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ABSTRACT

LEVERAGING PRIVACY IN DATA ANALYSIS

Ryan Michael Rogers

Michael Kearns
Aaron Roth

Data analysis is inherently adaptive, where previous results may influence which tests are
carried out on a single dataset as part of a series of exploratory analyses. Unfortunately,
classical statistical tools break down once the choice of analysis may depend on the dataset,
which leads to overfitting and spurious conclusions. In this dissertation we put constraints
on what type of analyses can be used adaptively on the same dataset in order to ensure
valid conclusions are made. Following a line of work initiated from Dwork et al. (2015c), we
focus on extending the connection between differential privacy and adaptive data analysis.

Our first contribution follows work presented in Rogers et al. (2016a). We generalize and
unify previous works in the area by showing that the generalization properties of (ap-
proximately) differentially private algorithms can be used to give valid p-value corrections
in adaptive hypothesis testing while recovering results for statistical and low-sensitivity
queries. One of the main benefits of differential privacy is that it composes, i.e. the com-
bination of several differentially private algorithms is itself differentially private and the
privacy parameters degrade sublinearly. However, we can only apply the composition the-
orems when the privacy parameters are all fixed up front. Our second contribution then
presents a framework for obtaining composition theorems when the privacy parameters,
along with the number of procedures that are to be used, need not be fixed up front and
can be adjusted adaptively (Rogers et al., 2016b). These results are only useful if there are
some differentially private procedures that an analyst would want to use. Hence, we present
differentially private hypothesis tests (Gaboardi et al., 2016; Kifer and Rogers, 2016).
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Part I

PROBLEM STATEMENT AND
PREVIOUS WORK
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We first present the basic setup of adaptive data analysis including the motivation for why
analysts that depend on statistical findings should be concerned with it and what some of
the challenges are with adaptivity. We discuss some of the related work in this area, with
the first paper in this line of research being Dwork et al. (2015c), which will be crucial to
know when outlining our contributions. We then outline the rest of the dissertation, which
largely follows work previously published in Rogers et al. (2016a,b); Gaboardi et al. (2016);
Kifer and Rogers (2016), but does contain some results not previously published.

Some preliminaries in differential privacy are then presented which will be needed through-
out the dissertation. We then conclude this first part of the thesis with empirical evaluations
of valid confidence bounds that we can generate for adaptively chosen statistical queries us-
ing previous results and a new analysis, which have not been compared before. This then
provides a link between the highly theoretical work in adaptive data analysis with some real-
istic settings and demonstrates an improvement over traditional data splitting techniques.
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CHAPTER 1

INTRODUCTION

The goal of statistics and machine learning is to draw conclusions on a dataset that will
generalize to the overall population, so that the same conclusion can be drawn from any
new dataset that is collected from the same population. Tools from statistical theory have
become ubiquitous in empirical science stretching across a myriad of disciplines.

However, classical statistical tools are only useful insofar as the original theory was intended.
The scientific community has become increasingly aware that many of the “statistically
significant” findings in published research are frequently invalid. In many replication studies,
the published findings cannot be confirmed in a large proportion of them; much more than
would be allowed by the theory, e.g. Ioannidis (2005); Gelman and Loken (2014). When
a conclusion is made on a given dataset but cannot be replicated in other studies, then a
false discovery has been committed. Similarly, in machine learning, the validity of models
are based on how well the model generalizes to new instances, with the main concern being
that the model overfits to the dataset and not the population.

Why is their an apparent disconnect between what theoretical statistics guarantees and
the overwhelming number of false discoveries that are made from empirical studies? One
of the crucial assumptions made in the classical theory is that the procedures that are
to be conducted on the dataset are all known upfront, prior to actually seeing the data.
In fact, one of the main suspects behind the prevalence of false discovery in replication
studies is that the data analyst is adaptively selecting different analyses to run based on
previous results on the same dataset and using the classical theory as if the tests were
selected independently of the data (Gelman and Loken, 2014). This problem of adapting
the analysis to the data is sometimes referred to as “p-hacking”, “data snooping”, and
“researcher degrees of freedom” (Ioannidis, 2005; Simmons et al., 2011; Gelman and Loken,
2014). As soon as the analyst has looked at the data or some function of it and then selects a
new analysis, the traditional theory is no longer valid. For example, it may be the case that
the analyst wishes to select some variables for a model selection followed by some inference
– note that the adaptive selection of the model invalidates the following inference using
classical statistical theory. Over the past few decades there has been a significant amount
of effort put into proposing fixes to this problem. Despite some techniques for preventing
false discoveries, e.g. the Bonferroni Correction (Bonferroni, 1936; Dunn, 1961) and the
Benjamini-Hochberg Procedure (Benjamini and Hochberg, 1995), the problem still persists.

The practice of modern data analysis is inherently adaptive, where each analysis is con-
ducted based on previous outcomes on the same data as part of an exploratory analysis. It
may not be the case that a particular study would be thought of prior to running a test on
the data, thus making preregistering what analyses you want to run useless. Typically, an
analyst needs to use the data to find interesting analyses to perform and hypotheses to test.
Further, as researchers increasingly allow open access of their data, multiple studies may
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be conducted on the same dataset where findings of different research groups may influence
the studies performed by other research groups. Not taking into account the adaptivity
in the separate research groups’ analyses, this process can often lead to false conclusions
drawn from a dataset, thus contributing to the crisis in reproducibility.

In order to use classical techniques in this adaptive setting, we would require the analyst to
sample a fresh dataset with each new analysis to be conducted. Due to data collection being
costly, this is certainly not an ideal solution. Instead, we would like to be able to consider
several, adaptively chosen analyses on the same dataset and ensure valid conclusions are
made that generalize to the population.

Recently, two lines of work have attempted to understand and mitigate the prevalence of
false discoveries in adaptive data analysis. The first is to derive tight confidence intervals
around parameter estimates from very specific types of analyses, such as LASSO model
selection followed by regression (Fithian et al., 2014; Lee et al., 2013). The second line
of work originated in the computer science community by Dwork et al. (2015c) and seeks
to be very general by imposing conditions on the types of algorithms that carry out the
analysis at each stage and makes no assumption on how the results are used by the analyst.
Note that in the former line of work – called selective inference – the methods are focused
on two stage problems: variable selection followed by significance testing and adjust for
the inference in the second step. The main idea of the latter line of work aims to limit the
amount of information (a notion which we will make precise later) that is released about the
dataset with each analysis so that it is unlikely to commit a false discovery on a subsequent
analysis. This dissertation is largely a continuation of the work initiated by Dwork et al.
(2015c) and aims to further understand how we can correct for adaptivity in the classical
theory. We then present some useful hypothesis tests which can be used in this adaptive
setting while providing valid p-values.

Before we can discuss the specific contributions of this dissertation, we need to first discuss
some of the previous work done in adaptive data analysis. We start by presenting a basic
setup of the problem so that we can discuss the difficulty that arises when we need to consider
analyses that are conducted adaptively on the same dataset as opposed to having the
analyses known upfront. We will then discuss further advances in understanding adaptive
data analysis and some of the results that have been shown.

Throughout this dissertation, we will write the data universe as X , typically X = {0, 1}d
where d is the dimensionality of the data, and some unknown data distribution D over X
where a dataset XXX = (X1, · · · , Xn) of n subjects is typically sampled i.i.d. from D, denoted
as XXX ∼ Dn. The analyst’s goal is to infer something from the population rather than the
dataset. An analyst will then select a sequence of analyses that she wants to conduct,
receiving answers a1, · · · , ak that are computed using the dataset. Ideally, we would want
the analyst to run each analysis separately on a fresh dataset XXX(i) sampled from the same
population distribution Dn, thus ensuring that each analysis is independent of the data it
is used on. Realistically, due to data collection being costly, we would like to reuse the
same dataset for each analysis. See Figure 1 for a cartoon comparison between the ideal
and realistic settings of adaptive data analysis.
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Analyst
𝒜

(a) The ideal setting – each analysis is per-
formed on a fresh dataset.

(b) A more realistic setting – a single dataset
is reused for adaptively chosen analyses.

Figure 1: Two models of adaptive data analysis.

1.1. Problem Formulation - Statistical Queries

We start by formulating the problem of adaptivity for a simple setting that is standard in
statistics and statistical learning theory, although later we will look at more general analyses
that the analyst can conduct on the data. Here, we address the problem where the analyst
wants to know EX∼D [φ(X)] where φ : X → [0, 1]. For notational convenience we will write

this expectation as φ(D)
defn
= EX∼D [φ(X)]. The analyst then wants to obtain an estimate

to φ(D) that is within tolerance τ with only access to sampled data XXX ∼ Dn.

This formulation of the problem is nice because this estimate is a statistical query in the
SQ model of Kearns (1993). We then model the interaction between an analyst A wanting
to ask such queries φi : X → [0, 1] and algorithmsMi for i ∈ [k] which have direct access to
the datasetXXX ∼ Dn. Here we model the analyst A as first selecting φ1 and receiving answer
a1 =M1(XXX), then for i = 2, · · · , k, we allow A to select φi as a function of φ1, · · · , φi−1 and
answers a1, · · · , ai−1 and she receives answer ai = Mi(XXX). Note that the algorithms Mi

may also depend on the previous queries and answers. One example for algorithm Mi(XXX)

is to report the empirical average, φi(XXX)
defn
= 1

n

∑n
j=1 φi(Xi), which we know will be close to

φi(D) when φi are chosen independently of the data. Thus the analyst makes decisions on
what queries to ask based only on the outcomes of the algorithms M1, · · · ,Mk. We then
outline this interaction so that for each i ∈ [k] (also see Figure 2):

• Analyst A selects query φi, which is based on previous queries φ1, · · · , φi−1 and cor-
responding answers a1, · · · , ai−1

• A receives answer ai = Mi(XXX), where Mi may also depend on φ1, · · · , φi−1 and
a1, · · · , ai−1.

We then define what we mean by accuracy in this setting.
Definition 1.1.1. A sequence of algorithms M = (M1, · · · ,Mk) is (τ, β)-accurate with
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Figure 2: Interaction between analyst A and dataset XXX via algorithms M1, · · · ,Mk.

respect to the population if for all analysts A we have

Pr

[
max
i∈[k]
|φi(D)−Mi(XXX)| ≤ τ

]
≥ 1− β

where the probability is over the dataset XXX ∼ Dn as well as any randomness from the
algorithms M1 · · · ,Mk and the adversary A.

Before we dive deeper into the adaptive setting, we first consider the case where all the
queries are asked up front, prior to any computations on the data. In this case we can
apply a Chernoff bound and union bound to show that releasing the empirical average on
the data is accurate,

Pr
XXX∼Dn

[
max
i∈[k]
|φi(D)− φi(XXX)| ≤

√
1

2n
log(2k/β)

]
≥ 1− β

A useful quantity for comparing the different methods in this section will be sample complex-
ity, which gives a bound on the sample size n that is sufficient in answering k nonadaptive
queries all with accuracy at most τ with constant probability, say β = 0.05. Thus, answering
each (nonadaptively chosen) statistical query with the empirical average achieves sample
complexity n = Θ

(
log(k)/τ2

)
.1 Phrased another way, we can answer an exponential in n

number of statistical queries and still achieve high accuracy on all of them. Further, it is
a straightforward protocol that achieves this: simply answer with the empirical averages of
each statistical query. However, this analysis crucially requires the statistical queries all be
independent of the data.

1Throughout the dissertation, we will use log(·) to denote the natural log unless we use another base, in
which case we will make explicit the base b by writing logb(·)
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We now consider the setting where the statistical queries are adaptively chosen. One first
approach might be to just answer each statistical query with the empirical average, as we did
in the nonadaptive case. As pointed out in Hardt and Ullman (2014), we can use techniques
from Dinur and Nissim (2003) to nearly reconstruct the entire database after seeing O(τ2n)
many random empirical averages to statistical queries (nonadaptively chosen), so that the
analyst can then find a statistical query q∗ such that |q∗(XXX) − q∗(D)| > τ with constant
probability. This translates to empirical averages only having sample complexity Ω(k/τ2).
Thus, only a linear number of statistical queries can be answered accurately using empirical
estimates – an exponential blow up with a single round of adaptivity!

1.2. Prior Results - Statistical Queries

Given that empirical averages do not achieve good sample complexity with adaptively chosen
statistical queries, we hope to find new ways in which to answer these queries accurately.
There has then been a lot of work in developing algorithms that can answer much more
than a linear number of adaptively selected statistical queries. The following result, which
improves on an earlier result from Dwork et al. (2015c), shows that we can achieve a
quadratic improvement on the number of adaptively selected queries, using techniques from
Dwork et al. (2006b), which we will extensively go over in Chapter 3.
Theorem 1.2.1 [Bassily et al. (2016)]. There is an algorithm that has the following sample
complexity for k adaptively chosen statistical queries

n ≥ Õ

(√
k

τ2

)
.2

Further, the algorithm runs in time that is polynomial in n and log |X | per query.

The following theorem, which also improves on an earlier result of Dwork et al. (2015c),
shows that we can accurately answer an exponential in n number of adaptively selected sta-
tistical queries, but the algorithm which computes the answers is not run-time efficient. This
result follows from the Private Multiplicative Weights algorithm from Hardt and Rothblum
(2010).
Theorem 1.2.2 [Bassily et al. (2016)]. There is an algorithm that has the following sample
complexity for k adaptively chosen statistical queries

n ≥ Õ

(√
log |X | log(k)

τ3

)
.

Further, the algorithm runs in time that is polynomial in n and |X | per query.

An immediate question that arises when comparing these results is why the gap between
efficient and inefficient run-time algorithms (the second result requires |X | time per query)
when improving on sample complexity? There was no such distinction in the nonadaptive
setting. It turns out that this separation is actually inherent when answering adaptively

2We will use Õ(·) throughout the dissertation to hide poly-logarithmic dependence on parameters that

already appear, so that Õ(f(y)) = O(f(y)polylog(y)) for some function f .
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selected statistical queries accurately – adaptivity actually does come at a cost. The follow-
ing result was first studied in Hardt and Ullman (2014) who gave the first computational
barrier in answering adaptively selected queries and was then improved by Steinke and
Ullman (2015).
Theorem 1.2.3 [Steinke and Ullman (2015)]. Under a standard hardness assumption,3

there is no computationally efficient algorithm that is accurate within constant tolerance
with constant probability (over randomness of the sample and the algorithm) on k = O(n2)
adaptively chosen statistical queries with X = {0, 1}d.

It is worth pointing out here the dependence of this impossibility result on the dimensionality
of the data. Note that if n were much larger than 2d, then the empirical average of every
possible statistical query could be answered accurately. So for these results to be interesting,
we are considering n� 2d.

The gap between the upper and lower bounds in sample complexity for adaptively cho-
sen statistical queries is large. Hardt and Ullman (2014) and Steinke and Ullman (2015)

showed that n = Õ
(

min{
√
k/τ,

√
log(|X |)/τ}

)
samples are necessary for τ accuracy for k

adaptively chosen statistical queries.

Although in this section we focused entirely on statistical queries, it is possible to obtain
similar results for much richer classes of queries an analyst would like to ask about a dataset.
Bassily et al. (2016) give results for the class of low sensitivity queries q : X n → R, defined
as functions where for any two neighboring datasets xxx,xxx′ ∈ X n, that is xxx and xxx′ are the
same in every entry except one element, we have

|q(xxx)− q(xxx′)| ≤ ∆(q) = o(1) as n→∞.

We call ∆(q) the sensitivity of function q. For the particular results in Bassily et al. (2016)
that we cite, we require ∆(q) = O(1/n), although their results do hold for more general
sensitivities.

1.3. Post Selection Hypothesis Testing

The goal of this dissertation is to handle much more general types of analyses, rather than
just statistical queries or low-sensitivity queries, in this adaptive setting. One specific type
of analysis we might like to handle adaptively is hypothesis testing. In fact, the previous
works (Dwork et al., 2015c; Bassily et al., 2016) are motivated by the problem of false
discovery in empirical science despite the technical results being about estimating means of
adaptively chosen statistical (or low-sensitivity) queries.

We will consider a simple model of one-sided hypothesis tests on real valued test statistics. A
hypothesis test is defined by a test statistic φ(j) : X n → R mapping datasets to a real value,
where we use j to index different test statistics. Given an output a = φ(j)(xxx), together with
a distribution D over the data domain, the p-value associated with a and D is simply the
probability of observing a value of the test statistic that is at least as extreme as a, assuming

3The existence of one-way functions
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the data was drawn independently from D: p
(j)
D (a)

defn
= PrXXX∼Dn [φ(j)(XXX) ≥ a]. Note that

there may be multiple distributions D over the data that induce the same distribution over

the test statistic. With each test statistic φ(j), we associate a null hypothesis H
(j)
0 as a

collection of possible distributions over X . The p-values are always computed with respect

to a distribution D ∈ H
(j)
0 , and hence from now on, we hide the dependence on D and

simply write p(j)(a) to denote the p-value of a test statistic φ(j) evaluated at a.

The goal of a hypothesis test is to reject the null hypothesis if the data is not likely to have
been generated from the proposed model, that is if the underlying distribution from which

the data were drawn was not in H
(j)
0 . By definition, if XXX truly is drawn from Dn for some

D ∈ H
(j)
0 , then p(j)(φ(j)(XXX)) is uniformly distributed over [0, 1]. A standard approach to

hypothesis testing is to pick a significance level α ∈ [0, 1] (often α = 0.05), compute the
value of the test statistic a = φ(j)(XXX), and then reject the null hypothesis if p(j)(a) ≤ α.
Under this procedure, the probability of incorrectly rejecting the null hypothesis—i.e., of

rejecting the null hypothesis when XXX ∼ Dn for some D ∈ H
(j)
0 —is at most α. Note that an

incorrect rejection of the null hypothesis is called a false discovery.

The discussion so far presupposes that φ(j), the test statistic in question, was chosen in-
dependently of the dataset XXX. Let Y denote a collection of test statistics, and suppose
that we select a test statistic using a data-dependent selection procedure M : X n → Y.
If φ(j) = M(XXX), then rejecting the null hypothesis when p(j)(φ(j)(XXX)) ≤ α may result in
a false discovery with probability much larger than α. As we mentioned earlier, this kind
of näıve approach to post-selection inference is suspected to be a primary culprit behind
the prevalence of false discovery in empirical science (Gelman and Loken, 2014; Wasserstein
and Lazar, 2016; Simmons et al., 2011). This is because even if the null hypothesis is true

(XXX ∼ Dn for some D ∈ H
(j)
0 ), the distribution on XXX conditioned on φ(j) = M(XXX) having

been selected need not be Dn. Our goal in studying valid post-selection hypothesis testing is
to then find a valid p-value correction function γ : [0, 1]→ [0, 1], which we define as follows:
Definition 1.3.1 [Valid p-value Correction Function]. A function γ : [0, 1]→ [0, 1] is a valid
p-value correction function for a selection procedure M : X n → Y if for every significance
level α ∈ [0, 1], the procedure:

1. Select a test statistic φ(j) =M(XXX) using selection procedure M.

2. Reject the null hypothesis H
(j)
0 if p(j)(φ(j)(XXX)) ≤ γ(α).

has probability at most α of resulting in a false discovery.

We will be interested in p-value corrections that are not too small – note that γ(α) = 0 is
a valid correction but not very interesting. We would like our tests to be able to correctly

reject a wrong H
(j)
0 with higher confidence as we increase the sample size. The ability for a

hypothesis test to correct reject a null hypothesis is called the power of the test. We then

model the various sources of error in hypothesis testing in Table 1 where H
(j)
1 is some fixed

alternate hypothesis, different from the null. Typically in hypothesis testing, we want to
ensure the probability of a false discovery is at most some threshold α, and we would like
to minimize the probability of type II error, i.e. failing to reject when the null hypothesis
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was false.

H
(j)
0 True H

(j)
1 True

Reject H
(j)
0 False Discovery Power

Fail to Reject H
(j)
0 Significance Type II Error

Table 1: Types of Errors in Hypothesis Testing

Necessarily, to give a nontrivial correction function γ, we will need to assume that the
selection procedure M satisfies some useful property. We will discuss later the types of
test selection procedures that will enable us to find valid correction functions. In Ap-
pendix A.1, we show that hypothesis testing is in general beyond the setting of statistical
or low-sensitivity queries that we have already discussed above, which shows that we need
new tools for handling adaptive hypothesis testing.

It is important to point out the role of the algorithm M : X n → Y here. Before, we
were considering an algorithm that was given access to a dataset and would release answers
to adaptively chosen queries from the data analyst, then the analyst A would select any
new analysis (or query) based on the answers she had already witnessed. However, now
we are considering algorithms, or test selection procedures that release the analysis for the
analyst to use. This is simply for mathematical convenience. The seeming discrepancy
between these two models is resolved by the guarantees of the algorithms we will consider
here – that they are closed under post-processing. Thus, we can combine the output of the
algorithm M and the choice of analysis of A as a single procedure M.

1.4. Handling More General Analyses - Max-information

There is one constraint on the selection procedure M that does allow us to give nontrivial
p-value corrections—thatM has bounded max-information. Max-information is a measure
introduced by Dwork et al. (2015a), which we discuss next.

Given two (arbitrarily correlated) random variables X, Z, we let X ⊗ Z denote a random
variable (in a different probability space) obtained by drawing independent copies of X and
Z from their respective marginal distributions.
Definition 1.4.1 [Max-Information (Dwork et al., 2015a)]. Let X and Z be jointly dis-
tributed random variables over the domain (X ,Z). The max-information between X and
Z, denoted by I∞ (X;Z), is the minimal value of m such that for every x in the support of
X and z in the support of Z, we have Pr [X = x|Z = z] ≤ 2mPr [X = x]. Alternatively,

I∞ (X;Z) = log2 sup
(x,z)∈(X ,Z)

Pr [(X,Z) = (x, z)]

Pr [X ⊗ Z = (x, z)]
.

The β-approximate max-information between X and Z is defined as

Iβ∞ (X;Z) = log2 sup
O⊆(X×Z),

Pr[(X,Z)∈O]>β

Pr [(X,Z) ∈ O]− β
Pr [X ⊗ Z ∈ O]

.
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We say that an algorithm M : X n → Y has β-approximate max-information of m, denoted
as Iβ∞ (M, n) ≤ m, if for every distribution S over elements of X n, we have Iβ∞ (XXX;M(XXX)) ≤
m when XXX ∼ S. We say that an algorithm M : X n → Y has β-approximate max-
information of m over product distributions, written Iβ∞,Π (M, n) ≤ m, if for every distri-

bution D over X , we have Iβ∞ (XXX;M(XXX)) ≤ m when XXX ∼ Dn.

Max-information has several nice properties that are useful in adaptive data analysis. The
first is that it composes, so that if an analyst uses an algorithm with bounded approxi-
mate max-information and then based on the output uses another algorithm with bounded
approximate max-information, then the resulting analysis still has bounded approximate
max-information.
Theorem 1.4.2 [Dwork et al. (2015a)]. Let M1 : X n → Y be an algorithm such that

Iβ1∞ (M1, n) ≤ m1 and let M2 : X n × Y → Z be an algorithm such that for each y ∈ Y,

we have Iβ2∞ (M2(·, y), n). Then the composed algorithm M : X n → Z where M(xxx) =

M2(xxx,M1(xxx)) has Iβ1+β2
∞ (M, n) ≤ m1 +m2. Further, if we also have Iβ1∞,Π (M1, n) ≤ m1,

then Iβ1+β2
∞,Π (M, n) ≤ m1 +m2

Note that this result can be iteratively applied to string together a sequence of adaptively
chosen algorithms with approximate max-information and the resulting composed algorithm
will also have bounded max-information. This composition theorem is crucial in control-
ling the probability of false discovery over a sequence of analyses when each analysis is
individually known to have bounded max-information.

Another useful property is that max-information is preserved under post-processing. Thus,
if our algorithm M answers adaptively chosen analyses (e.g. statistical queries) on dataset
XXX and has bounded approximate max-information, then the analyst can take any function
of the output f (M(XXX)) = M′(XXX) to find a new analysis to run. The resulting algorithm
M′ then has max-information bound no larger than that of M.
Theorem 1.4.3 [Dwork et al. (2015a)]. If M : X n → Y and ψ : Y → Y is any (possibly
randomized) mapping, then ψ◦M : X n → Y ′ satisfies the following for any random variable
XXX over X n and every β ≥ 0,

Iβ∞ (XXX;ψ (M(XXX))) ≤ Iβ∞ (XXX;M(XXX)) .

We now state some of the immediate consequences of max-information in adaptive data
analysis. It follows from the definition that if an algorithm has bounded max-information,
then we can control the probability of “bad events” that arise as a result of the dependence of
M(XXX) on XXX: for every event O, we have Pr[(XXX,M(XXX)) ∈ O] ≤ 2m Pr[XXX⊗M(XXX) ∈ O]+β.

For example, if M is a data-dependent selection procedure for selecting a test statistic, we
can derive a valid p-value correction function γ as a function of a max-information bound
on M:
Theorem 1.4.4. Let M : X n → Y be a data-dependent algorithm for selecting a test
statistic such that Iβ∞,Π (M, n) ≤ m. Then the following function γ is a valid p-value
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correction function for M:

γ(α) = max

(
α− β

2m
, 0

)
.

Proof. Fix a distribution D from which the dataset XXX ∼ Dn. If α−β
2m ≤ 0, then the theorem

is trivial, so assume otherwise. Define O ⊂ X n × Y to be the event that M selects a test
statistic for which the null hypothesis is true, but its p-value is at most γ(α):

O = {(xxx, φ(j)) : D ∈ H
(j)
0 and p(j)(φ(j)(xxx)) ≤ γ(α)}

Note that the event O represents exactly those outcomes for which using γ as a p-value
correction function results in a false discovery. Note also that, by definition of the null
hypothesis, Pr[XXX⊗M(XXX) ∈ O] ≤ γ(α) = α−β

2m . Hence, by the guarantee that Iβ∞,Π (M, n) ≤
m, we have that Pr[(XXX,M(XXX) ∈ O)] is at most 2m ·

(
α−β
2m

)
+ β = α.

