becomes:

∂u

∂t
+N(u) = −∇p+ νL(u) (27)

16

Following the way that19 discretize equation (27) using backward differentiation formula51,52

and by representing the convective term explicitly using a polynomial extrapolation from

previous time-steps,19 we can represent equation (27) in time step n+1 as:

γ0u
n+1 − u+

∆t
+N∗ = −∇pn+1 + νL(u) (28)

Here the u+ is defined as:

u+ =

Ji−1∑
q=0

αqu
n−q (29)

and N∗ is defined as:

N∗ =

Je−1∑
q=0

βqN(un−q) (30)

where Ji, Je are integration orders and α.β, γ are coefficients.

Now we rewrite the equation (28) as:

γ0u
n+1 − γ0ū

n+1 + γ0ū
n+1 − u+

∆t
+N∗+∇pn+1−νL(u)+ν(∇×∇×u)∗−ν(∇×∇×u)∗ = 0

(31)

where (∇×∇× u)∗ is approximation of (∇×∇× u) using the same style of N∗. Then we

split the equation (31) into two parts:

γ0ū
n+1 − u+

∆t
+N∗ +∇pn+1 + ν(∇×∇× u)∗ = 0 (32)

γ0u
n+1 − γ0ū

n+1

∆t
− νL(u)− ν(∇×∇× u)∗ = 0 (33)

where we will solve equation (32) to get pressure and then solve equation (33) to get velocity.

In the next subsection, we will introduce how to derive weak form of Poisson equation and

then formulate the weak form of equation (32) in the third subsection.

17

2.5.2 Derivation of weak form of Poisson equation.

The Poisson equation is written as the form:

−∇2u = f (34)

where f is a known function and we need to solve u. Like the Galerkin method, to derive

the weak form of this equation, we require the inner product of terms in the equation with

test function: ∫
Ω

(∇2u+ f)v = 0 (35)

where Ω is the integration field. Here we need a trick to change the form of equation (35).

According to rule of derivative of product, we have:

∇ · (v∇u) = ∇v · ∇u+ v∇2u (36)

If we do the integration of equation (36) on both sides, then we obtain:

−
∫

Ω
v∇2u =

∫
Ω
∇v · ∇u−

∫
Ω
∇ · (v∇u) (37)

Recall the divergence theorem which is stated as:

∫
Ω

(∇ · F) =

∫
∂Ω

(F · n) (38)

where ∂Ω denote the boundary of integration field Ω and n denote outward pointing unit

normal field of the boundary ∂Ω. Now we can apply divergence theorem to the term∫
Ω∇ · (v∇u) and equation (37) becomes:

−
∫

Ω
v∇2u =

∫
Ω
∇v · ∇u−

∫
∂Ω
v∇u · n (39)

18

In fact, according to directional derivative, ∇u ·n is the derivative of u in direction of vector

n. So we can rewrite the equation (39) as:

−
∫

Ω
v∇2u =

∫
Ω
∇v · ∇u−

∫
∂Ω
v
∂u

∂n
(40)

Combining the equation (35), we can substitute the left side of equation (40) and obtain:

∫
Ω
vf =

∫
Ω
∇v · ∇u−

∫
∂Ω
v
∂u

∂n
(41)

which can be written in classical form:

∫
Ω
∇v · ∇u =

∫
Ω
vf +

∫
∂Ω
v
∂u

∂n
(42)

The equation (42) is regarded as weak form of Poisson equation. When we have Neumann

boundary conditions, ∂u
∂n is known so that we can solve equation (42).

2.5.3 Solve pressure from weak form of Poisson equation

The algorithms to solve weak form of Poisson equation already exist. The problem is we

need to show that we can derive weak form of Poisson equation from equation (32). This

issue will be solved in this section.

Now we look back equation (32) and rewrite it as:

∇pn+1 =
u+ − γ0ū

n+1

∆t
−N∗ − ν(∇×∇× u)∗ (43)

Following the way in section 2.5.2, we multiply the gradient of some test function and do

the integration on both sides:

∫
Ω
∇φ · ∇pn+1dΩ =

∫
Ω

[u+ − γ0ū
n+1

∆t
−N∗ − ν(∇×∇× u)∗

]
· ∇φdΩ (44)

19

We can apply divergence theorem to the right hand side of this equation to obtain a more

useful form. The original divergence theorem states the equation (38). However, if we

substitute F with Fg, we obtain:

∫
Ω
∇ · Fg =

∫
Ω
F · (∇g) + g(∇ · F) =

∫
∂Ω
gF · n (45)

With a little operation of equation (45), we have:

∫
Ω
F · (∇g) = −

∫
Ω
g(∇ · F) +

∫
∂Ω
gF · n (46)

Comparing the right hand side of equation (44) and the left hand side of equation (46), if

we regard the test function φ and
[
u+−γ0ūn+1

∆t −N∗ − (∇×∇× u)∗
]

and in (44) as g and

F in (46) respectively, we have:

∫
Ω

[u+ − γ0ū
n+1

∆t
−N∗ − (∇×∇× u)∗

]
· ∇φdΩ = −

∫
Ω
φ(∇ · F)dΩ +

∫
∂Ω
φF · ndS (47)

where

F =
[u+ − γ0ū

n+1

∆t
−N∗ − (∇×∇× u)∗

]
(48)

However, since we require ūn+1 should follow the incompressible restriction(∇ · ūn+1 = 0

and ∇ · (∇×∇× u) = 0(so ∇ · (∇×∇× u)∗ = 0), the equation (47) can be reduced to:

∫
Ω

[u+ − γ0ū
n+1

∆t
−N∗− ν(∇×∇×u)∗

]
·∇φdΩ =

∫
Ω

N∗∆t− u+

∆t
·φ+

∫
∂Ω
φF ·ndS (49)

Combine equations (44) and (49) we obtain:

∫
Ω
∇φ·∇pn+1dΩ =

∫
Ω

N∗∆t− u+

∆t
·φ+

∫
∂Ω
φ
[u+ − γ0ū

n+1

∆t
−N∗−ν(∇×∇×u)∗

]
·ndS (50)

From equation (50), we notice that in fact it is in the same form as equation (42). The

u, v, f, ∂u∂n in equation (42) is corresponding to pn+1, φ, N
∗∆t−u+

∆t ,
[
u+−γ0ūn+1

∆t − N∗ − (∇ ×

∇ × u)∗
]

in equation (50). This means equation (50) is the weak form of Poisson equa-

20

tion. Usually we will specify Neumann boundary condition for pressure, we can just let[
u+−γ0ūn+1

∆t −N∗ − (∇×∇× u)∗
]

be equal to ∂u
∂n which is given. In this way, solving the

weak form of Poisson equation can give the information of p at n+ 1 time step.

2.5.4 Solving Helmholtz equation for computing velocity field

In this section, we transform the equation (33) into Helmholtz equation which can solve

velocity. The Helmholtz equation is written as:

∇2u− λu = f (51)

where λ is coefficient and f is a function. Now we discuss how to derive Helmholtz equation

from equation (33).