We can also use algorithms with small max-information to answer adaptively chosen low-
sensitivity functions, using McDiarmid’s inequality (given in Theorem A.1.1 in the ap-
pendix).
Theorem 1.4.5 [Dwork et al. (2015a)]. Let M : X n → Y be a data-dependent algorithm

for selecting a function with sensitivity ∆ and Iβ∞,Π (M, n) ≤ log2(e)
(
τ2/∆2

)
, then we have

for q =M(XXX) where XXX ∼ Dn

Pr
XXX,M

[|q(Dn)− q(XXX)| ≥ τ ] ≤ exp

(
−τ2

n∆2

)
+ β.

Max-information provides the correction factor in which we need to modify our analyses for
the dependence on the data. Up to the correction factor, we can then use existing statistical
theory as if the analysis were chosen independently of the data.

1.5. Algorithms with Bounded Max-information

Due to Theorems 1.4.4 and 1.4.5, we are then interested in finding test selection procedures
M that have bounded approximate max-information. From Dwork et al. (2015a), there
are two families of algorithms which are known to have bounded max-information, which
we will discuss in turn. Note that these algorithms were known previously to give good
generalization guarantees for adaptively chosen analyses, but the two are otherwise incom-
parable. Thus, max-information can be seen as a unifying measure for different types of
analyses which have good generalization guarantees.

We first state the result that gives us a max-information bound in terms of the description
length of the output of M.
Theorem 1.5.1 [Dwork et al. (2015a)]. Let M : X n → Y be a randomized algorithm with
finite output set Y. Then for each β > 0, we have

Iβ∞ (M, n) ≤ log2 (|Y|/β) .
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We can interpret this result as saying that the shorter the result of an analysis, the better it
is for adaptive data analysis settings because it reveals less information about the dataset
and leads to better generalization for subsequent analyses.

The second type of algorithms that were known to have bounded max-information are (pure)
differentially private algorithms. At a high level, differential privacy is a stability guarantee
on an algorithm in that it limits the sensitivity of the outcome to any individual data
entry from an input dataset. Although differential privacy was introduced for private data
analysis applications (Dwork et al., 2006b), where the dataset is assumed to contain sensitive
information about its subjects, we can leverage the stability guarantees of differential privacy
to answer new questions in various problems beyond privacy concerns. In fact, differential
privacy has proven to be a powerful algorithmic property in game theoretical problems in
economics, (Kearns et al., 2015; Rogers et al., 2015; Lykouris et al., 2016; Cummings et al.,
2016b, 2015; Kannan et al., 2015). Similarly, differential privacy has been shown to be a
useful tool in adaptive data analysis (Dwork et al., 2015c,a; Bassily et al., 2016), which is
the connection we explore in this dissertation.

We will give the definition and useful properties of differential privacy in Chapter 2, but we
state here the bound on max-information.
Theorem 1.5.2 [Pure Differential Privacy and Max-Information (Dwork et al., 2015a)].
Let M : X n → Y be an (ε, 0)-differentially private algorithm. Then for every β > 0:

I∞ (M, n) ≤ log2(e) · εn and I∞,Π (M, n) ≤ log2(e) ·
(
ε2n/2 + ε

√
n ln(2/β)/2

)

Due to the composition property of max-information in Theorem 1.4.2, we can string pure
differentially private algorithms together with bounded description length algorithms in
arbitrary orders and still obtain generalization guarantees for the entire sequence.

The connection in Theorem 1.5.2 is powerful, because there are a vast collection of data
analyses for which we have differentially private algorithms, including a growing literature
– some which we will cover in this dissertation – on differentially private hypothesis tests
(Johnson and Shmatikov, 2013; Uhler et al., 2013; Yu et al., 2014; Karwa and Slavković,
2016; Dwork et al., 2015d; Sheffet, 2015b; Wang et al., 2015; Gaboardi et al., 2016; Kifer and
Rogers, 2016). However, there is an important gap: Theorem 1.5.2 holds only for pure (ε, 0)-
differential privacy, and not for the broader class, (approximate) (ε, δ)-differential privacy,
where δ > 0. Many statistical analyses can be performed much more accurately subject
to approximate differential privacy, and it can be easier to analyze private hypothesis tests
that satisfy approximate differential privacy, because the approximate privacy constraint
is amenable to perturbations using Gaussian noise (rather than Laplace noise) (Gaboardi
et al., 2016; Kifer and Rogers, 2016). Most importantly, for pure differential privacy, the
privacy parameter ε degrades linearly with the number of analyses performed, whereas for
approximate differential privacy, ε need only degrade with the square root of the number of
analyses performed (Dwork et al., 2010). Hence, if the connection between max-information
and differential privacy held also for approximate differential privacy, it would be possible to
perform quadratically more adaptively chosen statistical tests without requiring a smaller
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p-value correction factor. In fact, for the sample complexity results given in Theorems 1.2.1
and 1.2.2, in order to answer k adaptively chosen statistical queries accurately, we require
that the overall composed algorithmMk ◦ · · · ◦M1 be approximately differentially private.

1.6. Contributions

We are now ready to discuss the specific contributions of this dissertation in understanding
adaptive data analysis.

We will first demonstrate how we can use the previous results in adaptive data analysis
for obtaining valid confidence intervals on adaptively chosen statistical queries using results
from Dwork et al. (2015c), Bassily et al. (2016), and Russo and Zou (2016). Although, we
know that we can asymptotically outperform data-splitting techniques, we show in Chap-
ter 3 that we can improve even for reasonably sized datasets.

In Chapter 4 we extend the connection between differential privacy and max-information
to approximate differential privacy, which follows from work published by Rogers et al.
(2016a). We show the following (see Section 4.2 for a complete statement):

Theorem 4.2.1 (Informal). Let M : X n → Y be an (ε, δ)-differentially private algo-
rithm. Then,

Iβ∞,Π (M, n) = Õ

(
nε2 + n

√
δ
ε

)
for β = Õ

(
n
√

δ
ε

)
.

It is worth noting several things. First, this bound nearly matches the bound for max-
information over product distributions from Theorem 1.5.2, except Theorem 4.2.1 extends
the connection to the substantially more powerful class of (ε, δ)-differentially private algo-
rithms. The bound is qualitatively tight in the sense that despite its generality, it can be
used to nearly recover the tight bound on the generalization properties of differentially pri-
vate mechanisms for answering low-sensitivity queries that was proven using a specialized
analysis in Bassily et al. (2016), see Section 4.3 for a comparison.

We also only prove a bound on the max-information for product distributions on the input,
and not for all distributions (that is, we bound Iβ∞,Π (M, n) and not Iβ∞ (M, n)). A bound
for general distributions would be desirable, since such bounds compose, see Theorem 1.4.2.
Unfortunately, a bound for general distributions based solely on (ε, δ)-differential privacy is
impossible: a construction inspired by work from De (2012) implies the existence of (ε, δ)-
differentially private algorithms for which the max-information between input and output
on arbitrary distributions is much larger than the bound in Theorem 4.2.1.

One might nevertheless hope that bounds on the max-information under product distribu-
tions can be meaningfully composed. Our second main contribution is a negative result,
showing that such bounds do not compose when algorithms are selected adaptively. Specif-
ically, we analyze the adaptive composition of two algorithms, the first of which has a small
finite range (and hence, by Dwork et al. (2015a), small bounded max-information), and the
second of which is (ε, δ)-differentially private. We show that the composition of the two al-
gorithms can be used to exactly recover the input dataset, and hence, the composition does
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not satisfy any nontrivial max-information bound. We then draw a connection between
max-information and Shannon mutual information that allows us to improve on several
prior results that dealt with mutual information in McGregor et al. (2011) and Russo and
Zou (2016).

An important feature of differential privacy is that it is preserved under composition, that
is combining many differentially private subroutines into a single algorithm preserves dif-
ferential privacy and the privacy parameters degrade gracefully. However, there is a caveat
to these composition theorems. In order to apply these results from differential privacy, we
need the privacy parameters to all be fixed up front, prior to running any analysis on the
data. In Chapter 5, we then give a framework for composition that allows for the types of
composition theorems of differential privacy to work in this adaptive setting, which follows
from work by Rogers et al. (2016b). We give a formal separation between the standard
model of composition and our new setting, so that we cannot simply plug in the adaptively
chosen privacy parameters into existing differential privacy composition theorems as if the
realized parameters were fixed prior to running any analysis. Despite this result, we still
give a bound on the privacy loss when the parameters can be adaptively selected which
for datasets of size n is asymptotically no larger than

√
log logn times the bound from

the advanced composition theorem of Dwork et al. (2010), which assumes that the privacy
parameters were selected beforehand.

After understanding the benefits of differential privacy in adaptive data analysis and how
composition may be applied in this setting, we then present in Chapters 6 and 7 some
primitives that an analyst may want to use at each round of interaction with the dataset.
Specifically we give hypothesis tests that ensure statistical validity while satisfying differen-
tial privacy, focusing on categorical data and chi-square tests, such as tests for independence
and goodness of fit. Chapter 6 follows from work by Gaboardi et al. (2016) and Chapter 7
is from Kifer and Rogers (2016).

1.6.1. New Results

For the reader that is interested in results that are not publised elsewhere, we outline the
new contributions of this dissertation here:

• Chapter 3, which demonstrates the improvements we can obtain over data-splitting
techniques for computing confidence intervals on adaptively chosen statistical queries,
is new and based on ongoing work with Aaron Roth, Adam Smith, and Om Thakkar.

• We give a new implication of our lower bound result from Rogers et al. (2016a) in Sec-
tion 4.5, which shows that robustly generalizing procedures, introduced by Cummings
et al. (2016a) do not in general compose.

• We show in Section 4.7 that procedures with bounded max-information are not neces-
sary to ensure generalization guarantees in the adaptive setting. Specifically, we show
that compression schemes can have arbitrarily large max-information.

• We use a different concentration bound (Theorem 5.4.2) from the one used in Rogers
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et al. (2016b) to obtain a privacy odometer with better constants than what appeared
in Rogers et al. (2016b), which then follows from a more simplified analysis, presented
in Theorem 5.6.5

• Section 5.7 extends privacy odometers and filters to include concentrated differentially
private algorithms, which were defined by Bun and Steinke (2016).

• All of the experiments in Part III have been redone so that it is easier to directly
compare empirical results of the different private hypothesis tests we propose.

• We give the variance of each of the chi-square statistics we consider in Theorem 7.2.12.
This gives a more analytical reason for why some tests achieve better empirical power
than others.

• We also give preliminary results on private hypothesis tests in the local model in
Chapter 8, where each individual’s data is reported in a private way, rather than in
the traditional curator setting which assumes there is a trusted curator that collects
everyone’s raw data.

1.7. Related Work

This dissertation follows a line of work that was initiated by Dwork et al. (2015c) and Hardt
and Ullman (2014), who formally modeled the problem in adaptive data analysis. Since
these works, there has been several other contributions (Dwork et al., 2015a,b; Bassily et al.,
2016; Russo and Zou, 2016; Cummings et al., 2016a; Wang et al., 2016), some in which we
have already discussed many of their results. We then use this section to discuss some of
the relevant work in this area that we have not already addressed.

One of the crucial observations of Dwork et al. (2015c) is that algorithms that are stable,
i.e. differentially private, can be leveraged to obtain strong generalization guarantees in
adaptive analysis. Stability measures the amount of change in the output of an algorithm
if the input is perturbed. Another line of work (Bousquet and Elisseeff, 2002; Mukherjee
et al., 2006; Poggio et al., 2004; Shalev-Shwartz et al., 2010) had established the connections
between stability of a learning algorithm and its ability to generalize, although in nonadap-
tive settings. The problem with the stability notions that they consider is that they are
not robust to post-processing or adaptive composition. That is, if individual algorithms
are stable and known to generalize, then it is often not the case that stringing together a
sequence of these algorithms will still ensure generalization. The main benefit of the type
of stability that Dwork et al. (2015c) considers is that it is preserved under the operations
of post-processing and adaptive composition.

Russo and Zou (2016) consider different types of exploratory analyses through the lens of
information usage, similar to Dwork et al. (2015a). They study the bias that can result
in adaptively chosen analyses, which are based on subgaussian statistics under the data
distribution. They prove that the bias can be bounded by the dependence between the
noise in the data and the choice of reported result using Shannon mutual information. To
obtain the type of generalization bounds that we are concerned with – high probability
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guarantees – we can then apply Markov or Chebyshev’s inequality. We compare some of
our results with those of Russo and Zou (2016) in Section 4.6.

In a more restrictive setting, Wang et al. (2016) assumes that the analyst is selecting statis-
tics which are jointly Gaussian. They show that adding Gaussian noise to the statistics is
optimal in a minimax framework of adaptive data analysis. However, we are after generality
of analyses, which comes at the cost that our results might be overly conservative.

In order to perform many adaptively chosen analyses and ensure good generalization over
the entire sequence, we want each analysis to be robust to post-processing and adaptive
composition. This is one of the main advantages with differential privacy, because these
properties are known to hold already. Cummings et al. (2016a) then give three notions of
generalizations that are closed under post-processing and amendable to adaptive composi-
tion, with each strictly stronger than the next: robust generalization, differential privacy,
and perfect generalization. Although bounded description length and differentially pri-
vate algorithms were known to be robustly generalizing, they demonstrate a third type –
compression schemes – that also gives guarantees of robust generalization.

There have also been successful implementations of algorithms that guard against overfitting
in adaptive data analysis. Specifically, Blum and Hardt (2015) gives a natural algorithm
– the Ladder – to ensure that a leaderboard is accurate in machine learning competitions
even when entries are allowed to evaluate their models several times on a holdout set,
each time making modifications based on how they may rank on the leaderboard. They
show that they can ensure a leaderboard accurately ranks the participants’ models despite
the adaptivity in real submission files and even give empirical results using real data from
the Kaggle competition. Additionally, Dwork et al. (2015a,b) show how their methods
can reduce overfitting to a holdout set, using the algorithm they call Thresholdout, when
variables are selected for a model and then evaluated using the same holdout set.
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CHAPTER 2

PRIVACY PRELIMINARIES

We use this section to present what has become the standard privacy benchmark, differential
privacy, and then the more recent version called concentrated differential privacy. We then
give some definitions and results that will be crucial for the rest of the dissertation.

We will define differential privacy in terms of indistinguishability, which measures the sim-
ilarity between two random variables.
Definition 2.0.1 [Indistinguishability (Kasiviswanathan and Smith, 2014)]. Two random
variables X,Y taking values in a set X are (ε, δ)-indistinguishable, denoted X ≈ε,δ Y , if for
all S ⊆ X ,

Pr [X ∈ S] ≤ eε · Pr [Y ∈ S] + δ and Pr [Y ∈ S] ≤ eε · Pr [X ∈ S] + δ.

2.1. Differential Privacy

Recall that when we defined sensitivity of a function, we say that two datasets xxx =
(x1, · · · , xn),xxx′ = (x′1, · · · , x′n) ∈ X n are neighboring if they differ in at most one entry,
i.e. there is some i ∈ [n] where xi 6= x′i, but xj = x′j for all j 6= i.
Definition 2.1.1 [Differential Privacy (Dwork et al., 2006b,a)]. A randomized algorithm
(or mechanism) M : X n → Y is (ε, δ)-differentially private (DP) if for all neighboring
datasets xxx and xxx′ and each outcome S ⊆ Y, we have M(xxx) ≈ε,δM(xxx′) or equivalently

Pr [M(xxx) ∈ S] ≤ eεPr
[
M(xxx′) ∈ S

]
+ δ.

If δ = 0, we simply say M is ε-DP or pure DP. Otherwise for δ > 0, we say approximate
DP.

Note that in the definition, the data is not assumed to be coming from a particular distribu-
tion. Rather, the probability in the definition statement is only over the randomness from
the algorithm. In order to compute some statistic f : X n → Rd on the data, a differentially
private algorithm is to simply add symmetric noise to f(xxx) with standard deviation that
depends on the global sensitivity of f , which we define as

∆p(f) = max
neighboring xxx,xxx′∈Xn

{||f(xxx)− f(xxx′)||p}. (2.1)

We then give a commonly used differentially private algorithm, called the Laplace Mecha-
nism, which releases an answer to a query on the dataset with appropriately scaled Laplace
noise.
Theorem 2.1.2 [Laplace Mechanism (Dwork et al., 2006b)]. Let f : X n → Rd. The

algorithm M(xxx) = f(xxx) +LLL where LLL
i.i.d.∼ Lap(∆1(f)/ε), is ε-DP.
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A very useful fact about differentially private algorithms is that one cannot take the output
of a differentially private mechanism and perform any modification to it that does not
depend on the input itself and make the output any less private. This is precisely the same
property that max-information enjoys in Theorem 1.4.3.
Theorem 2.1.3 [Post Processing (Dwork et al., 2006b)]. Let M : X n → Y be (ε, δ)-DP
and ψ : Y → Y ′ be any function mapping to arbitrary domain Y ′. Then ψ ◦M is (ε, δ)-DP.

One of the strongest properties of differential privacy is that it is preserved under adaptive
composition. That is, combining many differentially private subroutines into a single algo-
rithm preserves differential privacy and the privacy parameters degrade gracefully. We will
discuss in Chapter 5 a caveat to these composition theorems and propose a new framework
of composition, where the privacy parameters themselves may also be chosen adaptively.

Adaptive composition of algorithms models the way in which an analyst would interact
with the same dataset multiple times, so that each algorithm may depend on the previous
outcomes. We formalize adaptive composition in the following way:

• M1 : X n → Y1.

• For each i ∈ [k], Mi : X n × Y1 × · · · × Yi−1 → Yi.

We will then denote the entire composed algorithm as M1:k : X n → Yk.

We first state a basic composition theorem which shows that the adaptive composition
satisfies differential privacy where “the parameters just add up.”
Theorem 2.1.4 [Basic Composition (Dwork et al., 2006b,a)]. Let each Mi : X n × Y1 ×
· · · × Yi−1 be (εi, δi)-DP in its first argument for i ∈ [k]. Then M1:k : X n → Yk is (εg, δg)-
differential privacy where

εg =
k∑
i=1

εi, and δg =
k∑
i=1

δi.

We now state the advanced composition bound originally given in Dwork et al. (2010) which
gives a quadratic improvement to the basic composition bound. We state the bound as given
by Kairouz et al. (2015), with improved constants and generalized it so that all the privacy
parameters need not be the same.
Theorem 2.1.5 [Advanced Composition (Dwork et al., 2010; Kairouz et al., 2015)]. Let
each Mi : X n × Y1 × · · · × Yi−1 be (εi, δi)-DP in its first argument for i ∈ [k]. Then
M1:k : X n → Yk is (εg, δg)-differential privacy where for any δ̂ > 0

εg =
k∑
i=1

εi

(
eεi − 1

eεi + 1

)
+

√√√√2
k∑
i=1

ε2i log(1/δ̂), and δg = 1− (1− δ̂)
k∏
i=1

(1− δi).

There has also been work (Kairouz et al., 2015; Murtagh and Vadhan, 2016) on obtaining

19



optimal composition bounds for differentially private algorithms, so as a function of the
privacy parameters (ε1, δ1), · · · , (εk, δk) and δg > 0, find the best possible privacy parameter
εg, so that any adaptive composition ofM1:k, where each algorithm is (εi, δi)-DP for i ∈ [k]
is (εg, δg)-DP.

We then define the privacy loss random variable, which quantifies how much the output
distributions of an algorithm on two neighboring datasets can differ.
Definition 2.1.6 [Privacy Loss]. Let M : X n → Y be a randomized algorithm. We then
define the privacy loss variable PrivLoss (M(xxx)||M(xxx′)) for neighboring datasets xxx,xxx′ ∈ X n

in the following way: let Z(y) = log
(

Pr[M(xxx)=y]
Pr[M(xxx′)=y]

)
and then PrivLoss (M(xxx)||M(xxx′)) is

distributed the same as Z(M(xxx)).

Note that if we can bound the privacy loss random variable with certainty over all neigh-
boring datasets, then the algorithm is pure DP. Otherwise, if we can bound the privacy loss
with high probability then it is approximate DP (see Kasiviswanathan and Smith (2014)
for a more detailed discussion on this connection). It is worth pointing out that the privacy
loss random variable is central to proving Theorem 2.1.5 from Dwork et al. (2010).

2.2. Concentrated Differential Privacy

We will also use in our results a recently proposed definition of privacy called zero concen-
trated differential privacy (zCDP), defined by Bun and Steinke (2016) (Note that Dwork
and Rothblum (2016) initially gave a definition of concentrated differential privacy which
Bun and Steinke (2016) then modified).
Definition 2.2.1 [zCDP]. An algorithm M : X n → Y is (ξ, ρ)-zero concentrated differen-
tially private (zCDP), if for all neighboring datasets xxx,xxx′ ∈ X n and all λ > 0 we have

E
[
exp

(
λ
(
PrivLoss

(
M(xxx)||M(xxx′)

)
− ξ − ρ

))]
≤ eλ2ρ.

Typically, we will write (0, ρ)− zCDP simply as ρ-zCDP.

Note that the definition of zCDP implies that the privacy loss random variable is subgaus-
sian.

Similar to the Laplace mechanism, we can add appropriately scaled Gaussian noise to a
particular query to ensure zCDP. Note that the following Gaussian mechanism was intro-
duced prior to zCDP and was shown to be approximate differentially private (Dwork et al.,
2006b; Nikolov et al., 2013; Dwork and Roth, 2014). However, the following connection to
zCDP is attributed to Bun and Steinke (2016).
Theorem 2.2.2 [Gaussian Mechanism (Bun and Steinke, 2016)]. Let φ : X n → Rd. The

algorithm M(xxx) = φ(xxx) +ZZZ where ZZZ ∼ N
(
000, ∆2(φ)2

2ρ Id

)
, is ρ-zCDP.

We next relate (pure and approximate) differentially private with zCDP and show that it
shares many of the nice properties of differential privacy. In fact zCDP can be thought of
as being in between pure and approximate differential privacy, see Bun and Steinke (2016)
for more details on this.
Theorem 2.2.3 [Bun and Steinke (2016)]. If M is ε-DP, then M is ε2

2 -zCDP. Further,
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M is ε-DP if and only if M is (ε, 0)-zCDP.
Theorem 2.2.4 [Bun and Steinke (2016)]. If M is (ξ, ρ)-zCDP then for any δ > 0, we
also have that M is

(
ξ + ρ+ 2

√
ρ log(

√
π ρ/δ), δ

)
-DP.

Theorem 2.2.5 [Post Processing and Composition (Bun and Steinke, 2016)]. Let M1 :
X n → Y1 and M2 : X n × Y1 → Y2 be randomized algorithms where M1 is (ξ1, ρ1)-zCDP
and M2(·, y1) is (ξ2, ρ2)-zCDP for each y1 ∈ Y1. Then the composition M : X n → Y2

where M(xxx) =M2(xxx,M1(xxx)) is (ξ1 + ξ2, ρ1 + ρ2)-zCDP.

Note that we can iteratively apply the above result to conclude that if each Mi : X n ×
Y1 × · · · × Yi−1 is (ξi, ρi)-zCDP in its first argument for i ∈ [k], then M1:k : X n → Yk is
(
∑k

i=1 ξi,
∑k

i=1 ρi)-zCDP

One immediate result from the connection between zCDP and DP is that we can get a
better bound of the privacy parameter after adaptively selecting k Gaussian mechanisms
going through Theorem 2.2.5 rather than Theorem 2.1.5 when we add the same scale of
noise to the queries.
Lemma 2.2.6. Let Mi : X n × Y1 × · · · Yi−1 → Yi be a Gaussian mechanism and ρ-zCDP
in its first argument for i ∈ [k]. Then M1:k : X n → Yk is (εg, δg)-DP where δg > 0 and

εg = kρ+ 2

√
kρ log(

√
π ρk/δg)

Proof. We simply apply Theorem 2.2.5 followed by Theorem 2.2.4

Thus, if we want to achieve fixed privacy parameters (εg, δg), we require substantially less
Gaussian noise added to each of the k queries using the above result with ρ = ε2/2 than
with the results of Theorem 2.1.5. Specifically, we can improve on the standard deviation of
the Gaussian noise added to each query. A similar improvement was noted by Abadi et al.
(2016) (see Theorem 1).
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CHAPTER 3

COMPARISON TO DATA-SPLITTING

We point out that the problem of adaptivity can often be avoided as long as we know how
many adaptive analyses k are to be performed up front. If the data has n independent
entries, then we can split the data into n/k chunks, and run each analysis on each chunk.
This allows us to still apply the classical statistical tools to each split of data because the
analysis and data are independent, which gives clear validity guarantees. However, this is
inefficient in its use of data and requires n� k. We have stated some results in Chapter 1
that can do much better than data-splitting so that we can obtain valid results even for
n � k. Further, many of the stated results do not require the data to be independent, in
which case it is not even clear how to split the data into independent chunks.

We use this section to show how we can use previous results (Dwork et al., 2015c; Bassily
et al., 2016; Russo and Zou, 2016) to obtain confidence intervals for adaptively chosen
queries. Although we know that these results will asymptotically outperform traditional
data-splitting techniques, we show that we can obtain smaller confidence intervals for finite
sample sizes n. In fact, we can combine the analysis of Russo and Zou (2016) with the
monitor argument from Bassily et al. (2016) to get valid confidence intervals that improves
over data splitting techniques for reasonably sized data n and number of queries k.

3.1. Preliminaries

Throughout this section, we will write φ : X → [0, 1] to denote a statistical query. Recall,
that we assume that the data XXX = (X1, · · · , Xn) ∈ X n comes from a product distribution
XXX ∼ Dn, in addition we denote the empirical average as φ(XXX) = 1

n

∑n
i=1 φ(Xi) and the true

expected value as φ(D) = EX∼D [φ(X)].

In our implementation, we are comparing the true average φ(D) to the answer a, which will
be the empirical average on the sample φ(XXX) with additional noise to ensure each query is
selected in a differentially private way. Similar to how we defined accuracy of a sequence
of algorithms with respect to the population in Definition 1.1.1, we define accuracy with
respect to the sample.
Definition 3.1.1. A sequence of algorithms M = (M1, · · · ,Mk) is (τ ′, β′)-accurate on
the sample if for all analysts A that select φi : X n → [0, 1] which may depend on previous
answers aj =Mj(XXX) for j = 1, · · · , i− 1, we have

Pr

[
max
i∈[k]
|φi(XXX)− ai| ≤ τ ′

]
≥ 1− β′.

We then use the following string of inequalities to find the width τ of the confidence interval,
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Pr [|φ(D)− a| ≥ τ ] ≤ Pr [|φ(D)− φ(XXX)|+ |φ(XXX)− a| ≥ τ ]

≤ Pr [|φ(D)− φ(XXX)| ≥ τ/2]︸ ︷︷ ︸
Population Accuracy

+ Pr [|φ(XXX)− a| ≥ τ/2]︸ ︷︷ ︸
Sample Accuracy

. (3.1)

Thus, we will bound the accuracy on the sample and the accuracy on the population. Some
of the results in this line of work use a transfer theorem that states that if a query is selected
via a differentially private method, then the query evaluated on the sample is close to the
true population answer, thus providing a bound on population accuracy. However, we also
need to control the sample accuracy which is affected by the amount of noise that is added
to ensure differential privacy. We then give the accuracy guarantees of the Laplace and
Gaussian mechanism from Theorem 2.1.2 and Theorem 2.2.2, respectively.

Theorem 3.1.2. Let {Yi : i ∈ [k]} i.i.d.∼ Lap(b) then for β ∈ (0, 1]

Pr [|Yi| ≥ log(1/β)b] = β =⇒ Pr [∃i ∈ [k] s.t. |Yi| ≥ b log(k/β)] ≤ β (3.2)

Further, if {Zi : i ∈ [k]} i.i.d.∼ N
(
0, σ2

)
then for β ∈ (0, 1]

Pr
[
|Zi| ≥ σ

√
2 log(2/β)

]
≤ β =⇒ Pr

[
∃i ∈ [k] s.t. |Zi| ≥ σ

√
2 log(2k/β)

]
≤ β (3.3)

We then seek a balance between both the sample and population accuracy, where too much
noise will give terrible sample accuracy but great accuracy on the population – due to the
noise making the choice of query essentially independent of the data – and too little noise
makes for great sample accuracy but bad accuracy to the population. We will consider both
Gaussian and Laplace noise and use the composition theorems from Chapter 2 to determine
the privacy parameters after k adaptively selected statistical queries.

Given the size of our dataset n, number of adaptively chosen statistical queries k, and con-
fidence level 1−β, we want to find what confidence width τ ensuresM = (M1, · · · ,Mk) is
(τ, β)-accurate with respect to the population when each algorithmMi adds either Laplace
or Gaussian noise to the answers computed on the sample.

3.2. Confidence Bounds from Dwork et al. (2015a)

We start by deriving confidence bounds from Dwork et al. (2015a), which uses the following
transfer theorem (see Theorem 10 in Dwork et al. (2015a)).

Theorem 3.2.1. If M is (ε, δ)-DP where φ ← M(XXX), τ ≥
√

48
n log(4/β), ε ≤ τ/4 and

δ = exp
(
−4 log(8/β)

τ

)
then

Pr [|φ(D)− φ(XXX)| ≥ τ ] ≤ β

We pair this together with the accuracy from either the Gaussian mechanism or the Laplace
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mechanism with (3.1) to get the following result
Theorem 3.2.2. Given confidence level 1−β and using the Laplace or Gaussian mechanism
for each algorithm Mi for i ∈ [k], then (M1, · · · ,Mk) is (τ (1), β)-accurate.

• Laplace Mechanism: We define τ (1) to be the solution to the following program

min τ

s.t. τ ≥ 2

√
48

n
log(8k/β)

τ ≥ 2 log(2k/β)

nε′

τ ≥ 8

(
ε′k · e

ε′ − 1

eε′ + 1
+ 4ε′ ·

√
k log(16k/β)/τ

)
ε′ > 0

• Gaussian Mechanism: We define τ (1) to be the solution to the following program

min τ

s.t. τ ≥ 2

√
48

n
log(8k/β)

τ ≥ 2

n

√
1

ρ′
log(4k/β)

τ ≥ 8

(
ρ′k + 2

√
ρ′k
(

log(
√
πρ′k) + log(16k/β)/τ

))
ρ′ > 0

Proof. We will focus on the Laplace mechanism part first, so that we add Lap
(

1
nε′

)
noise

to each statistical query answer. After k adaptively selected queries, the entire sequence of
Laplace mechanisms is (ε, δ)-DP where

ε = kε′ · e
ε′ − 1

eε′ + 1
+ ε′ ·

√
2k log(1/δ).

We then want to bound the two terms in (3.1). To bound the sample accuracy, we then use
(3.2) so that

τ ≥ 2

nε′
log(2k/β)

For the population accuracy, we need to apply Theorem 3.2.1, which requires us to have
the following,

δ = exp

(
−8 log(16k/β)

τ

)
& τ ≥ max

{
2

√
48

n
log(8k/β), 8ε

}
.
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We then write ε in terms of the δ we fixed,

ε = kε′ · e
ε′ − 1

eε′ + 1
+ 4ε′ ·

√
k

log(16k/β)

τ
.

We are then left to pick ε′ > 0 to obtain the smallest value of τ .

When can then follow a similar argument when we add Gaussian noise with variance 1
2n2ρ′ .

The only modification we make is using Lemma 2.2.6 to get a composed zCDP algorithm
with parameters in terms of ρ′, and the accuracy guarantee in (3.3) for Gaussian noise.

We can then use the above result to actually generate valid confidence intervals for adap-
tively chosen statistical queries.

3.3. Confidence Bounds from Bassily et al. (2016)

We defer the details of the argument to Appendix A.2, which carefully goes through the
analysis of Bassily et al. (2016) without using loose inequalities.
Theorem 3.3.1. Given confidence level 1−β and using the Laplace or Gaussian mechanism
for each algorithm Mi for i ∈ [k], then (M1, · · · ,Mk) is (τ (2), β)-accurate.

• Laplace Mechanism: We define τ (2) to be the following quantity:

1

1− (1− β)b1/βc
·

min
ε′>0,δ∈(0,1)

{
exp

(
eε
′ − 1

eε′ + 1
ε′k + ε′

√
2k log(1/δ)

)
− 1 + 2b1/βcδ +

log(k/(2δ))

ε′n

}

• Gaussian Mechanism: We define τ (2) to be the following quantity:

1

1− (1− β)b1/βc
·

min
ρ′>0,δ∈(

√
πρ′,1)

{
exp

(
kρ′ + 2

√
kρ′ log(

√
πρ′/δ)

)
− 1 + 2b1/βcδ +

1

n

√
1/ρ′ · log(k/δ)

}

3.4. Confidence Bounds combining work from Russo and Zou (2016) and Bassily et al.
(2016)

Using the monitor argument from Bassily et al. (2016) along with results from Russo and
Zou (2016), we can obtain the following result, which uses a similar analysis from Bassily
et al. (2016)).
Theorem 3.4.1. Given confidence level 1− β and using the Gaussian mechanism for each
algorithm Mi for i ∈ [k], then (M1, · · · ,Mk) is (τ (3), β)-accurate. We define τ (3) to be the
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solution to the following program:

min τ

s.t. τ ≥

√
2

nβ
·
(

2ρ′kn+ log (ρ′kn) +
2 ρ′kn+ log (ρ′kn)

ρ′kn− 1

)
τ ≥ 2

n

√
1

ρ′
log(4k/β)

ρ′ ≥ 1

kn

We will now present the argument to Theorem 3.4.1. Note that we will use I (X;Y ) to
denote the mutual information (measured in bits) between random variables X and Y (see
Definition 4.1.7 for a formal definition). Rather than use the stated result in Russo and
Zou (2016), we use a modified version along with its proof. The result stated here and the
one in Russo and Zou (2016) are incomparable.
Theorem 3.4.2. Let Qσ be the class of queries q : X n → R such that q(XXX) − q(Dn) is
σ-subgaussian where XXX ∼ Dn. If M : X n → Qσ is a randomized mapping from datasets to
queries such that log(2) · I (M(XXX);XXX) ≤ B with B ≥ 1, then

E
XXX∼Dn,q∼M(XXX)

[
(q(XXX)− q(Dn)))2

]
≤ σ2 ·

(
2B + log (B) +

2 B + log (B)

B − 1

)
.

Proof. Proceeding similar to the proof of Proposition 3.1 in Russo and Zou (2015), we will
write φφφ(XXX) = (φ(XXX) : φ ∈ Qσ),

I (M(XXX);XXX) ≥ I (M(XXX);φφφ(XXX))

=
∑

aaa, q∈Qσ

Pr [(φφφ(XXX),M(XXX)) = (aaa, q)] log2

(
Pr [(φφφ(XXX),M(XXX)) = (aaa, q)]

Pr [φφφ(XXX) = aaa] Pr [M(XXX) = q]

)

=
∑

aaa, q∈Qσ

Pr [M(XXX) = q] Pr [φφφ(XXX) = aaa|M(XXX) = q] log2

(
Pr [φφφ(XXX) = aaa|M(XXX) = q]

Pr [φφφ(XXX) = aaa]

)

≥
∑

a, q∈Qσ

Pr [M(XXX) = q] Pr [q(XXX) = a|M(XXX) = q] log2

(
Pr [q(XXX) = a|M(XXX) = q]

Pr [q(XXX) = a]

)
=
∑
q∈Qσ

Pr [M(XXX) = q] DKL [(q(XXX)|M(XXX) = q)||q(XXX)] (3.4)

where the first inequality follows from post processing of mutual information, i.e. the data
processing inequality. Consider the function fq(x) = λ

2σ2 (x − q(Dn))2 for λ ∈ [0, 1]. We

26



have

log(2) DKL [(q(XXX)|M(XXX) = q)||q(XXX)]

≥ E
XXX∼Dn,M

[fq(q(XXX))|M(XXX) = q]− log E
XXX∼Dn, q∼M(XXX)

[exp (fq(q(XXX)))]

≥ λ

2σ2
E

XXX∼Dn,M

[
(q(XXX)− q(Dn))2 |M(XXX) = q

]
− log

(
1√

1− λ

)
where the first inequality follows from Fact 1 in Russo and Zou (2015), and the second
inequality follows from Fact 3 in Russo and Zou (2015).

Therefore, from Eq. (3.4), we have

log(2) · I (M(XXX);XXX) ≥ λ

2σ2
E

XXX∼Dn, q∼M(XXX)

[
(q(XXX)− q(Dn))2

]
− log

(
1√

1− λ

)

Rearranging terms, we have

E
XXX∼Dn, q∼M(XXX)

[
(q(XXX)− q(D))2

]
≤ 2σ2

λ

(
log(2)I (M(XXX);XXX) + log

(
1√

1− λ

))
= σ2 · 1

λ

(
2 log(2)I (M(XXX);XXX) + log

(
1

1− λ

))
= σ2 · 2 log(2)I (M(XXX);XXX) + s

1− e−s
(Substituting by s = log

(
1

1−λ

)
)

= σ2 · 2 log(2)I (M(XXX);XXX) + log (log(2)I (M(XXX);XXX))

1− 1
log(2)I(M(XXX);XXX)

(Assigning s = log (log(2)I (M(XXX);XXX)))

= σ2 · 2 log(2)I (M(XXX);XXX) + log (log(2)I (M(XXX);XXX)) · log(2)I (M(XXX);XXX)

log(2)I (M(XXX);XXX)− 1

= σ2 · (2 log(2)I (M(XXX);XXX) + log (log(2)I (M(XXX);XXX))) ·
(

1 +
1

log(2)I (M(XXX);XXX)− 1

)
= σ2 · (2 log(2)I (M(XXX);XXX) + log (log(2)I (M(XXX);XXX)))

+ σ2 ·
(

2 log(2)I (M(XXX);XXX) + log (log(2)I (M(XXX);XXX))

log(2)I (M(XXX);XXX)− 1

)

In order to apply this result, we need to know the subgaussian parameter for statistical
queries and the mutual information for private algorithms.
Lemma 3.4.3. For statistical queries φ and XXX ∼ Dn, we have φ(XXX)− φ(Dn) is 1

2
√
n

-sub-
gaussian.

We also use the following bound on the mutual information for zCDP mechanisms
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Lemma 3.4.4 [Bun and Steinke (2016)]. If M : X n → Y is ρ-zCDP and XXX ∼ Dn, then

log(2)I (M(XXX);XXX) ≤ ρn

We define the monitor in Algorithm 1.

Algorithm 1 Monitor WD[M,A](XXX)

Input: xxx ∈ X n
As we outlined in Section 1.1, we simulateM(XXX) andA interacting. We write q1, · · · , qk ∈
QSQ as the queries chosen by A and write a1, · · · , ak ∈ R as the corresponding answers
of M.
Let

j∗ = argmax
j∈[k]

|qj(D)− aj | .

q∗ ← qj∗

Output: q∗

We first need to show that the monitor has bounded mutual information as long asM does,
which follows from mutual information being preserved under postprocessing, or the data
processing inequality.
Lemma 3.4.5. If I (M(XXX);XXX) ≤ B where XXX ∼ Dn, then I (WD[M,A](XXX);XXX) ≤ B.

We are now ready to prove our result.

Proof of Theorem 3.4.1. We follow the same analysis for proving Theorem 3.3.1 where we
add Gaussian noise with variance 1

2ρ′n2 to each query answer so that the algorithm M
is ρ′k-zCDP, which (using Lemmas 3.4.4 and 3.4.5) makes the mutual information bound
B = ρ′kn. We then use the sub-Gaussian parameter for statistical queries in Lemma 3.4.3
to obtain the following bound from Theorem 3.4.2.

E
XXX∼Dn,q∗∼WD[M,A](XXX)

[
(q∗(XXX)− q∗(D)))2

]
= E

XXX∼Dn,M,A

[
max
i∈[k]

{
(qi(XXX)− qi(D))2

}]
≤ 1

4n
·
(

2ρ′kn+ log
(
ρ′kn

)
+

2 ρ′kn+ log (ρ′kn)

ρ′kn− 1

)
.

We can then bound the population accuracy in (3.1) using Chebyshev’s inequality to obtain
the following high probability bound with the sequence of answers a1, · · · , ak given by M
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at each round,

Pr
XXX∼Dn,M,A

[
max
i∈[k]
{|qi(D)− ai| ≥ τ}

]
≤ 4

τ2
E
[
max
i∈[k]
{|qi(XXX)− qi(D)|}2

]
+ Pr

[
max
i∈[k]
{|qi(XXX)− ai| ≥ τ/2}

]
≤ 1

nτ2
·
(

2ρ′kn+ log
(
ρ′kn

)
+

2 ρ′kn+ log (ρ′kn)

ρ′kn− 1

)
+ Pr

[
max
i∈[k]
{|qi(XXX)− ai| ≥ τ/2}

]
.

To ensure this is at most β, we require τ to satisfy both

τ ≥

√
2

nβ
·
(

2ρ′kn+ log (ρ′kn) +
2 ρ′kn+ log (ρ′kn)

ρ′kn− 1

)
& τ ≥ 2

n

√
1

ρ′
log(4k/β).

We then minimize over ρ′ > 0, which finishes the proof. Note that the condition ρ′ > 1
kn is

needed due to Theorem 3.4.2.

3.5. Confidence Bound Results

In Figure 3, we give the widths of the valid confidence intervals for k adaptively selected
statistical queries where each answer has noise added to it. We label “DFHPRR” the
bound you get from Theorem 3.2.1, “BNSSSU” as the bound we get from Theorem 3.3.1,
and “RZ+Monitor” as the bound we get from Theorem 3.4.1. The traditional approach of
splitting the data and running each analysis on each chunk is exhibited in the plot called
“Data Splitting”, where we are bounding the probability distribution of a binomial random
variable for each n/k chunk of data and applying a union bound over all k chunks. That is
we find the smallest integer t ∈ [n/k] such that for each i ∈ [k]

1− 1

2n/k

t∑
j=1

(
n/k

j

)
≤ β

2k
.

This will ensure that PrXXX∼Dn/k
[
maxi∈[k] |φi(D)− φi(XXX)| ≥ t

]
≤ β

We also plot the resulting standard deviation of the noise we added to each statistical
query in Figure 4 in order to generate the plots in Figure 3. In our experiments, when we
use Gaussian noise and combine the results from Russo and Zou (2016) with the monitor
argument of Bassily et al. (2016) we get the best confidence bounds with an improvement
over datasplitting when n = 6400 and k = 640.
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Figure 3: Widths of valid confidence intervals for k adaptively chosen statistical queries via
data-splitting techniques or noise addition on the same dataset.
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Figure 4: Standard deviations of the Gaussian noise we added to each query to obtain the
confidence widths.
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Part II

DIFFERENTIAL PRIVACY IN
ADAPTIVE DATA ANALYSIS:

INFORMATION AND
COMPOSITION
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We next cover some of the contributions we have made in connecting differential privacy to
adaptive data analysis. We unify and improve some of the previous results along this line
of research by connecting max-information with (approximate)-differential privacy. Previ-
ously, Dwork et al. (2015a) showed that pure-differentially private algorithms had bounded
max-information, which we then extend to the much broader class of approximate differen-
tially private algorithms. This connection of max-information with approximate differential
privacy is crucial in showing that these methods will outperform data-splitting techniques
when stringing together many adaptively chosen analyses. As a special case of our results,
we are able to recover the results from Bassily et al. (2016) (with some loss in parame-
ters) for low-sensitivity queries. However, our results extend to much broader analyses,
like post-selection hypothesis testing. Further, we improve the connection between p-value
corrections and mutual information of the analyses using results from Russo and Zou (2016)
via max-information.

Attached to each differentially private algorithm is a privacy parameter, where roughly
lower parameter values ensure better privacy. So as we compose several differentially private
algorithms, we expect the privacy parameters to get worse, but the privacy parameter only
increases sublinearly with the number of analyses that were ran. This sublinear composition
is precisely what gives these differentially private methods their power over data-splitting.
However, there is a caveat to these composition theorems. In order to apply these results
from differential privacy, we need the privacy parameters to all be fixed up front, prior to
running any analysis on the data. I will them present a new framework for composition of
differential privacy where the privacy parameters and the number of analyses need not be
fixed up front. Instead, we want to allow the analyst the freedom to choose a time to quit
running analyses and modify his privacy budget based on what he has observed. We then
develop novel composition definitions that are better catered to the adaptive data analysis
setting. In this new framework, we then show that adaptivity comes at a cost, in that we
cannot simply apply the composition bounds as if we knew the parameters upfront. Despite
this negative result, we can still obtain sublinear composition bounds.
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CHAPTER 4

MAX-INFORMATION, DIFFERENTIAL PRIVACY,

AND POST-SELECTIONHYPOTHESIS TESTING

Although our presentation in Chapter 1 was motivated by low-sensitivity queries and p-
value corrections, an algorithm M with bounded max-information allows a data analyst
to treat any event that is a function of the output of the algorithm M(XXX) “as if” it is
independent of the dataset XXX, up to a correction factor determined by the max-information
bound. The results presented in this chapter substantially broaden the class of analyses
for which approximate differential privacy promises generalization guarantees—this class
was previously limited to estimating the values of low-sensitivity numeric valued queries
and more generally, the outcomes of low-sensitivity optimization problems (Bassily et al.,
2016). This chapter largely follows from Rogers et al. (2016a), where we also introduced
the framework for reasoning about adaptive hypothesis testing with p-value corrections that
was presented in Section 1.3.

This chapter further develops the extent to which max-information can be viewed as a
unifying information theoretic measure controlling the generalization properties of adaptive
data analysis. Dwork et al. (2015a) previously showed that algorithms with bounded out-
put description length, and algorithms that satisfy pure-differential privacy (two constraints
known individually to imply adaptive generalization guarantees), both have bounded max-
information. Because bounded max-information satisfies strong composition properties,
this connection implies that algorithms with bounded output description length and pure-
differentially private algorithms can be composed in arbitrary order and the resulting com-
position will still have strong generalization properties. Our result brings approximate-
differential privacy partially into this unifying framework. In particular, when the data is
drawn from a product distribution, if an analysis that starts with an (arbitrary) approximate
differentially private computation is followed by an arbitrary composition of algorithms with
bounded max-information, then the resulting composition will satisfy a max-information
bound. However, unlike with compositions consisting solely of bounded description length
mechanisms and pure differentially private mechanisms, which can be composed in arbitrary
order, in this case it is important that the approximate-differentially private computation
come first. This is because, even if the dataset XXX is initially drawn from a product distribu-
tion, the conditional distribution on the data that results after observing the outcome of an
initial computation need not be a product distribution any longer. In fact, the lower bound
we prove in Section 4.4 is an explicit construction in which the composition of a bounded
description length algorithm, followed by an approximate-differentially private algorithm
can be used to exactly reconstruct a dataset drawn from a product distribution (which can
in turn be used to arbitrarily overfit that dataset).
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As was demonstrated in Chapter 1, max-information has some nice properties that are useful
in adaptive data analysis. However, it is not the only measure of information for algorithms.
Specifically, the measure of Shannon mutual information has been extensively studied, in-
cluding its connection with differential privacy. In fact, algorithms with bounded mutual
information were shown to have low bias error in Russo and Zou (2016). These bounds can
then obtain high probability guarantees, for the type of generalization guarantees we are
concerned with by Markov or Chebeshev’s inequality. However, we will demonstrate that
max-information provides a tighter connection than the results in Russo and Zou (2016). We
then show a general conversion between mutual information and max-information, which
improves over existing results of the mutual information for differentially private algorithms
from McGregor et al. (2011).

We also connect some of our results with those in Cummings et al. (2016a), specifically
with how we can use our lower bound result to show that robustly generalizing algorithms
do not compose and how compression schemes can have large max-information.

4.1. Additional Preliminaries

We first cover some previous results which will prove to be useful in our analysis. In
the introduction, we define (approximate-) max-information, and we now give some other
measures between distributions. We introduced indistinguishability between two random
variables in Definition 2.0.1, but we give a slightly stronger measure of similarity between
two random variables, called point-wise indistinguishability.
Definition 4.1.1 [Point-wise indistinguishibility (Kasiviswanathan and Smith, 2014)]. Two
random variables X,Z taking values in a set X are point-wise (ε, δ)-indistinguishable if with
probability at least 1− δ over a ∼ p(X):

e−ε Pr [Z = a] ≤ Pr [X = a] ≤ eε Pr [Z = a] .

We next give several useful connections between indistinguishability, point-wise indistin-
guishability, and differential privacy along with other more widely known measures between
distributions, e.g., KL-divergence, and total-variation distance.
Definition 4.1.2 [KL Divergence]. The KL Divergence between random variables X and
Z over domain X , denoted as DKL(X||Z) is defined as

DKL(X||Z) =
∑
x∈X

Pr [X = x] ln

(
Pr [X = x]

Pr [Z = x]

)
Definition 4.1.3 [Total Variation Distance]. The total variation distance between two
random variables X and Z over domain X , denoted as TV (X;Z) is defined as

TV (X,Z) =
1

2
·
∑
x∈X
|Pr [X = x]− Pr [Z = x] |.

In the following lemma, we state some basic connections between max-information and
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(point-wise) indistinguishability:
Lemma 4.1.4. Let X,Z be two random variables over the same domain. We then have:

1. (Dwork et al., 2015a) Iβ∞ (X;Z) ≤ m⇔ (X,Z) ≈(m log 2),β X ⊗ Z.

2. (Kasiviswanathan and Smith, 2014) If X ≈ε,δ Y then X and Y are pointwise
(

2ε, 2δ
1−e−ε

)
-

indistinguishable.

Another useful result is from Kasiviswanathan and Smith (2014), which we use in the proof
of our main result in Theorem 4.2.1:
Lemma 4.1.5 [Conditioning Lemma]. Suppose that (X,Z) ≈ε,δ (X ′, Z ′). Then for every

δ̂ > 0, the following holds:

Pr
t∼Z

[
X|Z=t ≈3ε,δ̂

X ′|Z′=t
]
≥ 1− 2δ

δ̂
− 2δ

1− e−ε
.

The proof of our main result in Theorem 4.2.1 also makes use of the following standard
concentration inequality:
Theorem 4.1.6 [Azuma’s Inequality]. Let C1, · · · , Cn be a sequence of random variables
such that for every i ∈ [n], we have

Pr [|Ci| ≤ α] = 1

and for every fixed prefix c1, · · · , ci−1, we have

E [Ci|(C1, · · · , Ci−1) = (c1, · · · , ci−1)] ≤ γ,

then for all t ≥ 0, we have

Pr

[
n∑
i=1

Ci > nγ + t
√
nα

]
≤ e−t2/2.