From equation (32), we have:

γ0ū
n+1

∆t
=

u+

∆t
−∇pn+1 − ν(∇×∇× u)∗ −N∗ (52)

So for equation (33), we can substitute γ0ūn+1

∆t from equation (52) and obtain:

γ0u
n+1 − u+

∆t
+∇pn+1 +N∗ − νL(un+1) = 0 (53)

Recalling the definition of L(u), this equation can be rewrite as:

∇2u− γ0u
n+1

ν∆t
= ∇pn+1 − u+

∆t
+N∗ (54)

which is in fact the Helmholtz equation where ∇pn+1 has already been solved from equation

21

(32). So by solving the problem :



∇2u− γ0u
n+1

ν∆t
= ∇pn+1 − u+

∆t
+N∗

un+1 = uD on ΓD

∂un+1

∂n
= un on Γn

(55)

we can get velocity field at time step n+ 1. From section 2.5.1 to section 2.5.4, we present

the whole procedure of velocity correction scheme for solving governing equation of blood

flow simulation. More detailed information on velocity correction scheme can be found

in.19,7, 11

2.5.5 Space discretization using Spectral elements methods

In previous sections, we described the framework and derivation of velocity correction

scheme. However, we didn’t talk about how to solve the weak Poisson form(32) and

Helmholtz equation(33) with spectral element methods(space discretization). People may

find the page 127-128 in33 and page 74-75 in32 very useful.

2.6. Numerical experiments of two dimension Kovasznay flow using Nektar++

In this section, we will show some numerical experiments that using the open source software

Nektar++ to perform incompressible fluid simulation. The general work flow of doing such

numerical experiments is writing mesh files which can define the geometry and Nektar++

condition file which can define the setup of the simulation and then pass these two files

into Nektar++ solver which will perform the numerical computing(simulation). After the

simulation is down, we can use Nektar++ post-processing utility to transform the result

file into the file that can be read in Paraview(an open source visualization software) to let

people actually see the result.

22

Figure 3: The 2D geometry for Kovasznay flow simulation.

2.6.1 Geometry and mesh of the simulation

In order to do numerical simulation, the first thing is to define computational domain(geometry).

One of the mesh generation software for Nektar++ is called Gmsh. The more detailed in-

formation on Gmsh can be found at http://gmsh.info/. The usage of Gmsh is beyond the

scope of this thesis.

The Figure 3 shows a two dimensional geometry model in the graphical user interface of

Gmsh. Base on this geometry model, Gmsh can create mesh on it. The Figure 4 shows

the mesh for our computational domain. This mesh file is in format .msh which can not be

read directly in Nektar++. By using the preprocessing utility Nekmesh of Nektar++:

Nekmesh mesh name . msh mesh name . xml

in command line, we can transform the .msh file into .xml which can be passed to Nektar++

solver. Here the Nekmesh is an executable file and its location in Nektar++ folder is:

nektar++/bu i ld / d i s t / bin /Nekmesh

23

Figure 4: The 2D mesh for Kovasznay flow simulation.

so user should add the path to Nekmesh when using this utility.

This .xml format mesh file consist four parts of information. First, it defines the location

of vertex by specifying their coordinates:

<VERTEX>

<V ID=”0”>−5.00000000e−01 5.00000000 e−01 0.00000000 e+00</V>

<V ID=”1”>−5.00000000e−01 2.50000000 e−01 0.00000000 e+00</V>

<V ID=”2”>−1.66666667e−01 2.50000000 e−01 0.00000000 e+00</V>

<V ID=”3”>−1.66666667e−01 5.00000000 e−01 0.00000000 e+00</V>

<V ID=”4”>1.66666667e−01 2.50000000 e−01 0.00000000 e+00</V>

<V ID=”5”>1.66666667e−01 5.00000000 e−01 0.00000000 e+00</V>

<V ID=”6”>5.00000000e−01 2.50000000 e−01 0.00000000 e+00</V>

<V ID=”7”>5.00000000e−01 5.00000000 e−01 0.00000000 e+00</V>

<V ID=”8”>−5.00000000e−01 1.37512224 e−12 0.00000000 e+00</V>

<V ID=”9”>−1.66666667e−01 4.58346324 e−13 0.00000000 e+00</V>

<V ID=”10”>1.66666667e−01 −4.58401835e−13 0.00000000 e+00</V>

<V ID=”11”>5.00000000e−01 −1.37512224e−12 0.00000000 e+00</V>

<V ID=”12”>−5.00000000e−01 −2.50000000e−01 0.00000000 e+00</V>

<V ID=”13”>−1.66666667e−01 −2.50000000e−01 0.00000000 e+00</V>

<V ID=”14”>1.66666667e−01 −2.50000000e−01 0.00000000 e+00</V>

<V ID=”15”>5.00000000e−01 −2.50000000e−01 0.00000000 e+00</V>

<V ID=”16”>−5.00000000e−01 −5.00000000e−01 0.00000000 e+00</V>

<V ID=”17”>−1.66666667e−01 −5.00000000e−01 0.00000000 e+00</V>

<V ID=”18”>1.66666667e−01 −5.00000000e−01 0.00000000 e+00</V>

<V ID=”19”>5.00000000e−01 −5.00000000e−01 0.00000000 e+00</V>

</VERTEX>

24

Second, it defines edges base on vertex:

<EDGE>

<E ID=”0”> 0 1 </E>

<E ID=”1”> 1 2 </E>

<E ID=”2”> 2 3 </E>

<E ID=”3”> 3 0 </E>

<E ID=”4”> 2 4 </E>

<E ID=”5”> 4 5 </E>

<E ID=”6”> 5 3 </E>

<E ID=”7”> 4 6 </E>

<E ID=”8”> 6 7 </E>

<E ID=”9”> 7 5 </E>

<E ID=”10”> 1 8 </E>

<E ID=”11”> 8 9 </E>

<E ID=”12”> 9 2 </E>

<E ID=”13”> 9 10 </E>

<E ID=”14”> 10 4 </E>

<E ID=”15”> 10 11 </E>

<E ID=”16”> 11 6 </E>

<E ID=”17”> 8 12 </E>

<E ID=”18”> 12 13 </E>

<E ID=”19”> 13 9 </E>

<E ID=”20”> 13 14 </E>

<E ID=”21”> 14 10 </E>

<E ID=”22”> 14 15 </E>

<E ID=”23”> 15 11 </E>

<E ID=”24”> 12 16 </E>

<E ID=”25”> 16 17 </E>

<E ID=”26”> 17 13 </E>

<E ID=”27”> 17 18 </E>

<E ID=”28”> 18 14 </E>

<E ID=”29”> 18 19 </E>

<E ID=”30”> 19 15 </E>

</EDGE>

To understand this script, for example, consider the edge with ”ID=30”:

<E ID=”30”> 19 15 </E>

the number ”19” and ”15” are the IDs of vertex. In other words, this means the two ending

points of edge ”30” is vertex ”19” and vertex ”15”. The third part is elements:

<ELEMENT>

<Q ID=”0”> 0 1 2 3 </Q>

<Q ID=”1”> 2 4 5 6 </Q>

<Q ID=”2”> 5 7 8 9 </Q>

<Q ID=”3”> 10 11 12 1 </Q>

<Q ID=”4”> 12 13 14 4 </Q>

<Q ID=”5”> 14 15 16 7 </Q>

<Q ID=”6”> 17 18 19 11 </Q>

<Q ID=”7”> 19 20 21 13 </Q>

25

<Q ID=”8”> 21 22 23 15 </Q>

<Q ID=”9”> 24 25 26 18 </Q>

<Q ID=”10”> 26 27 28 20 </Q>

<Q ID=”11”> 28 29 30 22 </Q>

</ELEMENT>

Similar to the way we define edges, the four number in each line are IDs of edges. Since

from Figure 4, we see each element is quadrilateralwe need four edges to form one element.