We will also use Shannon mutual information later in this chapter in order to compare it
with max-information.
Definition 4.1.7 [Mutual Information]. Consider two random variables X and Y and let

Z(x, y) = log2

(
Pr[(X,Y )=(x,y)]
Pr[X=x]Pr[Y=y]

)
. We then denote the mutual information as the following,

where the expectation is taken over the joint distribution of (X,Y ),

I (X;Y ) = E [Z(X,Y )] .
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4.2. Max-information for (ε, δ)-Differentially Private Algorithms

In this section, we prove a bound on approximate max-information for (ε, δ)-differentially
private algorithms over product distributions.
Theorem 4.2.1. Let M : X n → Y be an (ε, δ)-differentially private algorithm for ε ∈

(0, 1/2] and δ ∈ (0, ε). For β = e−ε
2n +O

(
n
√

δ
ε

)
, we have

Iβ∞,Π (M, n) = O

(
ε2n+ n

√
δ
ε

)
.

We will prove Theorem 4.2.1 over the course of this section, using a number of lemmas. We
first set up some notation. We will sometimes abbreviate conditional probabilities of the
form Pr [XXX = xxx|M = a] as Pr [XXX = xxx|a] when the random variables are clear from context.
We will also abbreviate vectors xxx<i = (xxx1, · · · ,xxxi−1). Further, for any xxx ∈ X n and a ∈ Y,
we define

Z(a,xxx)
def
= log

(
Pr [M = a,XXX = xxx]

Pr [M = a] · Pr [XXX = xxx]

)
=

n∑
i=1

log

(
Pr [Xi = xi|a,xxx<i]

Pr [Xi = xi]

)
(4.1)

If we can bound Z(a,xxx) with high probability over (a,xxx) ∼ M(XXX),XXX, then we can bound
the approximate max-information by using the following lemma:
Lemma 4.2.2 [See Lemma 18 in Dwork et al. (2015a)]. If Pr [Z(M(XXX),XXX) ≥ k] ≤ β, then

Iβ∞ (XXX;M(XXX)) ≤ k.

We next define each term in the sum of Z(a,xxx) as

Zi(a,xxx≤i)
def
= log

Pr [Xi = xi|a,xxx<i]
Pr [Xi = xi]

. (4.2)

The plan of the proof is simple: our goal is to apply Azuma’s inequality (Theorem 4.1.6)
to the sum of the Zi’s to achieve a bound on Z with high probability. Applying Azuma’s
inequality requires both understanding the expectation of each term Zi(a,xxx≤i), and being
able to argue that each term is bounded. Unfortunately, in our case, the terms are not always
bounded – however, we will be able to show that they are bounded with high probability.
This plan is somewhat complicated by the conditioning in the definition of Zi(a,xxx≤i).

First, we argue that we can bound each Zi with high probability. This argument takes place
over the course of Claims 4.2.3, 4.2.4, 4.2.5 and 4.2.6.
Claim 4.2.3. If M is (ε, δ)-differentially private and XXX ∼ Dn, then for each i ∈ [n] and
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each prefix xxx<i ∈ X i−1, we have:

(M, Xi)|xxx<i ≈ε,δM|xxx<i ⊗Xi.

Proof. Fix any set O ⊆ Y × X and prefix xxx<i ∈ X i−1. We then define the set Oxi = {a ∈
Y : (a, xi) ∈ O}. Now, we have that:

Pr [(M(XXX), Xi) ∈ O|xxx<i] =
∑
xi∈X

Pr [Xi = xi] Pr [M(XXX) ∈ Oxi |xxx<i, xi]

≤
∑
xi∈X

Pr [Xi = xi] (eεPr [M(XXX) ∈ Oxi |xxx<i, ti] + δ) ∀ti ∈ X

Thus, we can multiply both sides of the inequality by Pr [Xi = ti] and sum over all ti ∈ X
to get:

Pr [(M(XXX), Xi) ∈ O|xxx<i] =
∑
ti∈X

Pr [Xi = ti] Pr [(M(XXX), Xi) ∈ O|xxx<i]

≤
∑
xi∈X

∑
ti∈X

Pr [Xi = xi] Pr [Xi = ti] (eεPr [M(XXX) ∈ Oxi |xxx<i, ti] + δ)

≤ eε
∑
xi∈X

Pr [Xi = xi] Pr [M(XXX) ∈ Oxi |xxx<i] + δ = eεPr [M(XXX)⊗Xi ∈ O|xxx<i] + δ.

We follow a similar argument to prove:

Pr [M(XXX)⊗Xi ∈ O|xxx<i] ≤ eεPr [(M(XXX), Xi) ∈ O|xxx<i] + δ.

We now define the following set of “good outcomes and prefixes” for any δ̂ > 0:

Ei(δ̂)
defn
=
{

(a,xxx<i) : Xi ≈3ε,δ̂
Xi|a,xxx<i

}
(4.3)

We use a technical lemma from Kasiviswanathan and Smith (2014) stated in Lemma 4.1.5,
and Claim 4.2.3 to derive the following result:
Claim 4.2.4. If M is (ε, δ)-differentially private and XXX ∼ Dn, then for each i ∈ [n] and

each prefix xxx<i ∈ X i−1 we have for δ̂ > 0 and δ′
def
= 2δ

δ̂
+ 2δ

1−e−ε :

Pr
[
(M,XXX<i) ∈ Ei(δ̂)|xxx<i

]
≥ 1− δ′.
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Proof. This follows directly from Lemma 4.1.5:

Pr
[
(M,XXX<i) ∈ Ei(δ̂)|xxx<i

]
= Pr

[
Xi ≈3ε,δ̂

Xi|M,xxx<i |xxx<i
]

= Pr
a∼M|xxx<i

[
Xi ≈3ε,δ̂

Xi|a,xxx<i
]
≥ 1− δ′

We now define the set of outcome/dataset prefix pairs for which the quantities Zi are not
large:

Fi
defn
= {(a,xxx≤i) : |Zi(a,xxx≤i)| ≤ 6ε} . (4.4)

Using another technical lemma from Kasiviswanathan and Smith (2014) (which we state in
Lemma 4.1.4 in the appendix), we prove:

Claim 4.2.5. Given (a,xxx<i) ∈ Ei(δ̂) and δ′′
def
= 2δ̂

1−e−3ε we have:

Pr [(M,XXX≤i) ∈ Fi|a,xxx<i] ≥ 1− δ′′.

Proof. Since (a,xxx<i) ∈ Ei(δ̂), we know that Xi is (3ε, δ̂)-indistinguishable from Xi|a,xxx<i .
Using Lemma 4.1.4, we know that Xi and Xi|a,xxx<i are point-wise (6ε, δ′′)-indistinguishable.
Thus, by definition of Fi and Zi, we have:

Pr [(M,XXX≤i) ∈ Fi|a,xxx<i] = Pr [Zi(M,XXX≤i) ≤ 6ε|a,xxx<i]

= Pr
xi∼Xi|a,xxx<i

[
log
(

Pr[Xi=xi|a,xxx<i]
Pr[Xi=xi]

)
≤ 6ε

]
≥ 1− δ′′

We now define the “good” tuples of outcomes and databases as

Gi(δ̂)
defn
=
{

(a,xxx≤i) : (a,xxx<i) ∈ Ei(δ̂) & (a,xxx≤i) ∈ Fi

}
, (4.5)

G≤i(δ̂)
defn
=
{

(a,xxx≤i) : (a, x1) ∈ G1(δ̂), · · · , (a,xxx≤i) ∈ Gi(δ̂)
}

(4.6)

Claim 4.2.6. If M is (ε, δ)-differentially private and XXX ∼ Dn, then

Pr
[
(M,XXX≤i) ∈ Gi(δ̂)

]
≥ 1− δ′ − δ′′

for δ′ and δ′′ given in Claim 4.2.4 and Claim 4.2.5, respectively.
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Proof. We have:

Pr
[
(M,XXX≤i) /∈ Gi(δ̂)

]
= Pr

[
(M,XXX<i) /∈ Ei(δ̂) or (M,XXX≤i) /∈ Fi)

]
= 1− Pr

[
(M,XXX<i) ∈ Ei(δ̂) and (M,XXX≤i) ∈ Fi)

]
= 1−

∑
(a,xxx<i)∈Ei(δ̂)

Pr [(M,XXX<i) = (a,xxx<i)] Pr [(M,XXX≤i) ∈ Fi|a,xxx<i]

≤ 1−
∑

(a,xxx<i)∈Ei(δ̂)

Pr [(M,XXX<i) = (a,xxx<i)] · (1− δ′′)

= 1− (1− δ′′)Pr
[
(M,XXX<i) ∈ Ei(δ̂)

]
≤ 1− (1− δ′′)(1− δ′) = δ′ + δ′′ − δ′δ′′

where the last two inequalities follow from Claim 4.2.5 and Claim 4.2.4, respectively.

Having shown a high probability bound on the terms Zi, our next step is to bound their
expectation so that we can continue towards our goal of applying Azuma’s inequality.
Note a complicating factor – throughout the argument, we need to condition on the event
(M,XXX≤i) ∈ Fi to ensure that Zi has bounded expectation.

We will use the following shorthand notation for conditional expectation:

E [Zi(M,XXX≤i)|a,xxx<i,Fi]
defn
= E [Zi(M,XXX≤i)|M = a,XXX<i = xxx<i, (M,XXX≤i) ∈ Fi] ,

with similar notation for sets Gi(δ̂),G≤i(δ̂).

Lemma 4.2.7. Let M be (ε, δ)-differentially private and XXX ∼ Dn. Given (a,xxx<i) ∈ Ei(δ̂),
for all ε ∈ (0, 1/2] and δ̂ ∈ (0, ε/15],

E [Zi(M,XXX≤i)|a,xxx<i,Fi] = O(ε2 + δ̂).

More precisely, E [Zi(M,XXX≤i)|a,xxx<i,Fi] ≤ ν(δ̂), where ν(δ̂) is defined in (4.7).

Proof. Given an outcome and prefix (a,xxx<i) ∈ Ei(δ̂), we define the set of data entries

X (a,xxx<i)
defn
= {xi ∈ X : (a,xxx≤i) ∈ Fi}.

We then have:

E [Zi(M,XXX≤i)|a,xxx<i,Fi] =
∑

xi∈X (a,xxx<i)

Pr [Xi = xi|a,xxx<i,Fi] log
(

Pr[Xi=xi|a,xxx<i]
Pr[Xi=xi]

)
Here, our goal is to mimic the proof of the “advanced composition theorem” of Dwork et al.
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(2010) by adding a term that looks like a KL divergence term (see Definition 4.1.2). In our
case, however, the sum is not over the entire set X , and so it is not a KL-divergence, which
leads to some additional complications. Consider the following term:

∑
xi∈X (a,xxx<i)

Pr [Xi = xi] log
(

Pr[Xi=xi|a,xxx<i]
Pr[Xi=xi]

)
= Pr [Xi ∈ X (a,xxx<i)]

∑
xi∈X (a,xxx<i)

Pr[Xi=xi]
Pr[Xi∈X (a,xxx<i)]

log
(

Pr[Xi=xi|a,xxx<i]
Pr[Xi=xi]

)
≤ log

(
Pr[Xi∈X (a,xxx<i)|a,xxx<i]

Pr[Xi∈X (a,xxx<i)]

)
= log

(
1−Pr[Xi /∈X (a,xxx<i)|a,xxx<i]

1−Pr[Xi /∈X (a,xxx<i)]

)
where the inequality follows from Jensen’s inequality. Note that, because (a,xxx<i) ∈ Ei(δ̂)
for δ̂ > 0:

Pr [Xi /∈ X (a,xxx<i)] ≤ e3εPr [Xi /∈ X (a,xxx<i)|a,xxx<i] + δ̂.

We now focus on the term Pr [Xi /∈ X (a,xxx<i)|a,xxx<i]. Note that xi /∈ X (a,xxx<i)⇔ (a,xxx≤i) /∈
Fi. Thus,

Pr [Xi /∈ X (a,xxx<i)|a,xxx<i] = Pr [(M,XXX≤i) /∈ Fi|a,xxx<i]
def
= q

Note that q ≤ δ′′ by Claim 4.2.5. Now, we can bound the following:∑
xi∈X (a,xxx<i)

Pr [Xi = xi] log
(

Pr[Xi=xi|a,xxx<i]
Pr[Xi=xi]

)
≤ log(1− q)− log(1− (e3εq + δ̂))

≤ log(e) · (−q + e3εq + δ̂ + 2(e3εq + δ̂)2) = log(e) · ((e3ε − 1)q + δ̂ + 2(e3εq + δ̂)2)

≤ log(e) ·

(
(e3ε − 1)

2δ̂

1− e−3ε
+ δ̂ + 2δ̂2 ·

(
2e3ε

1− e−3ε
+ 1

)2
)

= δ̂(log(e)(2e3ε + 1)) + δ̂2

(
2 log(e)

(
4e12ε + 4e9ε − 3e6ε − 2e3ε + 1

e6ε − 2e3ε + 1

))
defn
= τ(δ̂)

where the second inequality follows by using the inequality (−x−2x2) log(e) ≤ log(1−x) ≤
−x log(e) for 0 < x ≤ 1/2, and as (e3εq + δ̂) ≤ 1/2 for ε and δ̂ bounded as in the lemma
statement.

41



We then use this result to upper bound the expectation we wanted:

E [Zi(M,XXX≤i)|a,xxx<i,Fi]

≤
∑

xi∈X (a,xxx<i)

Pr [Xi = xi|a,xxx<i,Fi] log
(

Pr[Xi=xi|a,xxx<i]
Pr[Xi=xi]

)
−

∑
xi∈X (a,xxx<i)

Pr [Xi = xi] log
(

Pr[Xi=xi|a,xxx<i]
Pr[Xi=xi]

)
+ τ(δ̂)

=
∑

xi∈X (a,xxx<i)

(Pr [Xi = xi|a,xxx<i,Fi]− Pr [Xi = xi]) log
(

Pr[Xi=xi|a,xxx<i]
Pr[Xi=xi]

)
+ τ(δ̂)

≤ 6ε
∑

xi∈X (a,xxx<i)

|Pr [Xi = xi|a,xxx<i,Fi]− Pr [Xi = xi] |+ τ(δ̂)

≤ τ(δ̂) + 6ε
∑

xi∈X (a,xxx<i)

Pr [Xi = xi] ·

max

{
e6ε

Pr [(M,XXX≤i) ∈ Fi|a,xxx<i]
− 1, 1− e−6ε

Pr [(M,XXX≤i) ∈ Fi|a,xxx<i]

}
≤ 6ε

(
e6ε

1− 2δ̂
1−e−3ε

− 1

)
+ τ(δ̂) ≤ 6ε

(
e6ε
(

1 + 4δ̂
1−e−3ε

)
− 1
)

+ τ(δ̂)

≤ 72ε2 + δ̂
(

24e6ε

1−e−3ε + log(e)(2e3ε + 1)
)

+ δ̂2

(
2 log(e)

(
4e12ε + 4e9ε − 3e6ε − 2e3ε + 1

e6ε − 2e3ε + 1

))
defn
= ν(δ̂) (4.7)

where the third inequality follows from the definition of Fi, the fourth inequality follows
from Claim 4.2.5 and the last inequality follows by substituting the value of τ(δ̂), and using
the inequalities 1 + y ≤ ey and eky ≤ 1 + eky for y ∈ (0, 0.5], k > 1.

Finally, we need to apply Azuma’s inequality (stated in Theorem 4.1.6) to a set of variables
that are bounded with probability 1, not just with high probability. Towards this end, we
define variables Ti that will match Zi for “good events”, and will be zero otherwise—and
hence, are always bounded:

Ti(a,xxx≤i)
defn
=

{
Zi(a,xxx≤i) if (a,xxx≤i) ∈ G≤i(δ̂)

0 otherwise
(4.8)

The next lemma verifies that the variables Ti indeed satisfy the requirements of Azuma’s
inequality:
Lemma 4.2.8. LetM be (ε, δ)-differentially private and XXX ∼ Dn. The variables Ti defined
in (4.8) are bounded by 6ε with probability 1, and for any (a,xxx<i) ∈ Y × X i−1 and δ̂ ∈
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[0, ε/15],

E [Ti(M,XXX≤i)|a,xxx<i] = O(ε2 + δ̂/ε), (4.9)

More precisely, E [Ti(M,XXX≤i)|a,xxx<i] ≤ ν(δ̂), where ν(δ̂) is defined in (4.7).

We can then apply Azuma’s inequality to the sum of Ti(a,xxx≤i), where each term will match
Zi(a,xxx≤i) for most (a,xxx≤i) coming from (M(XXX),XXX≤i) for each i ∈ [n]. Note that, from
Lemma 4.2.2, we know that a bound on

∑n
i=1 Zi(a,xxx≤i) with high probability will give us

a bound on approximate max-information. We then give the formal analysis below.

Proof of Lemma 4.2.8. By definition, Ti(M,XXX≤i) takes values only in [−6ε, 6ε]. Thus,

Pr [|Ti(M,XXX≤i)| ≤ 6ε] = 1.

Now, given (a,xxx<i) ∈ Ei(δ̂) ∩G<i(δ̂), we can see that:

E
[
Ti(M,XXX≤i)

∣∣∣a,xxx<i,G{
≤i(δ̂)

]
= 0.

Further, given (a,xxx<i) ∈ Ei(δ̂) ∩G≤i−1(δ̂), we have:

E
[
Ti(M,XXX≤i)|a,xxx<i,G≤i(δ̂)

]
=

∑
xi:(a,xxx≤i)∈Fi

Ti(a,xxx≤i)Pr
[
Xi = xi|a,xxx<i,G≤i(δ̂)

]
=

∑
xi:(a,xxx≤i)∈Fi

Zi(a,xxx≤i)Pr
[
Xi = xi|a,xxx<i,G≤i(δ̂)

]
=

∑
xi:(a,xxx≤i)∈Fi

Zi(a,xxx≤i)Pr [Xi = xi|a,xxx<i,Fi]

= E [Zi(M,XXX≤i)|a,xxx<i,Fi] = O(ε2 + δ̂/ε)

where the second equality follows from (4.8), and the last equality follows from Lemma 4.2.7.
For any (a,xxx<i) /∈ Ei(δ̂) ∩G≤i−1(δ̂), we have that the conditional expectation is zero. This
proves the lemma.

We are now ready to prove our main theorem.
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Proof of Theorem 4.2.1. For any constant ν, we have:

Pr

[
n∑
i=1

Zi(M,XXX≤i) > nν + 6tε
√
n

]

≤ Pr

[
n∑
i=1

Zi(M,XXX≤i) > nν + 6tε
√
n ∩ (M,XXX) ∈ G≤n(δ̂)

]
+ Pr

[
(M,XXX) /∈ G≤n(δ̂)

]
= Pr

[
n∑
i=1

Ti(M,XXX≤i) > nν + 6tε
√
n ∩ (M,XXX) ∈ G≤n(δ̂)

]
+ Pr

[
(M,XXX) /∈ G≤n(δ̂)

]
We then substitute ν by ν(δ̂) as defined in Equation (4.7), and apply a union bound on

Pr
[
(M,XXX) /∈ G≤n(δ̂)

]
using Claim 4.2.6 to get

Pr

[
n∑
i=1

Zi(M,XXX≤i) > nν(δ̂) + 6tε
√
n

]
≤ Pr

[
n∑
i=1

Ti(M,XXX≤i) > nν(δ̂) + 6tε
√
n

]
+ n(δ′ + δ′′)

≤ e−t2/2 + n(δ′ + δ′′)

where the two inequalities follow from Claim 4.2.6 and Theorem 4.1.6, respectively. There-
fore,

Pr
[
Z(M(XXX),XXX) > nν(δ̂) + 6tε

√
n
]
≤ e−t2/2 + n(δ′ + δ′′)

defn
= β(t, δ̂)

From Lemma 4.2.2, we have I
β(t,δ̂)
∞ (XXX;M(XXX)) ≤ nν(δ̂) + 6tε

√
n. We set the parameters

t = ε
√

2n and δ̂ =
√
εδ/15 to obtain our result. Note that setting δ̂ =

√
εδ/15 does not

violate the bounds on it stated in the statement of Lemma 4.2.7.

4.3. Comparison with Results from Bassily et al. (2016)

In this section, we use the bound from our main theorem of this chapter (Theorem 4.2.1) to
rederive known results for the generalization properties of differentially private algorithms
which select low sensitivity queries. Our bounds nearly – but not exactly – match the tight
bounds for this problem, given in Bassily et al. (2016). This implies a limit on the extent
to which our main theorem can be quantitatively improved, despite its generality.

The goal of generalization bounds for low sensitivity queries is to argue that with high
probability, if a low sensitivity function f : X n → R =M(xxx) is chosen in a data-dependent
way when XXX is sampled from a product distribution Dn, then the value of the function on

the realized data f(xxx) is close to its expectation f(Dn)
def
= EXXX∼Dn [f(XXX)]. If f were selected

in a data-independent manner, this would follow from McDiarmid’s inequality. No bound
like this is true for arbitrary selection procedures M, but a tight bound by Bassily et al.
(2016) is known whenM is (ε, δ)-differentially private – which we present in Theorem A.1.3.

Using our main theorem (Theorem 4.2.1), together with McDiarmid’s inequality (Theo-
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rem A.1.1), we can derive a comparable statement to Theorem A.1.3:

Theorem 4.3.1. Let ε ∈ (0, 1), δ = O(ε5), and n = Ω
(

log(ε/δ)
ε2

)
. Let Y denote the class

of ∆-sensitive functions f : X n → R, and let M : X n → Y be an algorithm that is (ε, δ)-
differentially private. Let XXX ∼ Dn for some distribution D over X , and let φ = M(XXX).
Then there exists a constant c such that:

Pr
XXX∼Dn,M

[|φ(Dn)− φ(XXX)| ≥ c ε∆n] < n

√
δ

ε

Proof. If M satisfied Iβ∞ (XXX;M(XXX)) ≤ m, then McDiarmid’s inequality (Theorem A.1.1)
paired with Definition 1.4.1 would imply:

Pr
XXX,M

[|φ(Dn)− φ(XXX)| ≥ c ε∆n] < 2k exp
(
−2c2 ε2n

)
+ β

BecauseM is (ε, δ)-differentially private, Theorem 4.2.1 implies that indeed Iβ∞ (XXX;M(XXX)) ≤

m for m = O

(
nε2 + n

√
δ
ε

)
= O

(
ε2n
)

and β = O

(
n
√

δ
ε

)
+ e−ε

2n = O

(
n
√

δ
ε

)
. Hence,

the claimed bound follows.

Because Theorem A.1.3 is asymptotically tight, this implies a limit on the extent to which
Theorem 4.2.1 can be quantitatively improved.

For comparison, note that the generalization bound for (ε, δ)-differentially private mecha-
nisms given in Theorem A.1.3 differs by only constants from the generalization bound proven
via the max-information approach for (ε, δ′)-differentially private mechanisms, where:

δ′ =
δ2

εn2

Note that in most applications (including the best known mechanism for answering large
numbers of low sensitivity queries privately— the median mechanism Roth and Rough-
garden (2010) as analyzed in Dwork and Roth (2014) Theorem 5.10), the accuracy of a

differentially private algorithm scales with

√
log(1/δ)

n (ignoring other relevant parameters).
In such cases, using the bound derived from the max-information approach yields an ac-
curacy that is worse than the bound from Theorem A.1.3 by an additive term that is

O

(√
log(εn)
n

)
.

4.4. A Counterexample to Nontrivial Composition and a Lower Bound for Non-
Product Distributions

It is known that algorithms with bounded description length have bounded approximate
max-information (Dwork et al., 2015a). In Section 4.2, we showed that (ε, δ)-differentially
private algorithms have bounded approximate max-information when the dataset is drawn
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from a product distribution. In this section, we show that although approximate max-
information composes adaptively (Dwork et al., 2015a), one cannot always run a bounded
description length algorithm, followed by an approximately differentially private algorithm,
and expect the resulting composition to have strong generalization guarantees. In particular,
this implies that (ε, δ)-differentially private algorithms cannot have any nontrivial bounded
max-information guarantee over non-product distributions.

Specifically, we give an example of a pair of algorithms M1 and M2 such that M1 has
output description length o(n) for inputs of length n, andM2 is (ε, δ)-differentially private,
but the adaptive composition of M1 followed by M2 can be used to exactly reconstruct
the input database with high probability. In particular, it is easy to overfit to the input
XXX given M2(XXX;M1(XXX)), and hence, no nontrivial generalization guarantees are possible.
Note that this does not contradict our results on the max-information of differentially private
algorithms for product distributions: even if the database used as input toM is drawn from
a product distribution, the distribution on the database is no longer a product distribution
once conditioned on the output ofM. The distribution ofM’s input violates the hypothesis
that is used to prove a bound on the max-information of M.

Our construction adapts De’s idea (De, 2012). Given as input a uniformly random dataset
XXX, we show a mechanismM1 which outputs a short description of a code that contains XXX.
Because this description is short, M1 has small max-information. The mechanism M2 is
then parameterized by this short description of a code. Given the description of a code and
the dataset XXX, M2 approximates (privately) the distance from XXX to the nearest codeword,
and outputs that codeword when the distance is small. When M2 is composed with M1,
we show that it outputs the dataset XXX with high probability.
Theorem 4.4.1. Let X = {0, 1} and Y = {X n ∪ {⊥}}. Let XXX be a uniformly distributed
random variable over X n. For n > 64e, for every ε ∈

(
0, 1

2

]
, δ ∈

(
0, 1

4

]
, there exists an

integer r > 0 and randomized algorithms M1 : X n → {0, 1}r, and M2 : X n × {0, 1}r → Y,
such that:

1. r = O

(
log(1/δ) log n

ε

)
and Iβ∞ (XXX;M1(XXX)) ≤ r + log( 1

β ) for all β > 0;

2. for every aaa ∈ {0, 1}r,M2(XXX,aaa) is (ε, δ)-differentially private and Iβ∞ (XXX;M2(XXX,aaa)) ≤
1 for all β ≥ 2δ;

3. for every xxx ∈ X n, with probability at least 1 − δ, we have that M2(xxx;M1(xxx))) = xxx.