The last part is composite. Composite can help to define the boundary region:

<COMPOSITE>

<C ID=”1”> E[0 , 10 , 17 , 24] </C><!−− i n f l ow −−>

<C ID=”2”> E[30 , 23 , 1 6 , 8] </C><!−− out f low −−>

<C ID=”3”> E[25 , 27 , 29 , 9 , 6 , 3] </C><!−− wa l l s −−>

<C ID=”4”> Q[0−11] </C><!−− Domain −−>

</COMPOSITE>

The basic blocks of composite is edge. For example, edges ”0,10,17,24” corresponding the

leftmost boundary in Figure 4 define the inflow region and edges ”30,23,16,8” corresponding

to the rightmost boundary in Figure 4 define the outflow region so that people know in this

simulation, the fluid flow into the computational domain from the left and flow out from

the right. The walls in this case are consist with uppermost and lowest boundary which

are edges ”25,27,29,9,6,3”. The composite with ”ID=4” is the whole computational domain

which including all the elements(from element 1 to element 11).

2.6.2 Nektar++ condition file

Having the geometry and mesh of computaional domain is not enough for us to do a simu-

lation, we still need to define how we do the simulation and this is why we need Nektar++

condition file. The condition file is also in .xml format. It specifies every aspects we need

to know for a simulation.

In this simulation, we use 7th-order polynomial expansions using the modified Legendre

basis:

<EXPANSIONS>

<E COMPOSITE=”C[4] ” NUMMODES=”8” FIELDS=”u , v , p” TYPE=”MODIFIED” />

26

</EXPANSIONS>

Recall the composite C[4] is the whole domain and this means the 7th-order polynomial

expansions are applied in very element in the computational domain. Since we use 7th-

order polynomial expansions, the number of modes is 8(we have NUMMODES=8). The

”FIELDS” means what variable we want to solve, which will be introduced later. The

TYPE=”MODIFIED” means we use modified Legendre basis function.

The solver information in condition file is defined as:

<SOLVERINFO>

<I PROPERTY=”SolverType” VALUE=”Veloc i tyCorrect ionScheme ” />

<I PROPERTY=”EQTYPE” VALUE=”UnsteadyNavierStokes ” />

<I PROPERTY=”AdvectionForm” VALUE=”Convective ” />

<I PROPERTY=”Pro j e c t i on ” VALUE=”Galerk in ” />

<I PROPERTY=”TimeIntegrationMethod” VALUE=”IMEXOrder2” />

</SOLVERINFO>

By defining ”SolverType”, we use velocity correction scheme to solve the governing equation.

The ”EQTYPE” means equation type, which is unsteady Navier-Stokes eqaution. The

”Projection” specifies that we use Galerkin method for the weak form of equation.

The parameters are defined as:

<PARAMETERS>

<P> TimeStep = 0.001 </P>

<P> NumSteps = 10000 </P>

<P> IO CheckSteps = 1000 </P>

<P> IO In foSteps = 1 </P>

<P> Re = 40 </P>

<P> Kinvis = 1/Re </P>

<P> LAMBDA = 0.5∗Re−sq r t (0 .25∗Re∗Re+4∗PI∗PI) </P>

</PARAMETERS>

We set the time step be 0.001 and total number of time steps be 10000 so we perform totally

10 dimensionl time unit.

The variables are defined as:

<VARIABLES>

<V ID=”0”> u </V>

<V ID=”1”> v </V>

27

<V ID=”2”> p </V>

</VARIABLES>

These are the three variables we need to solve. The u, v are the quantity of velocity in

X-axis and Y-axis direction respectively and p is pressure.

The boundary regions are defined as:

<BOUNDARYREGIONS>

<B ID=”0”> C[1]

<B ID=”1”> C[2]

<B ID=”2”> C[3]

</BOUNDARYREGIONS>

From this we can see that the boundary regions are actually defined from Composite from

the mesh file. For example, the boundary region with ID=0 is C[1] which is the composite

with ID=1(inflow).

After defining the boundary region, we can define boundary conditions now:

<BOUNDARYCONDITIONS>

<REGION REF=”0”>

<D VAR=”u” VALUE=”1−exp (LAMBDA∗x)∗ cos (2∗PI∗y)” />

<D VAR=”v” VALUE=”(LAMBDA/2/PI)∗ exp (LAMBDA∗x)∗ s i n (2∗PI∗y)” />

<N VAR=”p” USERDEFINEDTYPE=”H” VALUE=”0” />

</REGION>

<REGION REF=”1”>

<D VAR=”u” VALUE=”1−exp (LAMBDA∗x)∗ cos (2∗PI∗y)” />

<D VAR=”v” VALUE=”(LAMBDA/2/PI)∗ exp (LAMBDA∗x)∗ s i n (2∗PI∗y)” />

<D VAR=”p” VALUE=”0.5∗(1−exp (2∗LAMBDA∗x))” />

</REGION>

<REGION REF=”2”>

<N VAR=”u” VALUE=”0” />

<D VAR=”v” VALUE=”0” />

<N VAR=”p” VALUE=”0” />

</REGION>

</BOUNDARYCONDITIONS>

The Region with REF=X refers to boundary region with ID=X. The letter D and N refer to

Dirichlet and Neumann boundary condition. For example, for boundary region with ID=0,

the variable u, v are specified with Dirichlet boundary condition and variable p is specified

with Neumann boundary condition.

28

In Nektar++ condition file, we can define our own function. Here we define the initial

condition:

<FUNCTION NAME=”In i t i a lCond i t i o n s”>

<E VAR=”u” VALUE=”0” />

<E VAR=”v” VALUE=”0” />

<E VAR=”p” VALUE=”0” />

</FUNCTION>

We specifies the three variables are all zero in initial conditions.

We can also define the exact solution function:

<FUNCTION NAME=”ExactSolut ion”>

<E VAR=”u” VALUE=”(1−exp (LAMBDA∗x)∗ cos (2∗PI∗y))” />

<E VAR=”v” VALUE=”(LAMBDA/2/PI)∗ exp (LAMBDA∗x)∗ s i n (2∗PI∗y)” />

<E VAR=”p” VALUE=”0.5∗(1−exp (2∗LAMBDA∗x))” />

</FUNCTION>

With this solution, Nektar++ will compute the relative error with simulation results. We

can also perform convergence analysis using those errors, which will be discussed later.

The information above introduce all the blocks of Nektar++ condition file. The next step

is pass the mesh file and condition file into Nektar++ solver for numerical simulation.

2.6.3 Numerical simulation and result

To perform the numerical simulation, we can simply type the following command in com-

mand line:

IncNav ie rStokesSo lve r mesh . xml cond i t i on . xml

The executable file ”IncNavierStokesSolver” locates at:

nektar++/bu i ld / s o l v e r s / IncNav ie rStokesSo lve r / IncNav ie rStokesSo lve r

users should add path when typing this command.

After the simulation, Nektar++ will output the final result which is in .fld format. In

this case, in addition to .fld file, Nektar++ will also output .chk file which represent the

29

Figure 5: Pressure.

intermediate results due to IO CheckSteps in condition file. To visualize the result in

Paraview, we can use Nektar++ post-processing utility by typing the command:

FieldConvert r e s u l t . f l d mesh . xml r e s u l t . vtu

The executable file FieldConvert will get the input result.fld and mesh.xml and output

result.vtu which is a format can be opened in Paraview. The location of the executable file

FieldConvert is at:

nektar++/bu i ld / d i s t / bin /Fie ldConvert

The visualization of the results in Paraview are in Figure 5,6 and 7

2.6.4 H-type convergence experiments

In this section we will plot relative errors to show that denser mesh will help improve results.