In particular, Iβ∞ (XXX;M2(XXX;M1(XXX))) ≥ n− 1 for all 0 < β ≤ 1
2 − δ.

De (2012) showed that the mutual information of (ε, δ)-differentially private protocols can
be large: if 1

ε log
(

1
δ

)
= O(n), then there exists an (ε, δ)-differentially private algorithm M

and a distribution S such that for XXX ∼ S, I (XXX;M(XXX)) = Ω(n), where I denotes mutual
information. De’s construction also has large approximate max-information.

By the composition theorem for approximate max-information (given in Theorem 1.4.2),
our construction implies a similar bound:
Corollary 4.4.2. There exists an (ε, δ)-differentially private mechanismM : X n → Y such
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that Iβ2∞ (M, n) ≥ n− 1− r − log(1/β1) for all β1 ∈ (0, 1/2− δ) and β2 ∈ (0, 1/2− δ − β1),

where r = O
(

log(1/δ) log(n)
ε

)
.

Proof. We use the same algorithms M1 and M2 from Theorem 4.4.1. Suppose that for all
aaa ∈ {0, 1}r and 0 < β2 < 1/2− δ − β1 for any β1 ∈ (0, 1/2− δ), we have:

Iβ2∞ (M2(·, aaa), n) < n− 1− r − log(1/β1).

Note that because M1 has bounded description length r, we can bound Iβ1∞ (M1, n) ≤
r+log(1/β1) for any β1 > 0 (Dwork et al., 2015a). We then apply the composition theorem
for max-information mechanisms, Theorem 1.4.2, to obtain:

Iβ1+β2
∞ (M2 ◦M1, n) < n− 1.

However, this contradicts Theorem 4.4.1, because for any β < 1/2− δ,

Iβ∞ (M2 ◦M1, n) ≥ Iβ∞,Π (M2 ◦M1, n) ≥ n− 1.

Thus, we know that there exists some aaa∗ ∈ {0, 1}r and (non-product) distribution XXX ∼ S
such that:

Iβ2∞ (XXX;M2(XXX,aaa∗)) ≥ n− 1− r − log(1/β1).

We then define M : X n → Y to be M(xxx) =M2(xxx,aaa∗). Hence,

Iβ2∞ (M, n) ≥ Iβ2∞ (XXX;M(XXX)) ≥ n− 1− r − log(1/β1)

which completes the proof.

We adapt ideas from De’s construction (De, 2012) in order to prove Theorem 4.4.1. In De’s
construction, the input is not drawn from a product distribution—instead, the support of
the input distribution is an error-correcting code, meaning that all points in the support are
far from each other in Hamming distance. For such a distribution, De showed that adding
the level of noise required for differential privacy does not add enough distortion to prevent
decoding of the dataset.

Our construction adapts De’s idea. Given as input a uniformly random dataset XXX, we show
a mechanism M1 which outputs a short description of a code that contains XXX. Because
this description is short, M1 has small max-information. The mechanism M2 is then
parameterized by this short description of a code. Given the description of a code and the
dataset XXX,M2 approximates (privately) the distance from XXX to the nearest codeword, and
outputs that codeword when the distance is small. When M2 is composed with M1, we
show that it outputs the dataset XXX with high probability. We present the formal analysis
in Appendix A.3.
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4.5. Consequences of Lower Bound Result - Robust Generalization

We use this section to give a consequence of Theorem 4.4.1. We start by showing that it is
possible to also output a dataset of dimensionality d ≥ 1 when an algorithm with bounded
description length is used first, followed by an approximate differentially private algorithm.
Corollary 4.5.1. Let X = {0, 1}d and ε, δ = O(1). There exists an algorithm M1 : X n →

{0, 1}r where r = O

(
d3/2 log(d/δ)

√
log(1/δ) log(n)

ε

)
and M2 : X n × {0, 1}r → {X n ∪ {⊥}} that

is (ε, δ)-DP in its first argument such that for each xxx ∈ X n, the mapping M2(xxx,M1(xxx))
outputs xxx with probability at least 1− δ. 1

Proof. We will write xxx(j) ∈ {0, 1}n to denote the vector of n data points in the jth entry of
universe X , so that dataset xxx = (xxx(1), · · · ,xxx(d)) ∈ X n. From Theorem 4.4.1, we know that
for each j ∈ [d], we have for every ε′ ∈ (0, 1/2], δ′ ∈ (0, 1/4] and r′ = O (log(1/δ′) log(n)/ε′),

there exists an algorithm M(j)
1 : {0, 1}n → {0, 1}r′ and M(j)

2 : X n × {0, 1}r′ → {{0, 1}n ∪
{⊥}} such that M(j)

2 is (ε′, δ′)-DP in its first argument and for each yyy ∈ {0, 1}n, with

probability at least 1− δ′, M(j)
2 (yyy,M(j)

1 (yyy)) = yyy. We can apply such an argument for each
entry j ∈ [d], and define the algorithm M1 : X n → {0, 1}dr′ as

M1(xxx) =
(
M(1)

1 (xxx(1)), · · · ,M(d)
1 (xxx(d))

)
.

Further, by Theorem 2.1.5, we know that for each aaa = (aaa(1), · · · , aaa(d)) ∈ {0, 1}dr′ where

aaa(j) =M(j)
1 (xxxj), the algorithm M2(·, aaa) is (dε′2/2 + ε′

√
2d log(1/δ̂), δ̂ + dδ′)-DP for δ̂ > 0,

where
M2(xxx,aaa) =

(
M(1)

2 (xxx(1), aaa(1)), · · · ,M(d)
2 (xxx(d), aaa(d))

)
.

Further, from Theorem 4.4.1, we know that for each xxx ∈ X n, we have M2(xxx,M1(xxx)) = xxx

with probability at least 1−dδ′. We then set δ̂ = δ/2, δ′ = δ/(2d), and ε′ = O

(
ε√

d log(1/δ)

)

Cummings et al. (2016a) also consider validity in adaptive data analysis, but from the
context of generalization in learning. Hence, to fit our results into their setting, we present
some concepts from learning theory. We will denote a hypothesis h : X → {0, 1} to be
a boolean map from the data universe where h(xxx) = 1 denotes a positive instance and
h(xxx) = 0 is a negative instance. We will consider the data universe to be X = {0, 1}d
where d is the dimensionality. We then write the labeled data XL = X × {0, 1} and the
corresponding labeled data distribution as DnL. Thus, a labeled dataset XXXL is sampled
from DnL. A learning algorithm then takes a labeled sample XXXL as input and outputs a
hypothesis h. Our goal is to ultimately have a learning algorithm that finds a hypothesis
whose empirical error matches the true, underlying error on the data distribution. We then

1Thanks to Kobbi Nissim to pointing out this implication.

48



define the empirical error to be,

error(h,XXXL) =
1

n

∑
(x,y)∈XXXL

1{h(x) 6= y}.

We also define the true error to be,

error(h,DL) = Pr
(x,y)∈DL

[h(x) 6= y] .

We can then model the traditional notion of generalization.
Definition 4.5.2. An algorithm M : X nL → {X → {0, 1}} is (τ, β)-generalizing if for all
distributions DL, given a labeled sample XXXL ∼ DnL,

Pr [M(XXXL) = h s.t. |error(h,XXXL)− error(h,DL)| ≤ τ ] ≥ 1− β.

where the probability is over the randomness in M and the data generation.

As Cummings et al. (2016a) point out, this notion of generalization allows for the algorithm
to provide information that would help overfit the sample it is given, which we want to
prevent. Hence, they present robust generalization which guarantees that no adversary
(or analyst) can take the output hypothesis of the learning algorithm as input and find a
new hypothesis whose empirical error is entirely different from the true error. Note that
they extend the error guarantee presented above to be in terms of the difference between
h(XXXL) = 1

n

∑
(x,y)∈XXXL

h(x, y) and h(DL) = E(x,y)∼DnL [h(x, y)] where h(x, y) ∈ {0, 1}, e.g.
h(x, y) = 1{h(x) = y} which recovers the guarantee in traditional generalization.
Definition 4.5.3. An algorithm M : X nL → Y for arbitrary range Y is (τ, β)-robustly
generalizing (RG) if for all distributions DL over XL and any adversary A with probability
at least 1− ζ over choice of XXXL ∼ DnL,

Pr
A,M

[A (M(XXXL)) = h s.t. |h(XXXL)− h(DL)| ≤ τ ] ≥ 1− γ.

for some ζ, γ where β = ζ + γ.

We then give the robust generalization guarantees of differentially private and bounded
description length algorithms. The stated results were taken from Cummings et al. (2016a),
but follow directly from Bassily et al. (2016); Dwork et al. (2015a), respectively.
Theorem 4.5.4 [Cummings et al. (2016a)]. Let M : X nL → Y be a (ε, δ)-DP algorithm and

n ≥ O
(

log(1/δ)
ε2

)
for δ > 0. Then M is (O(ε), O(δ/ε)))-RG.

Theorem 4.5.5 [Cummings et al. (2016a)]. Let M : X nL → Y be an algorithm where

|Y| <∞. Then M is

(√
log(|Y|/β)

2n , β

)
-RG for any β > 0

We then show that two RG algorithms do not compose in general. Note that the following
result requires that the dimensionality of the data d grow with n, so that n� 2d. Otherwise,
we would have enough samples so that the empirical average for any hypothesis h : X →
[0, 1] would be close to the true mean h(D).
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Theorem 4.5.6. Let d = o

((
n

log(n)

)2/3
)

. There exists a pair of algorithms M1 : X nL →

Y1, andM2 : X nL×Y1 → Y2 such thatM1 is (o(1), o(1))-RG andM2(·, y) is (o(1), o(1))-RG
for each y ∈ Y1, but the algorithmM =M2◦M1 : X nL×{0, 1} → Y2 is not (1−n2−d, o(1))-
RG.

Proof. We use Corollary 4.5.1 to prove our result with XL = {0, 1}d+1. So we let M1 :
X nL → {0, 1}r and M2 : X nL × {0, 1}r → X n from Corollary 4.5.1 so that

r = O

(
d3/2 log(d/δ)

√
log(1/δ) log(n)

ε

)

and M2 is (ε, δ)-DP in its first argument (including the label). We then pick

ε = Θ

(d3/2 log(d/δ)
√

log(1/δ) log(n)

n

)1/3


It is then clear that for such an ε we have n ≥ O
(

log(1/δ)
ε2

)
. Thus, we have that M1 is

(O(ε), β)-RG andM2(·, y) is (O(ε), O(δ/ε))-RG for each value y in its last component. We

then set 1/β = poly(n) and δ = o(ε). As long as d = o

((
n

log(n)

)2/3
)

then we have ε = o(1).

Further, we know that for each xxxL ∈ X nL , M2(xxxL,M1(xxxL)) = xxxL with probability 1 − δ.
Note that ifA knows the entire dataset xxx∗L, then an overfitting hypothesis would be h∗ : X →
{0, 1} where h∗(x) = 1 if and only if x ∈ xxx∗. We then define h∗(xxx∗L)

defn
= 1

n

∑
x∈xxx∗ h

∗(x) = 1
and our data distribution to be uniform over X . Thus, h∗(DnL) = PrX∼D [X ∈ xxx∗] = n

2d
.

This gives us the following condition where for each xxx∗L ∈ X nL ,

Pr
[
A(M(xxx∗L)) = h∗ s.t. |h∗(xxx∗L)− h∗(DL)| ≥ 1− n

2d

]
≥ 1− δ.

Thus, M cannot be (τ, δ)-RG where τ ≤ 1− n
2d

.

4.6. Conversion between Mutual and Max-Information

In this section we present the general conversion between mutual information and max-
information, along with some of its consequences.
Theorem 4.6.1. Let X,Y be a pair of discrete random variables defined on the same
probability space, where X takes values in a finite set X .

• If I (X;Y ) ≤ t then, for every m > 0, we have I
β(m)
∞ (X;Y ) ≤ m where β(m) = t+0.54

m .

• If Iβ∞ (X;Y ) ≤ m for m > 0 and 0 ≤ β ≤ 3(1−2−m)
20 , then I (X;Y ) ≤ 2m log(2) +

2β log2(|X |/2β)

1− 2−m
.
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Proof. We first prove the first direction of the theorem. We define a “good” set G(k)
defn
=

{(x, y) : Z(x, y) ≤ k} where Z(x, y) = log2

(
Pr[(X,Y )=(x,y)]
Pr[X⊗Y=(x,y)]

)
, and β(k) to be the quantity

such that Pr [(X,Y ) ∈ G(k)] = 1− β(k). We then have:

m ≥
∑

(x,y)∈G(k)

Pr [(X,Y ) = (x, y)]Z(x, y) +
∑

(x,y)/∈G(k)

Pr [(X,Y ) = (x, y)]Z(x, y)

≥
∑

(x,y)∈G(k)

Pr [(X,Y ) = (x, y)]Z(x, y) + kβ(k) (4.10)

Also, we have:

−
∑

(x,y)∈G(k)

Pr [(X,Y ) = (x, y)]

Pr [(X,Y ) ∈ G(k)]
Z(x, y) ≤ log2

(
Pr [X ⊗ Y ∈ G(k)]

Pr [(X,Y ) ∈ G(k)]

)
≤ log2

(
1

1− β(k)

)

where the first inequality follows from applying Jensen’s inequality.

By rearranging terms, we obtain:∑
(x,y)∈G(k)

Pr [(X,Y ) = (x, y)] · Z(x, y) ≥ −(1− β(k)) · log2

(
1

1− β(k)

)
.

Plugging the above in (4.10), we obtain:

m ≥ −(1− β(k)) log2

(
1

1− β(k)

)
+ kβ(k).

Thus,

k ≤
m+ (1− β(k)) log2

(
1

1−β(k)

)
β(k)

≤ m+ 0.54

β(k)

where the last inequality follows from the fact that the function (1− w) log2(1/(1− w)) is
maximized at w = (e − 1)/e (and takes value < 0.54). Solving for β(k) gives the claimed
bound.

We now prove the second direction of the lemma. Note that we can use Lemma 4.1.4 to
say that (X,Y ) and (X⊗Y ) are point-wise (2k log(2), β′) indistinguishable, for β′ = 2β

1−2−k
.

Note that β′ ≤ 0.3 as β ∈
[
0, 3(1−2−k)

20

]
. We now define the following “bad” set B:

B =

{
(x, y) ∈ X × X : log2

(
(X,Y ) = (x, y)

X ⊗ Y = (x, y)

)
> 2k

}
.
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From the definition of point-wise indistinguishability, we have:

I(X;Y ) ≤ 2k +
∑

(x,y)∈B

Pr [(X,Y ) = (x, y)] log2

(
Pr [(X,Y ) = (x, y)]

Pr [X = x] Pr [Y = y]

)
. (4.11)

Now, if set B is empty, we get from (4.11) that:

I(X;Y ) ≤ 2k

which trivially gives us the claimed bound.

However, if set B is non-empty, we then consider the mutual information conditioned on
the event (X,Y ) ∈ B. We will write X ′ for the random variable distributed the same as
X conditioned on (X,Y ) ∈ B, and Y ′ for the random variable Y conditioned on the same
event. We can then obtain the following bound, where we write H(W ) to denote the entropy
of random variable W :

I(X ′;Y ′) ≤ H(X ′) ≤ log2 |X |.

We can then make a relation between the mutual information I(X ′, Y ′) and the sum of
terms over B in (4.11). Note that, for (x, y) ∈ B, we have from Bayes’ rule:

Pr [(X,Y ) ∈ B] Pr [(X,Y ) = (x, y)|B] = Pr [(X,Y ) = (x, y)] .

This then gives us the following bound:∑
(x,y)∈B

Pr [(X,Y ) = (x, y)]

Pr [(X,Y ) ∈ B]
log2

(
Pr [(X,Y ) = (x, y)]

Pr [(X,YYY ) ∈ B] Pr [X = x|B] Pr [Y = y|B]

)
≤ log2 |X |. (4.12)

Note that Pr [X = x|B] ≤ Pr[X=x]
Pr[(X,Y )∈B] , and similarly, Pr [Y = y|B] ≤ Pr[Y=y]

Pr[(X,Y )∈B] . From

(4.12), we have:∑
(x,y)∈B

Pr [(X,Y ) = (x, y)] log2

(
Pr [(X,Y ) = (x, y)]

Pr [X = x] Pr [Y = y]

)
≤ Pr [(X,Y ) ∈ B] log2 |X |+ Pr [(X,Y ) ∈ B] log2 (1/Pr [(X,Y ) ∈ B])

≤ β′(log2 |X |+ log2(1/β′))

=
2β

1− 2−k

(
log2 |X |+ log2

(
1− 2−k

2β

))
≤ 2β log2(|X |/2β)

1− 2−k

where the last inequality follows from the fact that Pr [(X,Y ) ∈ B] ≤ β′ and w log2(1/w) ≤
β′ log2(1/β′) when 0 ≤ w ≤ β′ ≤ 0.3. Substituting the sum of terms over B in (4.11) by the
above gives us the claimed bound.
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We now turn to pointing out two consequences of this result. The first deals with obtaining
tighter p-value corrections than was possible using methods from Russo and Zou (2016)
and the second deals with improving bounds on mutual information between an approx-
imately differentially private algorithm and a dataset sampled i.i.d. from a distribution,
thus improving results from McGregor et al. (2011).

In Section 1.4, we proved a simple theorem about how to correct p-values (using a valid p-
value correction function – Definition 1.3.1) given a bound on the max-information between
the input dataset and the test-statistic selection procedure M (Theorem 1.4.4). We note
that we can easily extend the definition of null hypotheses given in the introduction (and
hence p-values and correction functions), to allow for distributions S over X n that need not
be product distributions. In fact, we can restate Theorem 1.4.4 in terms of non-product
distributions:
Theorem 4.6.2. LetM : X n → Y be a data-dependent algorithm for selecting a test statis-
tic such that Iβ∞ (M, n) ≤ m. Then the following function γ is a valid p-value correction
function for M:

γ(α) = max

(
α− β

2m
, 0

)
.

Proof. The proof is exactly the same as the proof of Theorem 1.4.4, except we fix an
arbitrary (perhaps non-product) distribution S from which the dataset XXX is drawn.

Previously, Russo and Zou (2016) gave a method to correct p-values given a bound on the
mutual information between the input data and the test-statistic selection procedure.2 In
Theorem 4.6.1, we observe that if we had a bound on the mutual information between
the input data and the test-statistic procedure, this would imply a bound on the max-
information that would be sufficiently strong so that our Theorem 4.6.2 would give us the
following corollary:
Corollary 4.6.3. Let M : X n → Y be a test-statistic selection procedure such that
I (XXX;M(XXX)) ≤ t. Then γ(α) is a valid p-value correction function, where:

γ(α) =
α

2
· 2
−2
α

(t+0.54). (4.13)

Proof. From Theorem 4.6.1, we know that for any m > 0, I
β(m)
∞ (M, n) ≤ m, where β(m) ≤

t+0.54
m . Hence, from Theorem 4.6.2, we know that for any choice of m > 0, γ(α) is a valid

p-value correction function where:

γ(α) =
α− t+0.54

m

2m
.

Choosing m = 2(t+0.54)
α gives our claimed bound.

2Actually, Russo and Zou (2016) do not explicitly model the dataset, and instead give a bound in terms
of the mutual information between the test-statistics themselves and the test-statistic selection procedure.
We could also prove bounds with this dependence, by viewing our input data to be the value of the given
test-statistics, however for consistency, we will discuss all bounds in terms of the mutual information between
the data and the selection procedure.
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We now show that this gives us a strictly improved p-value correction function than the
bound given by Russo and Zou (2016), which we state here using our terminology.
Theorem 4.6.4 [Russo and Zou (2016) Proposition 7]. Let M : X n → Y be a test-statistic
selection procedure such that I (XXX;M(XXX)) ≤ t. If we define φi = M(XXX), then for every
γ ∈ [0, 1]:

Pr [pi(φi(XXX)) ≤ γ] ≤ γ +

√
t

log(1/2γ)
.

If we want to set parameters so that the probability of a false discovery is at most α, then

in particular, we must pick γ such that
√

t
ln(1/2γ) ≤ α. Equivalently, solving for α, the

best valid p-value correction function implied by the bound of Russo and Zou (2016) must
satisfy:

γRZ(α) ≤ min

{
α

2
,
1

2
· 2− log2(e)t/α2

}
.

Comparing the p-value correction function γ(α) from (4.13), with the function γRZ(α)
above, we see that the version above has an exponentially improved dependence on 1/α.
Moreover, it almost always gives a better correction factor in practice: for any value of
α ≤ 0.05, the function γ(α) derived above improves over γRZ(α) whenever the mutual
information bound t ≥ 0.05 (whereas, we would naturally expect the mutual information
to be m� 1, and to scale with n).

Our main theorem Theorem 4.2.1 combined with Theorem 4.6.1 also obtains an improved
bound on the mutual information of approximate differentially private mechanisms from
Proposition 4.4 in McGregor et al. (2011)3. The following corollary improves the bound
from McGregor et al. (2011) in its dependence on |X | from |X |2 · log2(1/|X |) to log2 |X |.
Corollary 4.6.5. Let M : X n → Y be (ε, δ)-differentially private and XXX ∼ Dn. If ε ∈
(0, 1/2], ε = Ω

(
1√
n

)
, and δ = O( ε

n2 ), we then have:

I (XXX;M(XXX)) = O

(
nε2 + n

√
δ
ε

(
1 + log

(
1
n

√
ε
δ

)
+ n log2 |X |

))
.

4.7. Max-Information and Compression Schemes

In this section we show that the approximate max-information of a compression scheme
can be unbounded. We note that compression schemes were previously known to provide
generalization guarantees for statistical queries, (Cummings et al., 2016a). A consequence
of this is that a procedure is not required to have bounded max-information in order for it
to have strong generalization guarantees.

We begin by defining compression schemes. Intuitively, a compression scheme uses only a
small fraction of the dataset to obtain an output.
Definition 4.7.1 [Littlestone and Warmuth (1986)]. An algorithm M : X n → Y has a

3Thanks to Salil Vadhan for pointing out this implication.
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compression scheme of size k if there exists an algorithm B1 : X n → X k where B1(xxx) =
(xi : i ∈ Sxxx ⊆ [n], |Sxxx| ≤ k) and an algorithm B2 : X k → Y such that M(xxx) = B2(B1(xxx)).

The following result shows that compression schemes generalize for statistical queries.
Theorem 4.7.2 [Cummings et al. (2016a)]. Let M : X n → Y have a compression scheme

of size k where Y = {h : X → [0, 1]}. If n ≥ 8k log(2n/β), then for τ = O

(√
k log(n/β)

n

)
Pr

XXX∼Dn,h∼M(XXX)
[|h(XXX)− h(D)| ≤ τ ] ≥ 1− β.

However, it turns out that compression schemes can have large max-information.
Theorem 4.7.3. There exists a compression scheme M : X n → Y of fixed size such that

Iβ∞,Π (M, n) ≥ log2

(
|X |β

2β+1/|X |

)
for β > 0 and I∞,Π (M, n) ≥ log2(|X |).

Proof. Consider the distribution D which is uniform over the integers X = [H] for some
large integer H > 0. Consider the simple mapping M : X n → X where M(xxx) = x1, i.e. it
just outputs the first data entry. For any β > 0 define the interval I = {1, 2, · · · , d2βHe}
and then we define the outcome S = {(xxx, x) ∈ X n ×X :M(xxx) = x ∈ I}. We will sample a
dataset XXX ∼ Dn. We then have

Pr [(XXX,M(XXX)) ∈ S] = Pr [M(XXX) ∈ I] ≥ 2β.

We define XXX ′ to be an identical, independent copy of XXX, which gives us

Pr
[
(XXX,M(XXX ′)) ∈ S

]
= Pr

[
M(XXX) =M(XXX ′) & M(XXX ′) ∈ I

]
=
∑
x1∈I

Pr
[
X1 = x1 & X ′1 = x1

]
=
∑
x1∈I

Pr [X1 = x1]2

= d2βHe/H2 ≤ 2β

H
+

1

H2

We can then bound the approximate max-information for M

Iβ∞ (M, n) ≥ log2

(
Pr [(XXX,M(XXX)) ∈ S]− β

Pr [(XXX,M(XXX ′)) ∈ S]

)
≥ log2

(
Hβ

2β + 1/H

)
.

When β = 0, we can then set I = 1, so that Pr [(XXX,M(XXX)) ∈ S] = 1/H and Pr [(XXX,M(XXX ′)) ∈ S] =
1/H2, thus I∞ (M, n) ≥ log2(H)

The above example shows us that the max-information grows with the domain size H, but
the robust generalization guarantee from Cummings et al. (2016a) for compression schemes
of fixed size does not grow with the domain size. This suggests that max-information is
not the right measure for obtaining generalization bounds when dealing with compression
schemes.
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4.8. Conclusion and Future Work

We have shown that approximately differentially private algorithms have bounded max-
information under product distributions but can have large max-information under arbi-
trary data distributions. Thus, when data is sampled i.i.d., we can compose differentially
private algorithms and bounded description length algorithms, but the private algorithms
should come first. This will ensure that we can correct for valid p-values in post-selection
hypothesis testing as long as the hypothesis tests are differentially private (see later in Chap-
ters 6 and 7 for examples of private hypothesis tests). Our results also give us a stronger
connection between mutual information and p-value corrections given in Russo and Zou
(2016) and improves on the mutual information bound of approximately differentially pri-
vate algorithms from McGregor et al. (2011). Further, we applied our lower bound result
to show that robustly generalizing algorithms (Cummings et al., 2016a) do not compose in
general. Although max-information partially unifies different procedures with strong gen-
eralization guarantees in the adaptive setting, it is not the case that every procedure with
small max-information must generalize.