The relative error is L2 error defined as:

‖ε‖2 =
[∫

Ω
|result− real(solution)|2dΩ

] 1
2 (56)

30

Figure 6: Size of velocity in X-axis direction.

Figure 7: Size of velocity in Y-axis direction.

31

Here we do five experiments and record errors of the results. For each experiment, we fix

the order of polynomial expansions be 2(number of modes is 3) and we change the density of

the mesh.Figure 8 shows how the density of mesh change. Using these mesh for simulation,

we plot relative errors for the size velocity in X-axis and Y-axis directions and pressure.

The Figure 9 shows the relative error is going down with denser mesh. In order to show

the decrease of error, we take logarithm of the error in Figure 9.

2.6.5 P-type convergence

In this section, we fix the refinement of mesh and change the orders of polynomial expansions

and see the convergence of the result. We use polynomial expansions with order 1,3,5,7,9

and the fourth mesh in section 2.6.4, the plot of convergence of errors(logarithm of errors)

is shown in Figure 10 where the X-axis represent the order of polynomial expansions. In

fact, the p-type convergence is much faster than h-type convergence. For example, the five

errors for variable u in section 2.6.4 are:[0.00972794, 0.00141868, 0.000445087, 3.35383e-

5, 2.51558e-6], while the five errors for variable u in p-type convergence are:[0.20766,

0.00184112, 8.90652e-6, 2.41333e-8, 4.14239e-11].

32

Figure 8: Five meshes with increasing density.

33

Figure 9: This plot shows convergence of u,v,p with denser mesh. The X-axis represents
number of elements in mesh. The Y-axis is logarithm relative error.

Figure 10: P-type convergence.

34

3. Realization

In this part we will show concrete numerical experiments in blood flow simulation using

Nektar++. By considering the effect of heart, we model the blood flow as pulsatile flow.

In order to do so, we need to specify Womersley boundary condition at inlet of the vessel.

Also, in order to deal with boundary condition of pressure at the outlet of the vessel,

we will employ Windkessel model which uses idea from circuit to model the rest of the

arterial system. Womersley boundary condition and Windkessel model will be introduced

in the following part. After understanding those, we can see how to set up the numerical

experiments.

3.1. Womersley boundary condition

The problem of Womersley boundary condition is also called Womersley flow problem.

The Womersley flow problem was first introduced in paper.24 The goal of Womersley

boundary condition is to specify the velocity of blood flow at the inlet of the vessel by

solving incompressible Navier-Stocks equation. However, this time the equation can be

easier to solve. In the setting of,24 the pressure gradient is known. By decomposing the

pressure gradient in Fourier series, we obtain:

∂p

∂x
(t) =

N∑
n=0

P ′ne
inωt (57)

where the i is imaginary number, ω is angular frequency of the first harmonic and P ′n are the

amplitudes of each harmonic n. People may notice the pressure gradient ∂p
∂x(t) is just one

dimension(x direction). That’s because the computational domain for Womersley flow is

only the inlet of vessel(that’s why it is also called boundary condition), which in usual case

is a circle and we only care about the pressure gradient in direction of the one perpendicular

to inlet of the vessel. So here the x direction should be perpendicular to the plane of vessel’s

inlet but may not be the x-axis.

35

To derive the velocity, we also decompose it into Fourier series:

u(r, t) =
N∑
n=0

Une
inωt (58)

and use each known harmonic of pressure gradient to solve the corresponding harmonic of

velocity(more detailed derivation can be found from.24,29 In equation (58), the velocity

profile is represented using two variables: r and t, where r is the radial coordinate on the

inlet of the vessel(since we assume the inlet is a circle, we can use radial coordinate) and t is

time. So in different time, we impose different velocity on the inlet of the vessel to simulate

the effect of pulsatile flow and this is an intuition to understand mechanism of Womersley

boundary condition. The solution of amplitudes in each harmonic of velocity is:

U0(r) = −P
′
0

4ν
(R2 − r2) (59)

Un(r) =
iP ′n
nω

[
1−

J0(Λn
r
R)

J0(Λn)

]
n = 1, ..., N (60)

Combining with equation (58), the solution of velocity is:

u(r, t) = −P
′
0

4ν
(R2 − r2) +Re{ iP

′
n

nω

[
1−

J0(Λn
r
R)

J0(Λn)

]
einωt} (61)

where R is radius of vessel’s inlet,ν is kinematic viscosity,J0() is the Bessel function of first

kind and order zero and Λn = αn
1
2 i

3
2 where α is womersley number defined as α = R(ων)

1
2

3.2. Windkessel model

Since the limitation of computing resources, people usually do the blood flow simulation just

on a truncated aorta. In order to represent the rest part of arterial network, we can set an

effective boundary condition by using Windkessel model. Windkessel model borrows idea

from circuit and use electronic component like capacitor and resistance to model arterial

system. The Figure 11 show us a illustration of how Windkessel model works. In the

following sections, we will introduce two-element and three-element Windkessel model.

36

Figure 11: Windkessel model use electronic component to model rest part of arterial net-
work.

Figure 12: Windkessel model analogy.30

3.2.1 Two-element Windkessel model

The two-element Windkessel model involves two electronic components: one capacitor and

one resistance. During the systole, blood will flow into elastic arteries as shown in Figure

12. However, due to the peripheral resistance, only part of blood can leave so there is a

net storage of blood in elastic arteries, which discharge during diastole[wiki]. Given this

mechanism, we can model the elastic arteries as capacitor(charge and discharge when heart

is pumping). The Figure 13 also shows that the circuit analogy of two-element windkessel

model.

The governing equation of two-element Windkessel model is the following:

I(t) =
P (t)

R
+ C

dP (t)

dt
(62)

37

Figure 13: Circuit analogy of two-element Windkessel model. P(t) represents the pressure,
Q(t) is the flow, C is capacitor and R is resistance.30

where I(t) is volumetric inflow due to the heart pump, P (t) is pressure, C is the ratio of

volume to pressure and R is resistance relating outflow to fluid pressure. More detailed

information on derivation of this equation is beyond our scope, people can refer to [wiki,...].

Solving the equation 62, we can get the pressure and set it to the boundary condition(change

with time) of outlet of the vessel.

3.2.2 Three-element Windkessel model

Comparing with two-element Windkessel model, the three-element Windkessel model not

only consider the peripheral resistance but also the resistance of large elastic arteries. Figure

14 shows the circuit analogy of three-element Windkessel model where Zc represent the

resistance of elastic arteries.

The governing equation of three-element Windkessel model is :

(1 +
R1

R2
I(t) + CR1

dI(t)

dt
=
P (t)

R2
+ C

dP (t)

dt
(63)

where R1 is resistance of large elastic arteries, R2 is peripheral resistance. I(t), P (t) and C

keep the same meaning with equation 62.

38

Figure 14: Cuircuit analogy of three-element Windkessel model.[30]

3.3. Simulation on cylinder with parabolic velocity

In this section, we will show an example on how to do blood flow simulation on 3D cylinder,

which can be a foundation for simulation on geometry of vessels.