Some directions for future work include obtaining a strong bound on max-information for
zCDP algorithms. We can easily obtain a bound on max-information due to the fact that
zCDP implies approximate DP (see Theorem 2.2.4), so we would like to improve on this
bound. Also, we would like to improve on the constants in our max-information bound
so that we can obtain valid p-value corrections for practically sized datasets, thus further
demonstrating the power of these techniques over datasplitting.
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CHAPTER 5

PRIVACY ODOMETERS AND FILTERS: PAY-

AS-YOU-GO COMPOSITION

The composition theorems for differential privacy are very strong, and hold even if the
choice of which differentially private subroutine to run may depend on the output of previ-
ous algorithms. This property is essential in algorithm design, but also more generally in
modeling unstructured sequences of data analyses that might be run by a human data an-
alyst, or even by many data analysts on the same data set, while only loosely coordinating
with one another. Additionally, we have already pointed out the power of these composition
theorems to the application of adaptive data analysis

However, all the known composition theorems for differential privacy (Dwork et al., 2006b,a,
2010; Kairouz et al., 2015; Murtagh and Vadhan, 2016) have an important and generally
overlooked caveat. Although the choice of the next subroutine in the composition may be
adaptive, the number of subroutines called and choice of the privacy parameters ε and δ
for each subroutine must be fixed in advance. Indeed, it is not even clear how to define
differential privacy if the privacy parameters are not fixed in advance. This is generally
acceptable when designing a single algorithm (that has a worst-case analysis), since worst-
case eventualities need to be anticipated and budgeted for in order to prove a theorem.
However, it is not acceptable when modeling the unstructured adaptivity of a data analyst,
who may not know ahead of time (before seeing the results of intermediate analyses) what
he wants to do with the data. When controlling privacy loss across multiple data analysts,
the problem is even worse.

The contents of this chapter are taken largely from Rogers et al. (2016b). We study the
composition properties of differential privacy when everything—the choice of algorithms, the
number of rounds, and the privacy parameters in each round—may be adaptively chosen.
We show that this setting is much more delicate than the settings covered by previously
known composition theorems, but that these sorts of ex post privacy bounds do hold with
only a small (but in some cases unavoidable) loss over the standard setting. We note
that the conceptual discussion of differential privacy focuses a lot on the idea of arbitrary
composition and our results give more support for this conceptual interpretation.

5.1. Results

We give a formal framework for reasoning about the adaptive composition of differentially
private algorithms when the privacy parameters themselves can be chosen adaptively. When
the parameters are chosen non-adaptively, a composition theorem gives a high probability
bound on the worst case privacy loss that results from the output of an algorithm. In
the adaptive parameter setting, it no longer makes sense to have fixed bounds on the
privacy loss. Instead, we propose two kinds of primitives capturing two natural use cases
for composition theorems:
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1. A privacy odometer takes as input a global failure parameter δg. After every round i
in the composition of differentially private algorithms, the odometer outputs a number
τi that may depend on the realized privacy parameters εi, δi in the previous rounds.
The privacy odometer guarantees that with probability 1− δg, for every round i, τi is
an upper bound on the privacy loss in round i.

2. A privacy filter is a way to cut off access to the dataset when the privacy loss is too
large. It takes as input a global privacy “budget” (εg, δg). After every round, it either
outputs CONT (“continue”) or HALT depending on the privacy parameters from the
previous rounds. The privacy filter guarantees that with probability 1 − δg, it will
output HALT before the privacy loss exceeds εg. When used, it guarantees that the
resulting interaction is (εg, δg)-DP.

A tempting heuristic is to take the realized privacy parameters ε1, δ1, . . . , εi, δi and apply
one of the existing composition theorems to those parameters, using that value as a privacy
odometer or implementing a privacy filter by halting when getting a value that exceeds the
global budget. However this heuristic does not necessarily give valid bounds.

We first prove that the heuristic does work for the basic composition theorem from Dwork
et al. (2006b) in which the parameters εi and δi add up. We prove that summing the realized
privacy parameters yields both a valid privacy odometer and filter. The idea of a privacy
filter was also considered in Ebadi and Sands (2015), who show that basic composition
works in the privacy filter application. The main contribution of this work is obtaining
an advanced composition theorem when the privacy parameters can be chosen adaptively,
where the overall privacy loss degrades sublinearly with the number of private analyses.

We then show that the heuristic breaks for the advanced composition theorem from Dwork
et al. (2010). However, we give a valid privacy filter that gives the same asymptotic bound
as the advanced composition theorem, albeit with worse constants. On the other hand, we
show that, in some parameter regimes, the asymptotic bounds given by our privacy filter
cannot be achieved by a privacy odometer. This result gives a formal separation between
the two models when the parameters may be chosen adaptively, which does not exist when
the privacy parameters are fixed. Finally, we give a valid privacy odometer with a bound
that is only slightly worse asymptotically than the bound that the advanced composition
theorem would give if it were used (improperly) as a heuristic. Our bound is worse by a
factor that is never larger than

√
log log(n) (here, n is the size of the dataset) and for some

parameter regimes is only a constant.

5.2. Additional Preliminaries

In addition to the preliminaries that were presented in Chapter 2, we will go over a few
quantities which we will need in this chapter and we will cover the composition theorems
of DP presented in Chapter 2 in a slightly different way.

We have the following useful characterization from Kairouz et al. (2015): any DP algo-
rithm can be written as the post-processing of a simple, canonical algorithm which is a
generalization of randomized response.
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Definition 5.2.1. For any ε, δ ≥ 0, we define the randomized response algorithm RRε,δ :
{0, 1} → {0,>,⊥, 1} as the following (Note that if δ = 0, we will simply write the algorithm
RRε,δ as RRε.)

Pr [RRε,δ(0) = 0] = δ Pr [RRε,δ(1) = 0] = 0

Pr [RRε,δ(0) = >] = (1− δ) eε

1+eε Pr [RRε,δ(1) = >] = (1− δ) 1
1+eε

Pr [RRε,δ(0) = ⊥] = (1− δ) 1
1+eε Pr [RRε,δ(1) = ⊥] = (1− δ) eε

1+eε

Pr [RRε,δ(0) = 1] = 0 Pr [RRε,δ(1) = 1] = δ

Kairouz et al. (2015) show that any (ε, δ)–DP algorithm can be viewed as a post-processing
of the output of RRε,δ for an appropriately chosen input.
Theorem 5.2.2 [Kairouz et al. (2015); Murtagh and Vadhan (2016)]. For every (ε, δ)-DP
algorithmM and for all neighboring databases xxx0 and xxx1, there exists a randomized mapping
T where T (RRε,δ(b)) is identically distributed to M(xxxb) for b ∈ {0, 1}.

This theorem will be useful in our analyses, because it allows us to without loss of generality
analyze compositions of these simple algorithms RRε,δ with varying privacy parameters.

We now define the adaptive composition of differentially private algorithms in the setting
introduced by Dwork et al. (2010) and then extended to heterogenous privacy parameters
in Murtagh and Vadhan (2016), in which all of the privacy parameters are fixed prior to
the start of the computation. The following “composition game” is an abstract model of
composition in which an adversary can adaptively select between neighboring datasets at
each round, as well as a differentially private algorithm to run at each round – both choices
can be a function of the realized outcomes of all previous rounds. However, crucially, the
adversary must select at each round an algorithm that satisfies the privacy parameters
which have been fixed ahead of time – the choice of parameters cannot itself be a function
of the realized outcomes of previous rounds. We define this model of interaction formally
in Algorithm 2 where the output is the view of the adversary A which includes any random
coins she uses RA and the outcomes of algorithms M1, · · · ,Mk of every round.

Algorithm 2 FixedParamComp(A, E , b)
Input: A is a randomized algorithm, E = (E1, · · · , Ek) are classes of randomized algorithms,

and b ∈ {0, 1}.
Select coin tosses RbA for A uniformly at random.
for i = 1, · · · , k do
A = A(RbA,Mb

1, · · · ,Mb
i−1) gives neighboring datasets xxxi,0,xxxi,1, and Mi ∈ Ei

A receives Mb
i =Mi(xxx

i,b)
Output: view V b = (RbA,Mb

1, · · · ,Mb
k)

Definition 5.2.3 [Adaptive Composition (Dwork et al., 2010; Murtagh and Vadhan, 2016)].
We say that the sequence of parameters ε1, · · · , εk ≥ 0, δ1, · · · , δk ∈ [0, 1) satisfies (εg, δg)-
differential privacy under adaptive composition if for every adversaryM, and E = (E1, · · · , Ek)
where Ei is the class of (εi, δi)-DP algorithms, we have FixedParamComp(M, E , ·) is (εg, δg)-
DP in its last argument, i.e. V 0 ≈εg ,δg V 1.
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We then present the composition theorems in terms of this adaptive composition. We first
state the basic composition theorem (compare to Theorem 2.1.4) which shows that the
adaptive composition satisfies differential privacy where “the parameters just add up.”
Theorem 5.2.4 [Basic Composition (Dwork et al., 2006b,a)]. The sequence ε1, · · · , εk and
δ1, · · · δk satisfies (εg, δg)-differential privacy under adaptive composition where (εg, δg) are
given in Theorem 2.1.4.

We now state the advanced composition bound from Dwork et al. (2010) and then improved
by Kairouz et al. (2015) which gives a quadratic improvement to the basic composition
bound (compare to Theorem 2.1.5).
Theorem 5.2.5 [Advanced Composition (Dwork et al., 2010; Kairouz et al., 2015)]. For
any δ̂ > 0, the sequence ε1, · · · , εk and δ1, · · · δk satisfies (εg, δg)-differential privacy under
adaptive composition where (εg, δg) are given in Theorem 2.1.5.

The remainder of this paper is devoted to laying out a framework for sensibly talking about
the privacy parameters εi and δi being chosen adaptively by the data analyst, and to prove
composition theorems (including an analogue of Theorem 5.2.5) in this model.

5.3. Composition with Adaptively Chosen Parameters

We now introduce the model of composition with adaptive parameter selection, and define
privacy in this setting.

5.3.1. Definition

We want to model composition as in the previous section, but allow the adversary the ability
to also choose the privacy parameters (εi, δi) as a function of previous rounds of interaction.
We will define the view of the interaction, similar to the view in FixedParamComp, to be
the tuple that includes A’s random coin tosses RA and the outcomes M = (M1, · · · ,Mk)
of the algorithms she chose. Formally, we define an adaptively chosen privacy parameter
composition game in Algorithm 3 which takes as input an adversary A, a number of rounds
of interaction k,1 and an experiment parameter b ∈ {0, 1}.

We then define the privacy loss with respect to AdaptParamComp(A, k, b) in the following
way for a fixed view vvv = (r,aaa) where r represents the random coin tosses of A and we write

1Note that in the adaptive parameter composition game, the adversary has the option of effectively
stopping the composition early at some round k′ < k by simply setting εi = δi = 0 for all rounds i > k′.
Hence, the parameter k will not appear in our composition theorems the way it does when privacy parameters
are fixed. This means that we can effectively take k to be infinite. For technical reasons, it is simpler to
have a finite parameter k, but the reader should imagine it as being an enormous number(say the number
of atoms in the universe) so as not to put any constraint at all on the number of rounds of interaction with
the adversary.
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Algorithm 3 AdaptParamComp(A, k, b)
Input: A is a randomized algorithm, upper bound k, and b ∈ {0, 1}.

Select coin tosses RbA for A uniformly at random.
for i = 1, · · · , k do
A = A(RbA,Mb

1, · · · ,Mb
i−1) gives neighboring xxxi,0,xxxi,1, parameters (εi, δi), Mi that is

(εi, δi)-DP
A receives Mb

i =Mi(xxx
i,b)

Output: view V b = (RbA,Mb
1, · · · ,Mb

k)

vvv<i = (r, a1, · · · , ai−1):

PrivLoss(vvv) = log

(
Pr
[
V 0 = vvv

]
Pr [V 1 = vvv]

)

=

k∑
i=1

log

(
Pr
[
Mi(xxx

i,0) = vi|vvv<i
]

Pr [Mi(xxxi,1) = vi|vvv<i]

)

defn
=

k∑
i=1

PrivLossi(vvv≤i). (5.1)

Note that the privacy parameters (εi, δi) depend on the previous outcomes thatM receives.
We will frequently shorten our notation εt = εt(vvv<t) and δt = δt(vvv<t) when the outcome is
understood.

It no longer makes sense to claim that the privacy loss of the adaptive parameter compo-
sition experiment is bounded by any fixed constant, because the privacy parameters (with
which we would presumably want to use to bound the privacy loss) are themselves random
variables. Instead, we define two objects which can be used by a data analyst to control
the privacy loss of an adaptive composition of algorithms.

The first object, which we call a privacy odometer will be parameterized by one global
parameter δg and will provide a running real valued output that will, with probability
1− δg, upper bound the privacy loss at each round of any adaptive composition in terms of
the realized values of εi and δi selected at each round.
Definition 5.3.1 [Privacy Odometer]. A function COMPδg : R2k

≥0 → R ∪ {∞} is a valid
privacy odometer if for all adversaries A in AdaptParamComp(A, k, b), with probability at
most δg over vvv ∼ V 0:

|PrivLoss(vvv)| > COMPδg (ε1, δ1, · · · , εk, δk) .

The second object, which we call a privacy filter, is a stopping time rule. It takes two global
parameters (εg, δg) and will at each round either output CONT or HALT. Its guarantee is that
with probability 1− δg, it will output HALT if the privacy loss has exceeded εg.
Definition 5.3.2 [Privacy Filter]. A function COMPεg ,δg : R2k

≥0 → {HALT, CONT} is a valid
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privacy filter for εg, δg ≥ 0 if for all adversaries A in AdaptParamComp(A, k, b), the following
“bad event” occurs with probability at most δg when vvv ∼ V 0:

|PrivLoss(vvv)| > εg and COMPεg ,δg(ε1, δ1, · · · , εk, δk) = CONT.

We note two things about the usage of these objects. First, a valid privacy odometer
can be used to provide a running upper bound on the privacy loss at each intermediate
round: the privacy loss at round k′ < k must with high probability be upper bounded by
COMPδg (ε1, δ1, . . . , εk′ , δk′ , 0, 0, . . . , 0, 0) – i.e. the bound that results by setting all future
privacy parameters to 0. This is because setting all future privacy parameters to zero is
equivalent to stopping the computation at round k′, and is a feasible choice for the adaptive
adversary A. Second, a privacy filter can be used to guarantee that with high probability,
the stated privacy budget εg is never exceeded – the data analyst at each round k′ simply
queries COMPεg ,δg(ε1, δ1, . . . , εk′ , δk′ , 0, 0, . . . , 0, 0) before she runs algorithm k′, and runs it
only if the filter returns CONT. Again, this is guaranteed because the continuation is a
feasible choice of the adversary, and the guarantees of both a filter and an odometer are
quantified over all adversaries. Further, if we have a privacy odometer then it can be used
as a filter, giving us the following result.
Lemma 5.3.3. If COMPδg is a valid privacy odometer then the following function COMPεg ,δg
is a valid privacy filter: COMPεg ,δg (ε1, δ1, · · · , εk, δk) = CONT if

COMPδg (ε1, δ1, · · · , εk, δk) ≤ εg

and otherwise COMPεg ,δg (ε1, δ1, · · · , εk, δk) = HALT.

Proof. With the privacy filter COMPεg ,δg defined in the lemma statement, we consider the
event that COMPεg ,δg (ε1, δ1, · · · , εk, δk) = CONT which implies that the valid privacy odometer
COMPδg (ε1, δ1, · · · , εk, δk) ≤ εg. By definition of a valid privacy odometer, we then know that
with probability at most δg over vvv ∼ V 0 that |PrivLoss(vvv)| ≤ COMPδg (ε1, δ1, · · · , εk, δk) ≤ εg.
Hence COMPεg ,δg is a valid privacy filter.

We give the formal description of this interaction where A uses the privacy filter in Algo-
rithm 4.

From the way we have defined a valid privacy filter, we have the following proposition:
Proposition 5.3.4. If COMPεg ,δg is a valid privacy filter then the views V 0

F and V 1
F of the

adversary from PrivacyFilterComp
(
A, k, b; COMPεg ,δg

)
with b = 0 and b = 1 respectively,

are (εg, δg)-point-wise indistinguishable and hence V 0
F ≈εg ,δg V 1

F .

5.3.2. Focusing on Randomized Response

Theorem 5.2.2 was used to show that for ordinary composition (Definition 5.2.3), it suf-
fices to analyze the composition of randomized response. In this section, we show some-
thing similar for privacy odometers and filters. Specifically, we show that we can simulate
AdaptParamComp(A, k, b) by defining a new adversary that chooses the differentially private
algorithm Mi of adversary A, but uses the randomized response algorithm from Defini-
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Algorithm 4 PrivacyFilterComp(A, k, b; COMPεg ,δg)

Input: A is a randomized algorithm, upper bound k, b ∈ {0, 1}, and filter COMPεg ,δg).
Select coin tosses RbA for A uniformly at random.
for i = 1, · · · , k do
A = A(RbA,Mb

1, · · · ,Mb
i−1) gives neighboring xxxi,0,xxxi,1, (εi, δi), and Mi that is (εi, δi)-

DP
if COMPεg ,δg (ε1, δ1, · · · , εi, δi, 0, 0, · · · , 0, 0) = HALT then
Mi, · · · ,Mk = ⊥
BREAK

else
A receives Mb

i =Mi(xxx
i,b)

Output: view V b
F = (RbA,Mb

1, · · · ,Mb
k)

tion 5.2.1 each round along with a post-processing function, which together determine the
distribution for Mi.

In Algorithm 5, we define the new composition game SimulatedComp (A, k, b) with adversary
A that outputs the view W b, which includes the internal randomness RbA of A with the
randomized response outcomes Zb = (Zb1, · · · , Zbk). From Theorem 5.2.2, we know that we
can simulate any (ε, δ)-DP algorithm as a randomized post-processing function T on top
of RRε,δ. Thus given the outcomes prior to round i, A selects Mi, which is equivalent to
selecting a post-processing function Ti. Note that we can simulate Ti as a deterministic
function Pi with access to random coins RbSIMi , i.e. Pi

(
RRεi,δi(b);R

b
SIMi

)
∼ Ti (RRεi,δi(b)). We

then include the random coins RbSIM =
(
RbSIM1 , · · · , R

b
SIMk

)
in the view of adversary A in

SimulatedComp(A, k, b). From the view W b =
(
RbA, RSIM, Z

b
1, · · · , Zbk

)
, A would be able to

reconstruct the privacy parameters selected each round along with algorithmsM1, · · · ,Mk

used, which would also determine the post-processing functions P1, · · · , Pk.

Algorithm 5 SimulatedComp(A, k, b)
Input: A is a randomized algorithm, upper bound k, and b ∈ {0, 1}.

Select coin tosses RbA for A uniformly at random.
for i = 1, · · · , k do
A = A

(
RbA, Y

b
1 , · · · , Y b

i−1

)
gives neighboring xxxi,0,xxxi,1, parameters (εi, δi), Mi that is

(εi, δi)-DP.
Let Pi be a deterministic post-processing function, such that

Pi

(
RRεi,δi(b);R

b
SIMi

)
∼Mi

(
xxxi,b
)

(5.2)

for uniformly random RbSIMi .
Compute Zbi = RRεi,δi(b) and Y b

i = Pi(Z
b
i ;R

b
SIMi

).
A receives Y b

i .
Output: view W b = (RbA, R

b
SIM, Z

b
1, · · · , Zbk), where RbSIM =

(
RbSIM1 , · · · , R

b
SIMk

)
.

From the way that we have defined Pi in (5.2), for each fixed value of the internal randomness
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of A, the view of AdaptParamComp(A, k, b) is distributed identically to a post-processing of
the view W b from SimulatedComp(A, k, b).
Lemma 5.3.5. For every adversary A, the deterministic function P defined as

P
(
RbA, R

b
SIM, Z

b
1, · · · , Zbk

)
=
(
RbA, P1(Zb1;RbSIM1), · · · , Pk(Zbk;RbSIMk)

)
(5.3)

ensures P (SimulatedComp(A, k, b)) and AdaptParamComp (A, k, b) are identically distributed.

Since RbA is the first argument of both random variables, they are also identically distributed
conditioned on any fixed value of RbA. This point-wise equivalence for every value of the
internal randomness allows us to without loss of generality analyze deterministic adversaries
and post-processing functions of SimulatedComp(A, k, b) in order to reason about the view
of AdaptParamComp(A, k, b). Because the randomness is fixed, for clarity, we will omit the
random coins RbA from the view of both composition games for the rest of the analysis.

We will now show that it is sufficient to prove bounds in which εi may be adaptively chosen
at each round, and in which {δi} ≡ 0 uniformly. We do this by giving a generic way to extend
a bound in the δi = 0 case to a bound that holds when the δi may be non-zero. Define

a slight modification of Algorithm 5 called ˜SimulatedComp(A, k, b) which is the same as
SimulatedComp(A, k, b) except that it computes Z̃bi = RRεi(b) (where δi = 0) and sets Ỹ b

i =

Pi

(
Z̃bi ;R

b
SIMi

)
. We then define the final view of the adversary A in ˜SimulatedComp(A, k, b)

as W̃ b where

W̃ b =
(
RbSIM, Z̃

b
1, · · · , Z̃bk

)
and Ṽ b =

(
Ỹ b

1 , · · · , Ỹ b
k

)
= P

(
W̃ b
)

(5.4)

for P (·) given in (5.3). We then say that C̃OMPδg (also C̃OMPεg ,δg) is a valid privacy odometer

(filter) when {δi} ≡ 0 if over all deterministic adversaries A in ˜SimulatedComp(A, k, b)
the condition in Definition 5.3.1 (Definition 5.3.2) holds with probability at most δg over

ṽvv ∼ P
(
W̃ b
)

except now the privacy loss is given as

˜PrivLoss(ṽvv) = log

Pr
[
Ṽ 0 = ṽvv

]
Pr
[
Ṽ 1 = ṽvv

]
 =

k∑
i=1

log

(
Pr
[
Pi
(
RRεi(0);R0

SIMi

)
= ṽi|ṽvv<i

]
Pr
[
Pi
(
RRεi(1);R1

SIMi

)
= ṽi|ṽvv<i

])

defn
=

k∑
i=1

˜PrivLossi(ṽvv≤i). (5.5)

The following result gives the connection between valid privacy odometers and filters in the

modified game ˜SimulatedComp(A, k, b) with the original definitions given in Definitions 5.3.1
and 5.3.2.
Lemma 5.3.6. If C̃OMPδg is a valid privacy odometer when {δi} ≡ 0, then for every δ′g ≥ 0,
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COMPδg+δ′g is a valid privacy odometer where

COMPδg+δ′g (ε1, δ1, · · · , εk, δk) =

{
∞ if

∑k
i=1 δi > δ′g

C̃OMPδg (ε1, 0, · · · , εk, 0) otherwise
.

If C̃OMPεg ,δg is a valid privacy filter when {δi} ≡ 0, then for every δ′g ≥ 0, COMPεg ,δg+δ′g is a
valid privacy filter where

COMPεg ,δg+δ′g (ε1, δ1, · · · , εk, δk) =

{
HALT if

∑k
i=1 δi > δ′g

C̃OMPεg ,δg (ε1, 0, · · · , εk, 0) otherwise
.

Proof. Let W = (RSIM, Z1, · · · , Zk) be the view of A in SimulatedComp(A, k, 0) and W̃ =

(RSIM, Z̃1, · · · , Z̃k) be her view in ˜SimulatedComp(A, k, 0) (where {δi} ≡ 0). We will also
write the view of AdaptParamComp(A, k, 0) as V = (M1, · · · ,Mk) and the post-processing
functions of A as Pi from (5.2).

As in (5.3), we will use the notation P (W ) = (P1(Z1;RSIMi), · · · , Pk(Zk;RSIMi)) and simi-

larly for Ṽ = P (W̃ ). Recall that from Lemma 5.3.5 that we know V ∼ P (W ), even if A
were randomized.

Consider the following method of sampling from RRε,δ: first select outcome z̃ from RRε(0),
then with probability 1 − δ set z = z̃ – otherwise set z = 0. Note that this samples from
the correct distribution for RRε,δ(0). We can thus couple draws from RRε(0) and RRε,δ(0), so

for our setting we write the coupled random variable as: VVV = (V, Ṽ ).

We then define the following sets:

F defn
= {(w = (r,zzz), w̃ = (r, z̃zz)) : ∃t ∈ [k] s.t. zt 6= z̃t} ,

Gt
defn
=

{
v :

t∑
i=1

δi(vvv<i) ≤ δ′g

}
,

Ft
defn
= {(w = (r,zzz), w̃ = (r, z̃zz)) : zt 6= z̃t and zi = z̃i ∀i < t} ,

H defn
=
{
vvv : | ˜PrivLoss(vvv)| ≥ C̃OMPδg (ε1, 0, · · · , εk, 0)

}
.

We then want to show that we can bound the privacy loss with high probability. Specifically,

Pr
VVV

[
|PrivLoss(V )| ≥ C̃OMPδg (ε1, 0, · · · , εk, 0) ∧

k∑
t=1

δt ≤ δ′g

]
≤ δg + δ′g.

where each εi is a function of the outputs of the prefix Ṽ<i of the full view Ṽ from
˜SimulatedComp(A, k, 0). We now show that the quantity that we want to bound can be

written as the probability of the coupled random variables VVV and WWW =
(
W, W̃

)
being
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contained in the sets that we defined above.

Pr
VVV∼(P (W ),P (W̃ ))

[
|PrivLoss(V )| ≥ C̃OMPδg (ε1, 0, · · · , εk, 0) ∧

k∑
t=1

δt ≤ δ′g

]
≤ Pr [(WWW ∈ F ∧ V ∈ Gk) ∨ (V ∈ H ∧ WWW /∈ F)]

≤ Pr [WWW ∈ F ∧ V ∈ Gk] + Pr
[
Ṽ ∈ H

]
≤ Pr [WWW ∈ F ∧ V ∈ Gk] + δg (5.6)

Note, that if
∑k

i=1 δi(vvv<i) ≤ δg then we must have
∑t

i=1 δi(vvv<i) ≤ δg for each t < k, so that

Gk ⊆ Gt. We then use the fact that {Ft : t ∈ [k]} forms a partition of F , i.e. F =
⋃k
t=1Ft

and Fi ∩ Fj = ∅ for i 6= j, to obtain the following:

Pr [WWW ∈ F ∧ V ∈ Gk] =
k∑
t=1

Pr [WWW ∈ Ft ∧ V ∈ Gk] ≤
k∑
t=1

Pr [WWW ∈ Ft ∧ V ∈ Gt] .

Focusing on each term in the summation, we get

k∑
t=1

Pr [WWW ∈ Ft ∧ V ∈ Gt]

≤
k∑
t=1

Pr
[
WWW ∈ Ft ∧ Ṽ ∈ Gt

]
=

k∑
t=1

∑
ṽvv∈Gt

Pr
[
Ṽ = ṽvv

]
Pr [WWW ∈ Ft|ṽvv]

≤
k∑
t=1

∑
ṽvv∈Gt

Pr
[
Ṽ = ṽvv

]
δt(ṽvv<t).

We now switch the order of summation to obtain our result

k∑
t=1

∑
ṽvv∈Gt

Pr
[
Ṽ = ṽvv

]
δt(ṽvv<t)

=
∑
ṽvv

Pr
[
Ṽ = ṽvv

] ∑
t:
∑t
i=1 δi(ṽvv<i)≤δ′g

δt(ṽvv<t) ≤
∑
ṽvv

Pr
[
Ṽ = ṽvv

]
δ′g = δ′g. (5.7)

We then combine this with (5.6) to prove our first statement for the privacy odometer.

Using the same notation as above, we now move to proving the statement for the privacy
filter. It suffices to prove the following where the randomness is over VVV ∼ (P (W ), P (W̃ )):

Pr
[
|PrivLoss(V )| ≥ εg ∧ V ∈ Gk ∧ C̃OMPεg ,δg (ε1, 0, · · · , εk, 0) = CONT

]
≤ δg + δ′g.
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We now define a slight variant of H from above:

Hεg
defn
=
{
vvv :
∣∣∣ ˜PrivLoss(vvv)

∣∣∣ ≥ εg} .
Similar to what we showed in (5.6) for the privacy odometer, we have

Pr
VVV

[
|PrivLoss(V )| ≥ εg ∧ V ∈ Gk ∧ C̃OMPεg ,δg (ε1, 0, · · · , εk, 0) = CONT

]
≤ Pr

[(
(WWW ∈ F ∧ V ∈ Gk) ∨ (V ∈ Hεg ∧WWW /∈ F)

)
∧ C̃OMPεg ,δg (ε1, 0, · · · , εk, 0) = CONT

]
≤ Pr [WWW ∈ F ∧ V ∈ Gk] + Pr

[
Ṽ ∈ Hεg ∧ C̃OMPεg ,δg (ε1, 0, · · · , εk, 0) = CONT

]
≤ Pr [WWW ∈ F ∧ V ∈ Gk] + δg

≤ δ′g + δg

where the last inequality follows from (5.6) and (5.7).

5.3.3. Basic Composition

We first give an adaptive parameter version of the basic composition in Theorem 5.2.4.
Theorem 5.3.7. For each δg ≥ 0, COMPδg is a valid privacy odometer where

COMPδg+δ′g (ε1, δ1, · · · , εk, δk) =

{
∞ if

∑k
i=1 δi > δ′g∑k

i=1 εi otherwise
.

Additionally, for any εg, δg ≥ 0, COMPεg ,δg is a valid privacy filter where

COMPεg ,δg (ε1, δ1, · · · , εk, δk) =

{
HALT if

∑k
i=1 δi > δ′g or

∑k
i=1 εi > εg

CONT otherwise
.

Proof. We use Lemmas 5.3.5 and 5.3.6 so that we need to only reason about any deter-

ministic adversary in ˜SimulatedComp(A, k, b). We know that (ε, 0)-DP is closed under
post-processing from Theorem 2.1.3, so that for any (randomized) post-processing function
T , we have T (RRε(0)) ≈ε,0 T (RRε(1)) and thus we know that T (RRε(0)) and T (RRε(1)) are
(ε, 0)-point-wise indistinguishable for any post-processing function T . The proof then fol-
lows simply from the definition of (pure) differential privacy, so for all possible views ṽvv of

the adversary in P
(

˜SimulatedComp(A, k, b)
)

:

∣∣∣ ˜PrivLoss(ṽvv)
∣∣∣ ≤ k∑

i=1

∣∣∣∣∣log

(
Pr
[
Pi
(
RRεi(0);R0

SIMi

)
= ṽi|ṽvv<i

]
Pr
[
Pi
(
RRεi(1);R1

SIMi

)
= ṽi|ṽvv<i

])∣∣∣∣∣ ≤
k∑
i=1

εi(ṽvv<i)

where we explicitly write the dependence of the choice of εi by M at round i on the view
from the previous rounds as εi(ṽvv<i)
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5.4. Concentration Preliminaries

We give a useful concentration bound that will be pivotal in proving an improved valid pri-
vacy odometer and filter from that given in Theorem 5.3.7. We first present a concentration
bound for self normalized processes.
Theorem 5.4.1 [See Corollary 2.2 in de la Peña et al. (2004)]. If B and C > 0 are two
random variables such that

E
[
exp

(
λB − λ2

2
C2

)]
≤ 1 (5.8)

for all λ ∈ R, then for all δ ≤ 1/e, x > 0 we have

Pr

[
|B| ≥

√
(C2 + x)

(
2 + log

(
C2

x
+ 1

))
log(1/δ)

]
≤ δ.

To put this bound into context, suppose that C is a constant and we apply the bound with
x = C2. Then the bound simplifies to

Pr
[
|B| ≥ O

(
C
√

log(1/δ)
)]
≤ δ,

which is just a standard concentration inequality for any subgaussian random variable B
with standard deviation C.

Another bound which will be useful for our results is the following.
Theorem 5.4.2 [See Theorem 2.4 in Chen et al. (2014)]. If B and C > 0 are two random
variables that satisfy (5.8) for all λ ∈ R, then for all c > 0 and s, t ≥ 1 we have

Pr [|B| ≥ s C c ≤ C ≤ t · c] ≤ 2
√
e (1 + 2s log(t)) e−s

2/2.

We will apply both Theorems 5.4.1 and 5.4.2 to random variables coming from martingales
defined from the privacy loss functions.

To set this up, we present some notation: let (Ω,F ,P) be a probability triple where ∅ =
F0 ⊆ F1 ⊆ · · · ⊆ F is an increasing sequence of σ-algebras. Let Xi be a real-valued Fi-
measurable random variable, such that E [Xi|Fi−1] = 0 a.s. for each i. We then consider
the martingale where

M0 = 0 Mk =

k∑
i=1

Xi, ∀k ≥ 1. (5.9)

We then use the following result which gives us a pair of random variables to which we can
apply either Theorem 5.4.1 or Theorem 5.4.2.
Lemma 5.4.3 [See Lemma 2.4 in van de Geer (2002)]. For Mk defined in (5.9), if there
exists two random variables Di < D′i that are Fi−1-measurable for i ≥ 1

Di ≤ Xi ≤ D′i a.s. ∀i ≥ 1.
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and we define Uk as

U2
0 = 0, U2

k =
k∑
i=1

(
D′i −Di

)2
, ∀k ≥ 1 (5.10)

then

exp

[
λMk −

λ2

8
U2
k

]
is a supermartingale for all λ ∈ R.

We then obtain the following result from combining Theorem 5.4.1 with Lemma 5.4.3.
Theorem 5.4.4. Let Mk be defined as in (5.9) and satisfy the hypotheses of Lemma 5.4.3.
Then for every fixed k ≥ 1, x > 0 and δ ≤ 1/e, we have

Pr

|Mk| ≥

√(
U2
k

4
+ x

)(
2 + log

(
U2
k

4x
+ 1

))
log(1/δ)

 ≤ δ

Similarly, we can obtain the following result by combining Theorem 5.4.2 with Lemma 5.4.3.
Theorem 5.4.5. Let Mk be defined as in (5.9) and satisfy the hypotheses of Lemma 5.4.3.
Then for every fixed k ≥ 1, 0 < β < 1 c > 0 and t ≥ 1, we have

Pr

|Mk| ≥

√
U2
k

2
log(1/β) and c ≤

√
U2
k

4
≤ t · c

 ≤ 2
√
e
(
β + 2 log(t)

√
0.74 β

)

Proof. We use the fact that x log(1/x) is maximized at x = 1/e and has value no more than
0.37.

Given Lemma 5.3.6, we will focus on finding a valid privacy odometer and filter when

{δi} ≡ 0. Our analysis will then depend on the privacy loss ˜PrivLoss(Ṽ ) from (5.5) where

Ṽ is the view of the adversary in ˜SimulatedComp(A, k, 0). We then focus on the following
martingale in our analysis:

M̃k =
k∑
i=1

(
˜PrivLossi(Ṽ≤i)− µ̃i

)
where µ̃i = E

[
˜PrivLossi(Ṽ≤i)

∣∣∣Ṽ<i ] . (5.11)

We can then bound the conditional expectation µ̃i with the following result from Dwork and
Rothblum (2016) that improves on an earlier result from Dwork et al. (2010) by a factor of
2.
Lemma 5.4.6 [Dwork and Rothblum (2016)]. For µ̃i defined in (5.11), we have µ̃i ≤
εi (eεi − 1) /2.
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5.5. Advanced Composition for Privacy Filters

We next show that we can essentially get the same asymptotic bound as Theorem 2.1.5
for the privacy filter setting using the bound in Theorem 5.4.4 for the martingale given in
(5.11).

Theorem 5.5.1. We define K as the following where we set x =
ε2g

28.04·log(1/δg) and,2

K defn
=

k∑
j=1

εj

(
eεj − 1

2

)
+

√√√√2

(
k∑
i=1

ε2i + x

)(
1 +

1

2
log

(∑k
i=1 ε

2
i

x
+ 1

))
log(2/δg). (5.12)

COMPεg ,δg is a valid privacy filter for δg ∈ (0, 1/e) and εg > 0 where

COMPεg ,δg (ε1, δ1, · · · , εk, δk) =

{
HALT if

∑k
i=1 δi > δg/2 or K > εg

CONT otherwise
.

Note that if we have
∑k

i=1 ε
2
i = O (1/ log(1/δg)) and set εg = Θ

(√∑k
i=1 ε

2
i log(1/δg)

)
in

(5.12), we are then getting the same asymptotic bound on the privacy loss as in Kairouz
et al. (2015) and in Theorem 2.1.5 for the case when εi = ε for i ∈ [k]. If kε2 ≤ 1

8 log(1/δg) ,

then Theorem 2.1.5 gives a bound on the privacy loss of ε
√

8k log(1/δg). Note that there
may be better choices for the constant 28.04 that we divide ε2g by in (5.12), but for the case

when εg = ε
√

8k log(1/δg) and εi = ε for every i ∈ [n], it is nearly optimal.

Proof of Theorem 5.5.1. Note that Lemma 5.3.6 allows us to concentrate on showing that
we can find an optimal privacy filter when {δi} ≡ 0. We then focus on the martingale

M̃k given in (5.11). In order to apply Theorem 5.4.4 we set the lower bound for M̃i to be
Di = (−εi − µ̃i) and upper bound to be D′i = (εi − µ̃i) in order to compute U2

k from (5.10).
We then have for the martingale in (5.11) that

U2
k = 4

k∑
i=1

ε2i .

We can then directly apply Theorem 5.4.4 to get the following for x =
ε2g

28.04·log(1/δg) > 0

with probability at least 1− δg/2

|M̃k| ≤

√√√√2

(
k∑
i=1

ε2i + x

)(
1 +

1

2
log

(∑k
i=1 ε

2
i

x
+ 1

))
log(2/δg).

We can then obtain a bound on the privacy loss with probability at least 1 − δg/2 over

2We thank Daniel Winograd-Cort for catching an incorrectly set constant in an earlier version of this
theorem.
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ṽvv ∼ Ṽ 0

∣∣∣ ˜PrivLoss(ṽvv)
∣∣∣ ≤ k∑

i=1

µ̃i +

√√√√2

(
k∑
i=1

ε2i + x

)(
1 +

1

2
log

(∑k
i=1 ε

2
i

x
+ 1

))
log(2/δg)

≤
k∑
i=1

εi (eεi − 1) /2 +

√√√√2

(
k∑
i=1

ε2i + x

)(
1 +

1

2
log

(∑k
i=1 ε

2
i

x
+ 1

))
log(2/δg).

5.6. Advanced Composition for Privacy Odometers

One might hope to achieve the same sort of bound on the privacy loss from Theorem 5.2.5
when the privacy parameters may be chosen adversarially. However we show that this
cannot be the case for any valid privacy odometer. In particular, even if an adversary
selects the same privacy parameter ε = o(

√
log(log(n)/δg)/k) each round but can adap-

tively select a time to stop interacting with AdaptParamComp (which is a restricted special
case of the power of the general adversary – stopping is equivalent to setting all future
εi, δi = 0), then we show that there can be no valid privacy odometer achieving a bound
of o(ε

√
k log (log(n)/δg)). This gives a separation between the achievable bounds for a

valid privacy odometers and filters. But for privacy applications, it is worth noting that
δg is typically set to be (much) smaller than 1/n, in which case this gap disappears (since
log(log(n)/δg) = (1 + o(1)) log(1/δg) ).
Theorem 5.6.1. For any δg ∈ (0, O(1)) there is no valid COMPδg privacy odometer where

COMPδg (ε1, 0, · · · , εk, 0) =
k∑
i=1

εi

(
eεi − 1

eεi + 1

)
+ o


√√√√ k∑

i=1

ε2i log(log(n)/δg)

 (5.13)

In order to prove Theorem 5.6.1, we use the following anti-concentration bound for a sum
of random variables.
Lemma 5.6.2 [See Lemma 8.1 in Ledoux and Talagrand (1991)]. Let X1, · · · , Xk be a
sequence of mean zero i.i.d. random variables such that |X1| < a and σ2 = E

[
X2

1

]
. For

every α > 0 there exists two positive constants cα and c′α such that for every x satisfying√
kσcα ≤ x ≤ c′α kσ

2

a we have

Pr

[
k∑
i=1

Xi ≥ x

]
≥ exp

[
−(1 + α)

x2

2kσ2

]

For γ ∈ [1/2, 1), we define the random variables ξi ∈ {−1, 1} where

Pr [ξi = 1] = γ Pr [ξi = −1] = 1− γ. (5.14)
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Note that E [ξi]
defn
= µ = 2γ − 1 and V [ξi]

defn
= σ2 = 1− µ2. We then consider the sequence

of i.i.d. random variables X1, · · · , Xn where Xi = (ξi − E [ξi]). We denote the sum of Xi as

Mn =
n∑
i=1

Xi. (5.15)

We then apply Lemma 5.6.2 to prove an anti-concentration bound for the martingale given
above.
Lemma 5.6.3 [Anti-Concentration]. Consider the partial sums Mt defined in (5.15) for t ∈

[n]. There exists a constant c such that for all δ ∈ (0, O(1)) and n > Ω

(
log(1/δ) ·

(
1+µ
σ

)2
)

we have
Pr
[
∃t ∈ [n] s.t. Mt ≥ c · σ

√
t log(log(n)/δ)

]
≥ δ.

Proof. By Lemma 5.6.2, we know that there exists constants c1, c2, c3 and large N such that

for all m > N ·
(

1+µ
σ

)2
and x ∈

[
1, c3
√
m σ

1+µ

]
, we have

Pr

[
m∑
i=1

Xi ≥ c1

√
mσx

]
≥ e−c2x2 .

Rather than consider every possible t ∈ [n], we consider j ∈
{
mδ,m

2
δ , · · · ,m

blogmδ
(n)c

δ

}
where mδ ∈ N and mδ > m log(1/δ). We then have for a constant c that

Pr
[
∃t ∈ [n] s.t. Mt ≥ cσ

√
t log(1/δ)

]
≥ Pr

[
∃j ∈

[
blogmδ(n)c

]
s.t. M

mjδ
≥ cσ

√
mj
δ log(1/δ)

]

=

blogmδ
(n)c∑

j=1

Pr

[
M
mjδ
≥ cσ

√
mj
δ log(1/δ)

∣∣∣∣Mm`δ
≤ cσ

√
m`
δ log(1/δ) ∀` < j

]

≥
blogmδ

(n)c∑
j=1

Pr

[
M
mjδ
≥ cσ

(√
mj
δ log(1/δ) +

√
mj−1
δ log(1/δ)

)]

=

blogmδ
(n)c∑

j=1

Pr

[
M
mjδ
≥ cσ (1 + 1/

√
mδ)

√
mj
δ log(1/δ)

]

≥
blogmδ

(n)c∑
j=1

Pr

[
M
mjδ
≥ 2cσ

√
mj
δ log(1/δ)

]

Thus, we set c = c1
2
√
c2

and then for any δ such that
√
c2 <

√
log(1/δ) < c3

√
c2
√
mδ

σ
1+µ , we

have
Pr
[
∃t ∈ [n] s.t. Mt ≥ cσ

√
t log(1/δ)

]
≥ blogmδ(n)cδ.
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Algorithm 6 Stopping Time Adversary: Aε,δ
Input: privacy parameters (ε, δ) and constant c

for i = 1, · · · , k do
Aε,δ = Aε,δ(c, Y1, · · · , Yi−1) gives datasets {0, 1}, parameter (ε, 0) and RRε to
AdaptParamComp.
Aε,δ receives Yi ∈ {>,⊥}.
if Yi = > then
Xi = ε

else
Xi = −ε

if
∑i

j=1

(
Xj − ε e

ε−1
eε+1

)
≥ c ·

(
ε
√
i log (log(n)/δ)

)
, then

εi+1, · · · εk = 0
BREAK

We next use Lemma 5.6.3 to prove that we cannot have a bound like Theorem 5.2.5 in
the adaptive privacy parameter setting, which uses the stopping time adversary given in
Algorithm 6.

Proof of Theorem 5.6.1. Consider the stopping time adversary Aε,δg from Algorithm 6 for
a constant c that we will determine in the proof. Let the number of rounds k = n and
ε = 1/n. In order to use Lemma 5.6.3 we define γ = eε

1+eε from (5.14). Because we let ε

depend on n, we have µ ≡ µn = e1/n−1
e1/n+1

= O(1/n) and σ ≡ σn = 1 − µ2
n = 1 − O(1/n2)

which gives 1+µn
σn

= Θ(1). We then relate the martingale in (5.15) with the privacy loss
for this particular adversary in AdaptParamComp(Aε,δg , n, 0) with view V who sets Xt = ±ε
each round,

t∑
j=1

(
Xj −

µn
n

)
=

1

n
Mt ∀t ∈ [n].

Hence, at any round t if Aε,δg finds that

1

n
Mt ≥ c

(
1

n

√
t log(log(n)/δg)

)
(5.16)

then she will set all future εi = 0 for i > t. To find the probability that (5.16) holds in any
round t ∈ [n] we use Lemma 5.6.3 with the constant c from the lemma statement to say
that (5.16) occurs with probability at least δg.

Assume that COMPεg is a valid privacy odometer and (5.13) holds. We then know that with
probability at least 1−δg over vvv ∼ V b where V b is the view for AdaptParamComp(A1/n,δg , n, b)

|PrivLoss(vvv)| ≤ COMPδg (ε1, 0, · · · , εk, 0)
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=⇒

∣∣∣∣∣
t∑
i=1

PrivLossi(vvv≤i)

∣∣∣∣∣ = t · µn
n

+ o

(
1

n

√
t log

(
log(n)

δg

))
∀t ∈ [n]

But this is a contradiction given that the bound in (5.16) at any round t ∈ [n] occurs with
probability at least δg.

We now utilize the bound from Theorem 5.4.4 to obtain a concentration bound on the
privacy loss.
Lemma 5.6.4. For δg ∈ (0, 1/e), COMPδg is a valid privacy odometer where

COMPδg (ε1, δ1, · · · , εk, δk) =∞ if
∑k

i=1 δi > δg/2 and otherwise for any x > 0,

COMPδg (ε1, δ1, · · · , εk, δk)

=
k∑
j=1

εj (eεj − 1) /2 +

√√√√2

(
k∑
i=1

ε2i + x

)(
1 +

1

2
log

(∑k
i=1 ε

2
i

x
+ 1

))
log(2/δg).

Proof. We will follow a similar argument as in Theorem 5.5.1 where we use the same mar-
tingale M̃k from (5.11). We can then directly apply Theorem 5.4.4 to get the following for
any x > 0 with probability at least 1− δg/2

∣∣∣M̃k

∣∣∣ ≤
√√√√2

(
k∑
i=1

ε2i + x

)(
1 +

1

2
log

(∑k
i=1 ε

2
i

x
+ 1

))
log(2/δg)

This above result is only useful if we can plug in a constant x > 0. If we were to set
x =

∑k
i=1 ε

2
i , then we would get asymptotically close to the same bound as in Theorem 2.1.5,

however, the εi are random variables, and their realizations cannot be used in setting x;
further, we know from Theorem 5.6.1 that such a bound cannot hold in this setting. One
particular setting for x might be ε21 because this parameter must be a constant – it is chosen
prior to any interaction with the data.

We now give our main positive result for privacy odometers, which is similar to our pri-
vacy filter in Theorem 5.5.1 except that δg is replaced by δg/ log(n), as is necessary from
Theorem 5.6.1. Note that the bound incurs an additive 1/n2 loss to the

∑
i ε

2
i term that is

present without privacy. In any reasonable setting of parameters, this translates to at most
a constant-factor multiplicative loss, because there is no utility running any differentially
private algorithm with εi <

1
10n (we know that ifM is (εi, 0)-DP thenM(xxx) andM(xxx′) for

any pair of inputs have statistical distance at most eεin − 1 < 0.1, and hence the output is
essentially independent of the input - note that a similar statement holds for (εi, δi)-DP.)
Theorem 5.6.5 [Advanced Privacy Odometer 3 ]. COMPδg is a valid privacy odometer for

δg ∈ (0, 1/e) where COMPδg (ε1, δ1, · · · , εk, δk) =∞ if
∑k

i=1 δi > δg/2, otherwise if
∑k

i=1 ε
2
i ∈

3This bound is different from what appeared in Rogers et al. (2016b), which had
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[1/n2, 1] then

COMPδg (ε1, δ1, · · · , εk, δk) =

k∑
i=1

εi

(
eεi − 1

2

)
+

√√√√2

k∑
i=1

ε2i

(
log(48e) + 2 log

(
log(n)

δg

))
(5.17)

and if
∑k

i=1 ε
2
i /∈ [1/n2, 1] then COMPδg (ε1, δ1, · · · , εk, δk) is equal to

k∑
i=1

εi

(
eεi − 1

2

)
+

√√√√2

(
1/n2 +

k∑
i=1

ε2i

)(
1 +

1

2
log

(
1 + n2

k∑
i=1

ε2i

))
log(4 log2(n)/δg).

(5.18)

Proof. We again focus on a valid privacy odometer for {δi} ≡ 0 and the martingale M̃k from

(5.11). We first focus on proving the bound in (5.17). For the martingale M̃k in (5.11), we
can use Theorem 5.4.5 to get the following for any β > 0

Pr

|M̃k| ≥
k∑
i=1

εi

(
eεi − 1

2

)
+

√√√√2
k∑
i=1

ε2i log (1/β) and
1

n
≤

√√√√ k∑
i=1

ε2i ≤ 1


≤ 2
√
e
(
β + 2 log(n)

√
0.74 β

)
.

We then solve for β so that δg/2 = 2
√
e
(
β + 2 log(n)

√
0.74 β

)
, which yields,

β = 0.74 log2(n)

(√
1 +

δg

2.96
√
e log2(n)

− 1

)2

≤ 3

4
log2(n)

(
δg

6
√
e log2(n)

)2

.

This gives the stated bound in (5.17).

For the bound given in (5.18), we set x = 1/n2 in Lemma 5.6.4. Hence, we would have with
probability at least 1− δg/2 when

∑k
i=1 ε

2
i /∈ [1/n2, 1],

|M̃k| ≤
k∑
j=1

√√√√2

(
1/n2 +

k∑
i=1

ε2i

)(
1 +

1

2
log

(
1 + n2

k∑
i=1

ε2i

))
log(4 log2(n)/δg).

In the above theorem, we only allow privacy parameters such that
∑k

i=1 ε
2
i ∈ [1/n2, 1]. This

assumption is not too restrictive, since the output of a single (� 1/n)-differentially private

2

√∑k
i=1 ε

2
i

(
1 + log(

√
3)
)

log
(

4 log2(n)

δg

)
instead of the term

√
2
∑k
i=1 ε

2
i

(
log(48e) + 2 log

(
log(n)
δg

))
in

(5.17), which is an improvement when δg < 1/4 and n ≥ 40.
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algorithm is nearly independent of its input. More generally, we can replace 1/n2 with
an arbitrary “granularity parameter” γ and require that

∑k
i=1 ε

2
i ∈ [γ, 1]. When doing so,

log(n) in (5.17) will be replaced with 1
2 log(1/γ). For example, we could require that ε1 ≥ δg,

in which case we can choose γ = δ2
g , which would not affect our bound substantially.