3.3.1 Geometry and mesh of computational domain

In this section, we assume that the inflow is parabolic(not a pulsatile flow). The geometry

and mesh of cylinder is shown in Figure 15. The height of this cylinder is 2 and the radius

of the inlet is 1 in Gmsh. The (x,y,z) coordinate of inlet center is (0,0,0) and direction of

inflow is (0,0,1) which is also the normal direction of inlet pointing inside of the cylinder.

Again, following the same procedure as shown in section 2.6.1, we use Nektar++ pre-

processing utility ”Nekmesh” to convert mesh.msh file into mesh.xml file. Since the .xml is

too big, we don’t show it here.

3.3.2 Nektar++ condition file

After setting up the computational domain, the next step is preparing Nektar++ condition

file. The whole file is as following:

<?xml ve r s i on =”1.0” encoding=”utf −8”?>

<NEKTAR xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s tance ”

39

Figure 15: 3D cylinder in Gmsh.

x s i : noNamespaceSchemaLocation=”http ://www. nektar . i n f o /schema/nektar . xsd”>

<EXPANSIONS>

<E COMPOSITE=”C[4] ” NUMMODES=”5” FIELDS=”u , v ,w, p” TYPE=”MODIFIED” />

</EXPANSIONS>

<CONDITIONS>

<SOLVERINFO>

<I PROPERTY=”SolverType” VALUE=”Veloc i tyCorrect ionScheme ” />

<I PROPERTY=”EQTYPE” VALUE=”UnsteadyNavierStokes ” />

<I PROPERTY=”AdvectionForm” VALUE=”Convective ” />

<I PROPERTY=”Pro j e c t i on ” VALUE=”Galerk in ” />

<I PROPERTY=”TimeIntegrationMethod” VALUE=”IMEXOrder1” />

</SOLVERINFO>

<PARAMETERS>

<P> TimeStep = 0.005 </P>

<P> NumSteps = 3400 </P>

<P> IO CheckSteps = 50 </P>

<P> IO In foSteps = 50 </P>

<P> Kinvis = 0.00167 </P>

</PARAMETERS>

<VARIABLES>

<V ID=”0”> u </V>

<V ID=”1”> v </V>

<V ID=”2”> w </V>

<V ID=”3”> p </V>

</VARIABLES>

<BOUNDARYREGIONS>

<B ID=”0”> C[1]

<B ID=”1”> C[2]

<B ID=”2”> C[3]

</BOUNDARYREGIONS>

40

<BOUNDARYCONDITIONS>

<REGION REF=”0”>

<D VAR=”u” VALUE=”0” />

<D VAR=”v” VALUE=”0” />

<D VAR=”w” VALUE=”1−x∗x−y∗y” />

<N VAR=”p” USERDEFINEDTYPE=”H” VALUE=”0” />

</REGION>

<REGION REF=”1”>

<N VAR=”u” VALUE=”0” />

<N VAR=”v” VALUE=”0” />

<N VAR=”w” VALUE=”0” />

<D VAR=”p” VALUE=”0” />

</REGION>

<REGION REF=”2”>

<D VAR=”u” VALUE=”0” />

<D VAR=”v” VALUE=”0” />

<D VAR=”w” VALUE=”0” />

<N VAR=”p” USERDEFINEDTYPE=”H” VALUE=”0” />

</REGION>

</BOUNDARYCONDITIONS>

<FUNCTION NAME=”In i t i a lCond i t i o n s”>

<E VAR=”u” VALUE=”0” />

<E VAR=”v” VALUE=”0” />

<E VAR=”w” VALUE=”0” />

<E VAR=”p” VALUE=”0” />

</FUNCTION>

</CONDITIONS>

</NEKTAR>

The condition file here has many similarities with the one we have introduced in section 2.6.2.

Here we only explain some special information. In ”VARIABLES” part, the u, v, w(scalers)

are the size of velocity in direction of X-axis, Y-axis and Z-axis, respectively. The p is

pressure. They are four variables that we want to solve from this simulation. In ”BOUND-

ARYREGIONS” part: c[1](ID=0) is the inlet, c[2](ID=1) is the outlet and c[3](ID=2) is the

wall. In ”¡REGION REF=”0”¿” of ”BOUNDARYCONDITIONS” part, we set the size of

velocity(w) in direction of Z-axis be 1− x2− y2 which is a parabolic function open towards

minus Z-axis. For other direction, the size of velocity are all zeros. This sets the parabolic

velocity boundary condition.

41

Figure 16: Visualization of velocity of inlet in Z-axis direction.

3.3.3 Simulation result

By pass the mesh.xml and condition.xml file into Nektar++ solver as shown in section 2.6.3,

we can do the simulation and get a bunch of .chk files and one final .fld file as results. Using

the post-processing utility as shown in section 2.6.3, we transform all the .chk and .fld files

into .vtu files which can be visualized in Paraview.

Figure 16 visualize w in the inlet and this will keep the same through out the whole sim-

ulation because it is fixed as boundary condition. This initial velocity of flow will push

fluid into the cylinder and finally flow out of the cylinder. The change of velocity of fluid

of outlet is shown in Figure 17. We can see that at first there is nearly no outflow at the

outlet but later the ”red region” appears and gets bigger.

The u, v, w from simulation are scalers but not vectors. In order to visualize the velocity

but not the size of velocity, we need to compute ui + vj + wk to get the real velocity

which is a vector. To do so, we can click the ”calculator” button in Paraview and type

u ∗ iHat+ v ∗ jHat+w ∗ kHat as shown in Figure 18. After calculating the vector, we can

just type the ”Glyph” button and set like the way shown in Figure 19(The scale factor can

be set as users’ wish or just click the ”reset” button). Figure shows how the velocity looks

like at the inlet and Figure how they evolve with time at the outlet.

42

Figure 17: Evolution of velocity at outlet in direction of Z-axis.

Figure 18: Calculator in Paraview.

43

Figure 19: Setting parameters with Glyph filter of Paraview.

Figure 20: Visualization of velocity at inlet.

Figure 21: Evolution of velocity at outlet.

44

Figure 22: 3D vessel model in Gmsh.

3.4. Simulation on vessel model with Womersley boundary condition

Having a basic understanding of section 3.3, we can go further by taking two changes:(i)change

the computational domain to vessel model. (ii) change the parabolic velocity boundary con-

dition to Womersley boundary condition. We will see how to deal with these two changes

of simulation in this section.

3.4.1 Geometry and mesh of computational domain

The computational domain this time is a small vessel model, which has one inlet and two

outlet and is shown in Figure 22.

3.4.2 Setting the Womersley boundary condition

In section 3.1, we introduced basic knowledge on Womersley boundary condition. The

intuition of Womersley boundary condition is using the known pressure gradient to solve

unknown velocity at the inlet. However, in practice, people may already know the velocity

or flow rate getting from sensor equipment. In this case, we don’t need to do any computing

because we already have what we want. In Nektar++, the way we represent the known

velocity is by Fourier coefficients. In addition to this, we need to let Nektar++ know where

the boundary is, how big the boundary is, what is the period of the pulsatile flow and which

45

direction will the fluid flow. The whole Nektar++ file Womersley.xml setting Womersley

boundary condition shows below:

<NEKTAR>

<WOMERSLEYBC>

<WOMPARAMS>

<W PROPERTY=”Radius” VALUE=”0.545” />

<W PROPERTY=”Period ” VALUE=”64.0362” />

<W PROPERTY=”axisnormal ” VALUE=”0.01352417 ,0.08791284 , −0.99603636” />

<W PROPERTY=”ax i spo in t ” VALUE=”7.499648284912109 ,2.308580017089844 ,20.80792846679688” />

</WOMPARAMS>

<FOURIERCOEFFS>

<F ID=0> 0.7175784462781089 , −0.0 </F>

<F ID=1> −0.04506297092144961 , 0.301589400703441 </F>

<F ID=2> −0.12619053984027664 , −0.20612334538907198 </F>

<F ID=3> 0.052919990545354074 , −0.044518075477739616 </F>

<F ID=4> 0.03645203646647879 , 0.016945891821456532 </F>

<F ID=5> −0.01997436040436404 , 0.016798376246354704 </F>

<F ID=6> −0.0035240694840311315 , −0.0006192970034698905 </F>

<F ID=7> −0.00035103905617903466 , −0.0001758973968067276 </F>

<F ID=8> −0.00025053437652451015 , −0.0001844555162757482 </F>

<F ID=9> −0.0001753319421690523 , −0.00021009265824309655 </F>

<F ID=10> −0.00013482250717433635 , −0.00021148586300272343 </F>

<F ID=11> −0.00011126578659507418 , −0.00020479897415254025 </F>

<F ID=12> −9.620628051327472e−05, −0.00019524194582150282 </F>

<F ID=13> −8.590388615896073e−05, −0.00018494019625953675 </F>

<F ID=14> −7.849366917098696e−05, −0.00017479111610011285 </F>

<F ID=15> −7.295565197942886e−05, −0.0001651640490917334 </F>

<F ID=16> −6.869033624927881e−05, −0.0001561910101342643 </F>

<F ID=17> −6.53246296687906e−05, −0.00014789537407356546 </F>

<F ID=18> −6.261534348662868e−05, −0.0001402515462979492 </F>

<F ID=19> −6.039780552001897e−05, −0.00013321348010101016 </F>

</FOURIERCOEFFS>

</WOMERSLEYBC>

</NEKTAR>

In the ”WOMPARAMA” part, we set radius of the inlet as 0.545. This radius is read

from Gmsh. Users need to find the center of the inlet(sometimes approximately) and try

to measure the radius if the position of the inlet is not in a very standard place(like the

inlet centers at (0,0,0)). The period of pulsatile flow here is 64.0362. This number is non-

dimensional. How can we understand this number? Usually, in simulation, in order to

align different unit, people tend to transform each quantity into non-dimensional quantity,

that is , get rid of units. To do so, we need benchmark. For length, we can choose a

46

characteristic length and let the real length divided by this characteristic length to get

non-dimensional length. For example, if a vessel has length 2cm and we choose 1cm as

characteristic length, then the non-dimensional length of this vessel is 2 and we can say

that the length of this vessel is twice as the benchmark. Using non-dimensional quantity

can let us ignore the real quantity but emphasis the relationship with benchmark(transform

the ’absolute’ into ’relative’). After choosing a characteristic length Lc, we can choose a

characteristic velocity Vc and Tc = Lc/Vc should be characteristic time. Dividing the real

period by this characteristic time will give us characteristic period which is 64.0362 in this

case.

Theoretically, people can choose characteristic quantity as they wish. However, in this case,

the characteristic length has to be computed. The vessel model is build from MRI images

and in those images, we can measure the real radius of inlet of vessel. However, when we

put this model in Gmsh, Gmsh will assign coordinates to each points, which means Gmsh

will also define radius of inlet(0.545 in our case). This radius may different with the real

radius in MRI image and for now we don’t know how Gmsh assign those coordinates. We

can view the radius of inlet in Gmsh as non-dimensional length and derive what is the

characteristic length by dividing real length by length in Gmsh.

To set direction of the flow, we can see ’axisnormal’. This is a vector that points the

direction of the flow and should be computed from vessel in Gmsh. The ’axispoint’ denotes

the center of the inlet which is a coordinate from Gmsh.

3.4.3 Nektar++ condition file

The whole file of condition file is as follows:

<NEKTAR xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s tance ”

x s i : noNamespaceSchemaLocation=”http ://www. nektar . i n f o /schema/nektar . xsd”>

<EXPANSIONS>

<E COMPOSITE=”C[5] ” NUMMODES=”2” FIELDS=”u , v ,w, p” TYPE=”MODIFIED” />

</EXPANSIONS>

<CONDITIONS>

<SOLVERINFO>

47

<I PROPERTY=”SolverType” VALUE=”Veloc i tyCorrect ionScheme ” />

<I PROPERTY=”EQTYPE” VALUE=”UnsteadyNavierStokes ” />

<I PROPERTY=”AdvectionForm” VALUE=”Convective ” />

<I PROPERTY=”Pro j e c t i on ” VALUE=”Galerk in ” />

<I PROPERTY=”TimeIntegrationMethod” VALUE=”IMEXOrder1” />

</SOLVERINFO>

<PARAMETERS>

<P> TimeStep = 0.005 </P>

<P> NumSteps = 12820 </P>

<P> IO CheckSteps = 200 </P>

<P> IO In foSteps = 50 </P>

<P> Kinvis = 1 .0/2428 .82 </P>

</PARAMETERS>

<VARIABLES>

<V ID=”0”> u </V>

<V ID=”1”> v </V>

<V ID=”2”> w </V>

<V ID=”3”> p </V>

</VARIABLES>

<BOUNDARYREGIONS>

<B ID=”0”> C[1]

<B ID=”1”> C[2]

<B ID=”2”> C[3]

<B ID=”3”> C[4]

</BOUNDARYREGIONS>

<BOUNDARYCONDITIONS>

<REGION REF=”0”>

<N VAR=”u” VALUE=”0” />

<N VAR=”v” VALUE=”0” />

<N VAR=”w” VALUE=”0” />

<D VAR=”p” VALUE=”0” />

</REGION>

<REGION REF=”1”>

<N VAR=”u” VALUE=”0” />

<N VAR=”v” VALUE=”0” />

<N VAR=”w” VALUE=”0” />

<D VAR=”p” VALUE=”0” />

</REGION>

<REGION REF=”2”>

<D VAR=”u” USERDEFINEDTYPE=”Womersley :WomParams . xml” VALUE=”0” />

<D VAR=”v” USERDEFINEDTYPE=”Womersley :WomParams . xml” VALUE=”0” />

<D VAR=”w” USERDEFINEDTYPE=”Womersley :WomParams . xml” VALUE=”0” />

<N VAR=”p” USERDEFINEDTYPE=”H” VALUE=”0” />

</REGION>

<REGION REF=”3”>

<D VAR=”u” VALUE=”0” />

<D VAR=”v” VALUE=”0” />

<D VAR=”w” VALUE=”0” />

<N VAR=”p” USERDEFINEDTYPE=”H” VALUE=”0” />

48

Figure 23: Visualization for ’w’ variable at a certain time step when using Womersley
boundary condition.

</REGION>

</BOUNDARYCONDITIONS>

<FUNCTION NAME=”In i t i a lCond i t i o n s”>

<E VAR=”u” VALUE=”0” />

<E VAR=”v” VALUE=”0” />

<E VAR=”w” VALUE=”0” />

<E VAR=”p” VALUE=”0” />

</FUNCTION>

</CONDITIONS>

</NEKTAR>

The most special thing in this file is ”REGION REF=2” in ”BOUNDARYCONDITIONS”

part. Here the ”REGION REF=2” denotes the inlet and this is how we call Womersley

boundary condition from Wompara.xml defined in section 3.4.2. By doing so, Nektar++

will assign size of velocity to u, v, w automatically.

3.4.4 Simulation result

To give people an idea on what may the effect of Womersley boundary condition look like,

the Figure 23 shows the size of velocity in direction of Z-axis. We can see in the center

of the inlet, the color is blue. This is because the flow will go into nearly the direction of

minus Z-axis(see WomPara.xml in section 3.4.2 ’axisnormal’) so the value should be minus.

To see the evolution of simulation result in time, we visualize the velocity of the flow in

Figure 24. Again, the blue color denotes bigger size of velocity than red color because of

the direction of the flow. From Figure 24 we can see that the size of velocity first becomes

49

Figure 24: Evolution of velocity on vessel model with Womersley boundary condition.

bigger, then smaller, then bigger, then smaller and finally bigger. However, if we look at

Figure 26, we will find this trend is not right. However, if we look the velocity wave from

’right’ to ’left’, we will find the evolution of velocity in Figure 24 is right. In fact, Nektar++

will process the velocity in the way from ’right’ to ’left’, which means the wave of velocity

will be flipped in time. If we plot the size of velocity at a point of inlet basing on the

simulation results(.chk files), we obtain Figure 25. The velocity indeed flips in time.

There is also an important thing to know about setting up Womersley boundary condition

in Nektar++. We need to scale velocity for Womersley boundary condition to make sure

that there is no change of sign of velocity. For example, we should not have such case:

part of size of velocity is above zero is part of it is negative. If such thing happens, the

50

Figure 25: Plot of velocity at a point of inlet from simulation results.

Figure 26: Velocity of the Womersley boundary condition at inlet.

51

Figure 27: A failed case on cylinder.

simulation will fail. If we visualize the last output file(.chk file) before failure of simulation,

we may see situation like Figure 27. From this image, we can see that some fluid is flowing

back to inlet(see blue part). So if someone doing the similar simulation and see such case

happens, maybe we need to check if the velocity changes sign.

52

4. Future work

In this section, we will discuss about what to do next base on the work. We will mainly

talk about two parts.

4.1. Unfinished work

We have introduced Windkessel model in section 3.2 but we didn’t do the simulation with

Windkessel model to set pressure boundary condition for outlet in this thesis. The reason for

this is that the Windkessel model is under development for Nektar++ version4.4.1(current

version). So in our simulation in this thesis, the pressure should not attain physiologically

correct values because the boundary condition is wrong.

4.2. Looking towards new paradigm of scientific computing

In this thesis, we discussed about traditional method in computational fluid dynamics:(i)generate

the mesh for computational domain. (ii)set boundary condition for simulation. (iii)using

traditional numerical methods to solve partial differential equation. However, recently, with

development of machine learning(deep learning) techniques, people can totally change the

work flow. The high-level idea of this new paradigm is using the extremely powerful fitting

capacity of deep neural networks to fit the solution of differential equations. An obvious

advantage for this methodology is the neural network we trained is essentially a function

which can predict value of variables for each position of computational domain, which can

allow us avoid generating mesh and setting boundary conditions. In addition to this, peo-

ple can also use machine learning method to infer or estimate parameters of differential

equations. People may see8 as a very good example which is also dealing with blood flow

simulation.

53

Bibliography

[1] Bermejo J, Martnez-Legazpi P, del lamo JC. The clinical assessment of intraventricular
flows. Annu Rev Fluid Mech. 2015;47(1):31542.

[2] Bobbia X , Grandpierre RG , Claret P-G et al. . Ultrasound guidance for radial arterial
puncture: a randomized controlled trial . Am J Emerg Med 2013 ; 31 : 810 5

[3] C. D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. De
Grazia, S. Yakovlev, J-E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C.
Eskilsson, B. Nelson, P. Vos, C. Biotto, R. M. Kirby, and S. J. Sherwin, Nektar++: An
open-source spectral/hp element framework, Computer physics communications, vol.
192, pp. 205-219, 2015.

[4] C. Geuzaine and J.-F. Remacle. Gmsh: a three-dimensional finite element mesh genera-
tor with built-in pre- and post-processing facilities. International Journal for Numerical
Methods in Engineering 79(11), pp. 1309-1331, 2009.

[5] Chan BT, Lim E, Chee KH, Abu Osman NA. Review on CFD simulation in
heart with dilated cardiomyopathy and myocardial infarction. Comput Biol Med.
2013;43(4):37785.

[6] Cohn JN, Ferrari R, Sharpe N. 2000. Cardiac remodelingconcepts and clinical impli-
cations: a consensus paper from an international forum on cardiac remodeling. J. Am.
Coll. Cardiol. 35:56982.

[7] G.E. Karniadakis, M. Israeli, S.A. Orszag High-order splitting methods for the incom-
pressible Navier-Stokes equations J.Comput. Phys.,97 (2) (1991), pp. 414-443

[8] Georgios Kissas, Yibo Yang, Eileen Hwuang, Walter R Witschey, John A Detre,
Paris Perdikaris Machine learning in cardiovascular flows modeling: Predicting pulse
wave propagation from non-invasive clinical measurements using physics-informed deep
learning arXiv:1905.04817

[9] Hornberger LK, Sanders SP, Rein AJ, Spevak PJ, Parness IA, Colan SD. 1995. Left
heart obstructive lesions and left ventricular growth in the midtrimester fetus: a lon-
gitudinal study. Circulation 92:153138.

[10] I. Babuka, B.Q. Guo: The h, p and h-p version of the finite element method: basis
theory and applications, Advances in Engineering Software, Volume 15, Issue 3-4, 1992.

[11] J.L. Guermond, J. Shen Velocity-correction projection methods for incompressible
flowsSIAM J. Numer. Anal., 41 (1) (2003), pp. 112-134

[12] Karniadakis, G. and Sherwin, S. (2013).Spectral/hp element methods for CFD. Oxford:
Oxford University Press.

54

[13] Markl, M., Frydrychowicz, A., Kozerke, S., Hope, M., Wieben, O., 2012. 4d flow mri.
Journal of Magnetic Resonance Imaging 36 (5),10151036.

[14] Ma,Y.,Choi,J.,HourlierFargette,A.,Xue,Y.,Chung,H.U.,Lee,J.Y.,Wang,X.,Xie,Z.,Kang,D.,Wang,H.,etal.,2018.Relationbetweenblood
pressure and pulse wave velocity for human arteries. Proceedings of the National
Academy of Sciences 115 (44), 1114411149.

[15] N Doost, Siamak Ghista, Dhanjoo Su, Boyang Zhong, Liang Morsi, Yosry (Yos.
(2016). Heart blood flow simulation: A perspective review. BioMedical Engineering
OnLine. 15. 10.1186/s12938-016-0224-8.

[16] Olgierd Cecil Zienkiewicz and Robert Leroy Taylor. Basic formulation and linear prob-
lems. McGraw-Hill, 1989

[17] ORourke,M.,1995.Mechanical principles in arterial disease.Hypertension26(1),29.

[18] Schwemmer U , Arzet HA , Trautner H , Rauch S , Roewer N , Greim C-A . Ultrasound-
guided arterial cannulation in infants improves success rate . Eur J Anaesthesiol 2006
; 23 : 476 80

[19] Serson D., Meneghini J. R., Sherwin S. J. Velocity-correction schemes for the incom-
pressible navier-stokes equations in general coordinate systems [J]. Journal of Compu-
tational Physics, 2016, 316: 243254.

[20] Shiver S , Blaivas M , Lyon M . A prospective comparison of ultrasound-guided and
blindly placed radial arterial catheters . Acad Emerg Med 2006 ; 13 : 1275 9

[21] Stefanovska,A.,1999.Physics of the human cardiovascular system.Contemporary
Physics40(1),3155.

[22] Tan TYS , Petersen JAK , Zhao X , Taylor KL . Randomized controlled trial of
ultrasound versus palpation method for arterial cannulation in infants less than 24
months of age . SOJ Anesthesiol Pain Manag 2015 ; 2 : 1 3

[23] White, L; Halpin, A; Turner, M; Wallace, L (22 April 2016). ”Ultrasound-guided radial
artery cannulation in adult and paediatric populations: a systematic review and meta-
analysis”. British Journal of Anaesthesia. 116 (5): 610617.

[24] Womersley, J.R. (March 1955). ”Method for the calculation of velocity, rate of flow
and viscous drag in arteries when the pressure gradient is known”. J. Physiol. 127 (3):
553563.

[25] https://www.paraview.org

[26] https://en.wikipedia.org/wiki/Continuity_equation

[27] https://www.geophysik.uni-muenchen.de/~igel/Lectures/NMG/08_finite_

elements_basisfunctions.pdf

55

[28] https://www.skience.de/2017/mess-2017-introduction-spectral-element-method

[29] https://en.wikipedia.org/wiki/Pulsatile_flow#References

[30] https://en.wikipedia.org/wiki/Windkessel_effect

[31] https://sinews.siam.org/Details-Page/cardiovascular-blood-flow-simulation

[32] http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.716.8008&rep=

rep1&type=pdf

[33] https://www.brown.edu/research/projects/crunch/sites/brown.edu.

research.projects.crunch/files/uploads/Paris\%20Perdikaris\%20Thesis.

pdf

[34] Szeg, Gbor (1939). ”IV. Jacobi polynomials.”. Orthogonal Polynomials. Colloquium
Publications. XXIII. American Mathematical Society.

[35] Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. ”Chapter 22”. Hand-
book of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.
Applied Mathematics Series. 55 (Ninth reprint with additional corrections of tenth
original printing with corrections (December 1972); first ed.). Washington D.C.; New
York: United States Department of Commerce, National Bureau of Standards; Dover
Publications. p. 561. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN
65-12253.

[36] P.K. Suetin (2001) [1994], ”Jacobi polynomials”, in Hazewinkel, Michiel (ed.), En-
cyclopedia of Mathematics, Springer Science+Business Media B.V. Kluwer Academic
Publishers

[37] Biedenharn, L.C.; Louck, J.D. (1981). Angular Momentum in Quantum Physics. Read-
ing: Addison-Wesley.

[38] Andrews, George E.; Askey, Richard; Roy, Ranjan (1999), Special functions, Ency-
clopedia of Mathematics and its Applications, 71, Cambridge University Press, ISBN
978-0-521-62321-6, MR 1688958, ISBN 978-0-521-78988-2

[39] Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, Ren F.
(2010), ”Orthogonal Polynomials”, in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert,
Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions,
Cambridge University Press, ISBN 978-0521192255, MR 2723248

[40] Pedlosky, Joseph (1987). Geophysical fluid dynamics. Springer. pp. 1013.

[41] Clancy, L.J.(1975), Aerodynamics, Section 3.3, Pitman Publishing Limited, London

[42] Quantum Mechanics Demystified, D. McMahon, McGraw Hill (USA), 2006.

56

[43] D. McMahon (2006). Relativity DeMystified. McGraw Hill (USA).

[44] C.W. Misner; K.S. Thorne; J.A. Wheeler (1973). Gravitation. W.H. Freeman Co.

[45] Michael Weiss; John Baez. ”Is Energy Conserved in General Relativity?”. Retrieved
2014-04-25.

[46] J.A. Wheeler; C. Misner; K.S. Thorne (1973). Gravitation. W.H. Freeman Co. pp.
558559. ISBN 0-7167-0344-0.

[47] Hydrodynamics, H. Lamb, Cambridge University Press, (2006 digitalization of 1932
6th edition)

[48] Introduction to Electrodynamics (3rd Edition), D.J. Griffiths, Pearson Education Inc,
1999, ISBN 81-7758-293-3

[49] Electromagnetism (2nd edition), I.S. Grant, W.R. Phillips, Manchester Physics Series,
2008 ISBN 0-471-92712-0

[50] Gravitation, J.A. Wheeler, C. Misner, K.S. Thorne, W.H. Freeman Co, 1973, ISBN
0-7167-0344-0

[51] Curtiss, C. F., Hirschfelder, J. O. (1952). Integration of stiff equations. Proceedings
of the National Academy of Sciences, 38(3), 235-243.

[52] Ascher, U. M.; Petzold, L. R. (1998), Computer Methods for Ordinary Differential
Equations and Differential-Algebraic Equations, SIAM, Philadelphia, ISBN 0-89871-
412-5.

[53] Daryl L. Logan (2011). A first course in the finite element method. Cengage Learning.

[54] Reddy, J. N. (2006). An Introduction to the Finite Element Method (Third ed.).
McGraw-Hill.

[55] Hrennikoff, Alexander (1941). ”Solution of problems of elasticity by the framework
method”. Journal of Applied Mechanics. 8.4: 169175.

[56] Courant, R. (1943). ”Variational methods for the solution of problems of equilibrium
and vibrations”. Bulletin of the American Mathematical Society. 49: 123.

[57] Olek C Zienkiewicz; Robert L Taylor; J.Z. Zhu (31 August 2013). The Finite Element
Method: Its Basis and Fundamentals. Butterworth-Heinemann.

[58] Bathe, K.J. (2006). Finite Element Procedures. Cambridge, MA: Klaus-Jrgen Bathe.

[59] Smith, I.M.; Griffiths, D.V.; Margetts, L. (2014). Programming the Finite Element
Method (Fifth ed.). Wiley.

57

[60] P. Solin, K. Segeth, I. Dolezel: Higher-Order Finite Element Methods, Chapman Hal-
l/CRC Press, 2003

[61] Bengt Fornberg (1996) A Practical Guide to Pseudospectral Methods. Cambridge Uni-
versity Press, Cambridge, UK

[62] Chebyshev and Fourier Spectral Methods by John P. Boyd.

[63] Canuto C., Hussaini M. Y., Quarteroni A., and Zang T.A. (2006) Spectral Methods.
Fundamentals in Single Domains. Springer-Verlag, Berlin Heidelberg

[64] Polynomial Approximation of Differential Equations, by Daniele Funaro, Lecture Notes
in Physics, Volume 8, Springer-Verlag, Heidelberg 1992

[65] D. Gottlieb and S. Orzag (1977) ”Numerical Analysis of Spectral Methods : Theory
and Applications”, SIAM, Philadelphia, PA

[66] J. Hesthaven, S. Gottlieb and D. Gottlieb (2007) ”Spectral methods for time-dependent
problems”, Cambridge UP, Cambridge, UK

[67] Lloyd N. Trefethen (2000) Spectral Methods in MATLAB. SIAM, Philadelphia, PA

[68] Javier de Frutos, Julia Novo: A Spectral Element Method for the Navier–Stokes Equa-
tions with Improved Accuracy

58