5.7. zCDP Filters and Odometers

We now extend the idea of privacy odometers to ρ-zCDP when the parameters can be chosen
adaptively. We return to the definition of zCDP, presented in Definition 2.2.1, except we
write it in terms of Rényi divergence (Renyi, 1961).
Definition 5.7.1. Let P and Q be two probability distributions over the same universe Ω.
For α ∈ (1,∞) the Rényi divergence of order α between Q and P is

Dα (P ||Q) =
1

α− 1
E
x∼P

[(
P (x)

Q(x)

)α−1
]

(5.19)

We then redefine zCDP in terms of Rényi Divergence, which is equivalent to the earlier
definition.
Definition 5.7.2. An algorithm M : X n → Y is ρ-zCDP, if for all neighboring datasets
xxx,xxx′ ∈ X n and all α > 1 we have

Dα

(
M(xxx)||M(xxx′)

)
≤ ρα.

Note that the Rényi divergence can be defined for α ∈ [0, 1] as well. In fact van Erven
and Harremos (2014) define simple orders to be when α ∈ (0, 1) ∪ (1,∞), meaning that
the definition can be stated with the formula given in (5.19), and then explicitly gives the
Rényi divergence for extended orders as

D1 (P ||Q) = DKL(P ||Q), D0 (P ||Q) = − log (Q({x : P (x) > 0})) .

We then define the extension of zCDP to allow for α ≥ 0.
Definition 5.7.3. An algorithm M : X n → Y is ρ-zCDP+, if for all neighboring datasets
xxx,xxx′ ∈ X n and all α ≥ 0 we have

Dα

(
M(xxx)||M(xxx′)

)
≤ ρα.

From van Erven and Harremos (2014), we know that Dα is continuous for α ∈ [0, 1] ∪
{(1,∞]|Dα <∞}. Further, (1−α)Dα is concave for α ∈ [0,∞] which allows for all the nice
properties used in Bun and Steinke (2016) to extend to the case when α ∈ [0, 1].4 Thus, all
the properties of zCDP that we presented in Chapter 2 extends to zCDP+.

We can also define zCDP+ in terms of the privacy loss random variable, so we can replace

4Thanks to Thomas Steinke and Mark Bun for pointing out that the results in their paper work when
α ∈ [0, 1].
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the bound on Rényi divergence with the following condition for all λ ∈ R,

E
[
exp

(
λ
(
PrivLoss

(
M(xxx)||M(xxx′)

)
− ρ
))]
≤ eλ2ρ. (5.20)

Note that ensuring Dα (M(xxx)||M(xxx′)) ≤ ρα for α ≥ 0 tells us that (5.20) holds for λ ≥ −1,
but we can extend it to λ < −1 by noting that zCDP+ is symmetric, that is for neighboring
xxx,xxx′,

E
[
exp

(
λ
(
PrivLoss

(
M(xxx)||M(xxx′)

)))]
= E

y∼M(xxx)

[(
Pr [M(xxx) = y]

Pr [M(xxx′) = y]

)λ]

= E
y∼M(xxx′)

[(
Pr [M(xxx′) = y]

Pr [M(xxx) = y]

)−λ−1
]

= exp
[
(−λ− 1)D−λ

(
M(xxx′)||M(xxx)

)]
≤ eλ(λ+1)ρ

where the last inequality follows from the fact that −λ > 1.

Before we define odometers and filters in this setting, we define the game
AdaptParamComp+(A, k, b) to be the same as AdaptParamComp(A, k, b) in Algorithm 3, ex-
cept at each round A gives parameters ρi which depend on the previous outcomes in the
interaction and Mi is ρi-zCDP+. We can now define zCDP+ odometers.
Definition 5.7.4. A pair of functions (E COMP,V COMP) is a valid zCDP+ odometer if for
all adversaries A in AdaptParamComp+(A, k, b), we have for all λ ∈ R

E
vvv∼V 0

[
exp

(
λ (PrivLoss(vvv)− E COMP (ρ1, · · · , ρk))−

λ2

2
· V COMP(ρ1, · · · , ρk)

)]
≤ 1

Note that we are expecting the privacy loss random variable to be subgaussian with mean
E COMP(ρ1, ρk) and variance V COMP(ρ1, · · · , ρk). We presented the definition of zCDP+ in
order for us to link together privacy odometers presented in the earlier sections with com-
position theorems for zCDP when the parameters can be chosen adaptively. The condition
in the zCDP+ definition should be compared with the inequality in (5.8) that holds for
all λ ∈ R, which we used to prove all of the privacy odometer and filter bounds in the
previous sections. Thus, once we have a zCDP+ odometer, we can easily convert it into a
valid privacy odometer via the concentration bounds given in Section 5.4. In fact, this is
the primary reason to introduce zCDP+ rather than use the original zCDP definition.
Theorem 5.7.5. If (E COMP,V COMP) is a valid zCDP+ odometer, then C̃OMPδg is a valid
privacy odometer when {δi} ≡ 0 for every δg > 0 and when COMP

(
ε21/2, · · · , ε2k/2

)
∈ [1/n2, 1]

C̃OMPδg (ε1, 0, · · · , εk, 0) = E COMP
(
ε21/2, · · · , ε2k/2

)
+

√
2 · COMP

(
ε21/2, · · · , ε2k/2

)(
log(48e) + 2 log

(
log(n)

δg

))
.
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Proof. As we did in Theorem 5.6.5, we use the definition of a valid zCDP+ odometer and
apply Theorem 5.4.5

We now prove that a valid zCDP+ odometer is to just sum up all the ρi for i ∈ [k] that the
analyst has selected for both the mean and variance functions.
Theorem 5.7.6. (E COMP,V COMP) is a valid zCDP+ odometer where

E COMP(ρ1, · · · , ρk) =
k∑
i=1

ρi & V COMP(ρ1, · · · , ρk) = 2
k∑
i=1

ρi

Proof. We will use the notation V 0
i = M0

i for i ∈ [k], V 0
i:j = (M0

i , · · · ,M0
j ), and V 0

<j =

(V 0
1 , · · · , V 0

j−1). Recall that we can decompose the privacy loss as a summation of individual
losses PrivLoss(vvv) =

∑
i PrivLossi(vvv≤i). At round 1, the analyst A selects an algorithm

which is ρ1-zCDP+, thus we have for all λ ∈ R

E
v1∼V 0

1

[exp [λ (PrivLoss1(v1)− ρ1)]] ≤ λ2ρ1.

Then, conditioning on round 1, · · · , j−1, A selects parameter ρj and an algorithmMj that
is ρj-zCDP+, which again tells us that for all λ ∈ R,

E
vj∼V 0

j

[
exp [λ (PrivLossj(vvv≤j)− ρj)] |V 0

<j = vvv<j
]
≤ λ2ρj .

Putting this all together, and noting that PrivLoss(vvv) =
∑k

i=1 PrivLossi(vvv≤i), we have for
all λ ∈ R

E
vvv∼V 0

[
exp

[
λ

(
PrivLoss(vvv)−

k∑
i=1

ρi

)
− λ2

k∑
i=1

ρi

]]

= E
vvv2:k∼V 0

2:k

[
exp

[
λ

(
k∑
i=2

PrivLossi(vvv≤i)−
k∑
i=2

ρi

)
− λ2

k∑
i=2

ρi

]
|V 0

1 = v1

]
· E
v1∼V 0

1

[
exp

[
λ (PrivLoss1(v1)− ρ1)− λ2ρ1

]]
≤ E

vvv2:k∼V 0
2:k

[
exp

[
λ

(
k∑
i=2

PrivLossi(vvv≤i)−
k∑
i=2

ρi

)
− λ2

k∑
i=2

ρi

]
|V 0

1 = v1

]
...

≤ E
vk∼V 0

k

[
exp

[
λ (PrivLossk(vvv≤k)− ρk)− λ2ρk

]
|V 0
<k = vvv<k

]
≤ 1

This shows that we can use the same composition theorems from zCDP+ despite adaptively
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selecting the parameters.

5.8. Conclusion and Future Work

We provided a framework for how to handle composition for differentially private algorithms
when the privacy parameters can be chosen adaptively. This is a natural way to think of
composition, because the choice of DP algorithm is highly correlated with what privacy
parameter the analyst would like to set, due to different DP algorithms having vastly dif-
ferent utility guarantees. We showed that we can achieve a sublinear composition bound
on the privacy loss random variable, but we cannot use the existing composition theorems
for the realized set of privacy parameters that were chosen adaptively. We then extended
the framework to include zCDP (actually zCDP+).

There are many things left to be understood with composition when the parameters do
not need to be chosen upfront. One potential direction for future work is to obtain the
optimal privacy odometers/filters as was done for differential privacy composition (Kairouz
et al., 2015; Murtagh and Vadhan, 2016). Another direction is to link together privacy
odometers with being able to obtain valid p-value corrections as the analyst interacts with
the data. We were able to obtain valid p-value corrections before by linking differential
privacy with max-information. Thus, we would like to be able to connect privacy odometers
with max-information, however the analysis we presented in Chapter 4 totally breaks down
when the parameters are random variables themselves – we cannot rely on (pointwise)
indistinguishability.

79



Part III

PRIVATE HYPOTHESIS TESTS
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Thus far, we have presented the theoretical connection between privacy and adaptive data
analysis. However, these results are only useful insofar as there are differentially private
analyses that an analyst would actually want to implement. We then turn to modifying
traditional hypothesis tests by including the constraint that they be private. Note that these
tests are useful beyond adaptive data analysis, where we might want to perform inference on
sensitive data. In fact, some of this work is part of the broader effort of the “Privacy Tools
for Sharing Research Data”5 project that aims at developing differentially private tools that
can be used for studies, specifically in the social sciences. Social scientists often deal with
various sensitive data that contains individual’s private information, e.g. voting behavior
(Greenwald et al., 1987), attitude toward abortion (Ebaugh and Haney, 1978) and medical
records (David and Beards, 1985). The framework of hypothesis testing is frequently used
by social scientists to confirm or reject their belief to how a population is modeled, e.g.
goodness of fit tests have been used by David and Beards (1985); Gill et al. (1987); Blair
et al. (1979); Glaser (1959) and independence tests have been used by Kuklinski and West
(1981); Ebaugh and Haney (1978); Berry (1961); Krain and Myers (1997); Greenwald et al.
(1987); Mitchell and McCormick (1988).

Homer et al. (2008) published a proof-of-concept attack showing that participation of in-
dividuals in scientific studies can be inferred from aggregate data typically published in
genome-wide association studies (GWAS). Since then, there has been renewed interest in
protecting confidentiality of participants in scientific data (Johnson and Shmatikov, 2013;
Uhler et al., 2013; Yu et al., 2014; Simmons et al., 2016) using privacy definitions such as
differential privacy and its variations (Dwork et al., 2006b,a; Bun and Steinke, 2016; Dwork
and Rothblum, 2016).

As we discussed in Chapter 1, an important tool in statistical inference is hypothesis testing,
a general framework for determining whether a given model – called the null hypothesis H0

– of a population should be rejected based on a sample from the population. One of the
main benefits of hypothesis testing is that it gives a way to control the probability of false
discovery or Type I error – falsely concluding that a model should be rejected when it is
indeed true. Type II error is the probability of failing to reject H0 when it is false. Typically,
scientists want a test that guarantees a pre-specified Type I error (say 0.05) and has high
power – complement of Type II error (recall Table 1).

The standard approach to hypothesis testing can be outlined as follows:

(1) estimate the model parameters,

(2) compute a test statistic T (a function of the data and the model parameters),

(3) determine the (asymptotic) distribution of T under the assumption that the model
generated the data,

(4) compute the p-value (Type I error) as the probability of T being more extreme than
the realized value computed from the data.6

5http://privacytools.seas.harvard.edu
6For one-sided tests, the p-value is the probability of seeing the computed statistic or anything larger
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The differentially private tests presented here achieve a target level 1 − α significance, i.e.
they reject with probability at most α when the null hypothesis holds (in some cases, we
provide a rigorous proof of this fact and in others, it is experimentally verified). This
guarantees limited Type I errors. However, all of our tests do lose power ; that is when
the null hypothesis is false, they correctly reject with lower probability than the classical
hypothesis tests. This corresponds to an increase in Type II errors. We empirically show
that we can recover a level of power similar to the one achieved by the classical versions by
adding more samples.

Additional Related Work One of the first works to study the asymptotic distributions
of statistics that use differential privacy came from Wasserman and Zhou (2010). Smith
(2011) then showed that for a large family of statistics, there is a corresponding differen-
tially private statistic that shares the same asymptotic distribution as the original statistic.
However, these results do not ensure that statistically valid conclusions are made for finite
samples. It is then the goal of a recent line of work to develop statistical inference tools
that give valid conclusions for even reasonably sized datasets.

The previous work on private statistical inference for categorical data can be roughly com-
bined into two main groups (with most primarily dealing with GWAS specific applications).
The first group adds appropriately scaled noise to the sampled data (or histogram of data)
to ensure differential privacy and uses existing classical hypothesis tests, disregarding the
additional noise distribution (Johnson and Shmatikov, 2013). This is warranted in that the
impact of the noise becomes small as the sample size grows large. In fact, Vu and Slavković
(2009) studies how many more samples would be needed before the test with additional
noise recovers the same level of power as the original test on the actual data. However, as
we will show and was pointed out in Fienberg et al. (2010); Karwa and Slavković (2012);
Karwa and Slavković (2016), this can lead to misleading and statistically invalid results,
specifically with much higher Type I error than the prescribed amount.

The second group of work consists of tests that focus on adjusting step (3) in the standard
approach to hypothesis testing given in above. That is, these tests use the same statistic
in the classical hypothesis tests (without noise) and after making the statistic differentially
private, determine the resulting modified asymptotic distribution of the private statistic
(Uhler et al., 2013; Yu et al., 2014; Wang et al., 2015). Unfortunately, the resulting asymp-
totic distribution cannot be written analytically, and so Monte Carlo (MC) simulations or
numerical approximations are commonly used to determine at what point to reject the null
hypothesis. We will develop tests in Chapter 6 that follows this line of work.

In Chapter 7, we focus on a different technique from these two different approaches, namely
modifying step (2) in our outline of hypothesis testing. Thus, we consider transforming
the test statistic itself so that the resulting distribution is close to the original asymptotic
distribution. The idea of modifying the test statistic for regression coefficients to obtain a
t-statistic in ordinary least squares has also been considered by Sheffet (2015a).

Due to nice composition properties of Gaussian random variables, our results will mainly

under H0.
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focus on adding Gaussian noise, thus ensuring our hypothesis tests are zCDP (Bun and
Steinke, 2016) or approximate DP. However, we will also provide a Monte Carlo (MC)
approach to obtaining private hypothesis tests with arbitrary noise distributions beyond
Gaussian (e.g. Laplace noise for pure differential privacy).

Independent of our work, Wang et al. (2015) also look at hypothesis testing with categorical
data subject to differential privacy. They mainly consider adding Laplace noise to the data
but point out that their method also generalizes to arbitrary noise distributions. However,
in order to compute critical values, they resort to Monte Carlo methods to sample from the
asymptotic distribution. Our Monte Carlo approach samples from the exact distribution
from the underlying null hypothesis, which, unlike sampling from the asymptotic distribu-
tion, guarantees significance at least 1−α in goodness of fit tests at finite sample sizes. We
only focus on Gaussian noise in our asymptotic analysis due to there being existing meth-
ods for finding tail probabilities (and hence critical values) for the resulting distributions,
but our approaches can be generalized for arbitrary noise distributions. Further, we also
consider the power of each of our differentially private tests.
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CHAPTER 6

PRIVATE CHI-SQUARE TESTS: GOODNESS OF

FIT AND INDEPENDENCE TESTING

This chapter follows from the work of Gaboardi et al. (2016). We focus here on two classical
tests for data drawn from a multinomial distribution: goodness of fit test, which determines
whether the data was in fact drawn from a multinomial distribution with probability vec-
tor ppp0; and independence test, which tests whether two categorical random variables are
independent of each other. Both tests depend on the chi-square statistic, which is used to
determine whether the data is likely or not under the given model.

For this work we will be considering categorical data. That is, we assume the domain X
has been partitioned into d buckets or outcomes and the function f : X n → Rd returns
a histogram counting how many records are in each bucket. Our test statistics will only
depend on this histogram. Since neighboring datasets xxx,xxx′ of size n differ on only one entry,
their corresponding histograms differ by ±1 in exactly two buckets. Hence, we will say that
two histograms are neighboring if they differ in at most two entries by at most 1. In this
case, we can write the sensitivity of the histogram function as ∆1(f) = 2 and ∆2(f) =

√
2.

To preserve privacy, we will add noise to the corresponding histogram HHH = (H1, · · · , Hd) of

our original dataset to get H̃HH = (H̃1, . . . , H̃d). We perform hypothesis testing on this noisy

histogram H̃HH. By Theorem 2.2.5, we know that each of our hypothesis tests will be ρ-zCDP
as long as we add Gaussian noise with variance 1/ρ to each count in HHH (see Theorem 2.2.2).
Similarly, we could add Laplace noise with scale parameter 2/ε to ensure our hypothesis
tests will be ε-DP (see Theorem 2.1.2).

Note that for DP we can use either Laplace or Gaussian noise, but the variance of the
noise we add is typically smaller when we use Laplace noise. For a comparison, to pre-
serve (ε, δ)-DP, the Laplace mechanism adds noise with variance 8/ε2 whereas the Gaussian
mechanism adds noise with variance nearly log(1/δ)/ε2 when ε < 1. For any nontrivial
privacy guarantee, we will have δ < e−8 (typically, one might set δ = 10−6), which forces
the Gaussian mechanism to add more noise. The noise affects the probability of Type II
error of our tests because it makes it harder to reject a sample if the data with noise has
large variance. Thus, Laplace noise is better to use for the privacy benchmark of DP.

Alternatively, for zCDP we can again use either Laplace or Gaussian noise. To preserve ρ-
zCDP, the Laplace mechanism incorporates noise with variance 4/ρ, whereas the Gaussian
mechanism adds noise with variance 1/ρ. Thus, the test with better power (lower probability
of Type II error) will typically use Gaussian noise over Laplace. Thus, depending on the
privacy benchmark, it may be beneficial to use Laplace noise over Gaussian noise or vice
versa.
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6.1. Goodness of Fit Testing

We considerHHH = (H1, · · · , Hd)
ᵀ ∼ Multinomial(n,ppp) where ppp = (p1, · · · , pd)ᵀ and

∑d
i=1 pi =

1. Note that the multinomial distribution is the generalization of a binomial distribution
where there are d outcomes as opposed to two – success or failure. For a goodness of fit
test, we want to test the null hypothesis H0 : ppp = ppp0. A common way to test this is based
on the chi-square statistic T(n) where

T(n) =
d∑
i=1

(
Hi − np0

i

)2
np0

i

(6.1)

We present the classical chi-square goodness of fit test in Algorithm 7, which compares
the chi-square statistic T(n) to a threshold χ2

d−1,1−α that depends on a desired level of

significance 1−α as well as the dimension of the data. The threshold χ2
d−1,1−α satisfies the

following relationship:
Pr
[
χ2
d−1 ≥ χ2

d−1,1−α
]

= α.

where χ2
d−1 is a chi-square random variable with d − 1 degrees of freedom, which is the

distribution of the random variable NᵀN where N ∼ N (000, Id−1).

Algorithm 7 Classical Goodness of Fit Test for Multinomial Data: GOF

Input: hhh, α,H0 : ppp = ppp0

Compute T(n).
if T(n) > χ2

d−1,1−α then
Decision ← Reject

else
Decision ← Fail to Reject

Output: Decision.

The reason why we compare T(n) with the chi-square distribution is because of the following
classical result.
Theorem 6.1.1 [Bishop et al. (1975)]. Assuming H0 : ppp = ppp0 holds, the statistic T(n)

converges in distribution to a chi-square with d− 1 degrees of freedom, i.e.

T(n) D→ χ2
d−1.

Note that this does not guarantee that Pr
[
T(n) > χ2

d−1,1−α

]
≤ α for finite samples, never-

theless the test works well and is widely used in practice.

It will be useful for our purposes to understand why the asymptotic result holds in Theo-
rem 6.1.1. We present the following classical analysis (Bishop et al., 1975) of Theorem 6.1.1
so that we can understand what adjustments need to be made to find an approximate distri-
bution for a differentially private statistic. Consider the random vector UUU = (U1, · · · , Ud)ᵀ
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where

Ui =
Hi − np0

i√
np0

i

∀i ∈ [d]. (6.2)

We write the covariance matrix for UUU as Σ where

Σ
defn
= Id −

√
ppp0
√
ppp0

ᵀ
(6.3)

and
√
ppp0 = (

√
p0

1, · · · ,
√
p0
d)

ᵀ. Note the the covariance matrix Σ is singular and positive

semi-definite. By the central limit theorem we know that UUU converges in distribution to a
multivariate normal

UUU
D→ N (000,Σ) as n→∞.

Thus, when we make the assumption that UUU is multivariate normal, then the significance
of GOF given in Algorithm 7 is exactly 1− α.

We show in the following lemma that if a random vector UUU is exactly distributed as multi-
variate normal then we get that T(n) = UUUᵀUUU ∼ χ2

d−1.
Lemma 6.1.2 [Bishop et al. (1975)]. If UUU ∼ N (000,Σ) for Σ given in (6.3) then UUUᵀUUU ∼ χ2

d−1.

Proof. The eigenvalues of Σ must be either 0 or 1 because Σ is idempotent. Thus, the
number of eigenvalues that are 1 equals the trace of Σ, which is d− 1. We then know that
there exists a matrix D ∈ Rd×d−1 where Σ = DDT and DTD = Id−1. Define the random
variable YYY ∼ N (000, Id−1). Note that DYYY is equal in distribution to UUU . We then have

UUUᵀUUU ∼ YYY ᵀDᵀDYYY ∼ YYY ᵀYYY ∼ χ2
d−1

6.1.1. Private Chi-Square Statistic

To ensure privacy (either DP or zCDP), we add independent noise to each component of
HHH. For the time being, we will consider arbitrary noise distribution Z which are mean zero
and have variance σ. We then form the private chi-square statistic T(n) (Z) based on the
noisy counts,

T(n) (Z) =
d∑
i=1

(
Hi + Zi − np0

i

)2
np0

i

, {Zi}
i.i.d.∼ Z (6.4)

Some examples of Z would be Z = N (0, 1/ρ) to ensure ρ-zCDP, or Z = Lap(2/ε) to ensure
ε-DP. Recall that in the original goodness of fit test without privacy in Algorithm 7 we
compare the distribution of T(n) with that of a chi-squared random variable with d − 1
degrees of freedom. The following result shows that adding noise to each cell count does
not affect this asymptotic distribution.
Lemma 6.1.3. Fixing ppp0 > 000,1 and having noise distribution Z with mean zero and vari-
ance σn where σn/n → 0, then the private chi-squared statistic T(n) (Z) given in (6.4)

1We use the notation ppp > 000 to denote that each coordinate of ppp is positive.
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converges in distribution to χ2
d−1 as n→∞.

Proof. We first expand (6.4) to get

T(n) (Z) =
d∑
i=1

Hi − np0
i√

np0
i

2

+ 2
d∑
i=1

 Zi√
np0

i

Hi − np0
i√

np0
i

+
d∑
i=1

 Zi√
np0

i

2

We define the two random vectors ZZZ(n) =

(
Zi√
np0i

)n
i=1

and HHH(n) =

(
Hi−np0i√

np0i

)n
i=1

. We

have that V
[
Z

(n)
i

]
= σ2

n

np0i
which goes to zero by hypothesis. Additionally E

[
ZZZ(n)

]
= 000,

so we know that ZZZ(n) P→ 0 (meaning convergence in probability as n → ∞). We also

know that HHH(n) D→ N (000,Σ), so that ZZZ(n) · HHH(n) D→ 0 by Slutsky’s Theorem2 and thus

ZZZ(n) ·HHH(n) P→ 0 (because 0 is constant). Another application of Slutsky’s Theorem tells us

that T(n) (Z)
D→ χ2

d−1, since T(n) (Z)−T(n) P→ 0 and T(n) D→ χ2
d−1 from Theorem 6.1.1.

It then seems natural to use GOF on the private chi-squared statistic as if we had the actual
chi-squared statistic that did not introduce noise to each count since both private and
nonprivate statistics have the same asymptotic distribution.
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Figure 5: Empirical Type I Error in 10, 000 trials when using the classical GOF test without
modification after incorporating noise due to privacy for (ε = 0.1)-DP and (ρ = ε2/8)-zCDP.

We show in Figure 5 that if we were to simply compare the private statistic to the critical
value χ2

d−1,1−α, we will typically not get a good significance level even for relatively large
n which we need in order for it to be practical tool for data analysts. In the figure we
equalize the variance of the Laplace noise and the Gaussian noise we add, hence the choice
of ρ = ε2/8. In the following lemma we show that for every realization of data, the statistic
T(n) (Z) is expected to be larger than the actual chi-squared statistic T(n).
Lemma 6.1.4. For each realization HHH = hhh, we have EZ

[
T(n) (Z) |hhh

]
≥ T(n), where Z has

mean zero.

Proof. Consider the convex function f(y) = y2. Applying Jensen’s inequality, we have
f(y) ≤ EZi [f(y + Zi)] for all i = 1, · · · , d where Zi is sampled i.i.d. from Z which has mean

2Slutsky’s Theorem states that if H(n) D→ X and Z(n) P→ c then H(n) ·Z(n) D→ cX and H(n)+Z(n) D→ X+c.
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zero. We then have for HHH = hhh

T(n) =
d∑
i=1

f
(
hi − np0

i

)
np0

i

=
d∑
i=1

f
(
E
[
hi − np0

i + Zi
])

np0
i

≤ E
{Zi}

i.i.d.∼ Z

[
d∑
i=1

f
(
hi − np0

i + Zi
)

np0
i

]
= E
{Zi}

i.i.d.∼ Z

[
T(n) (Z) |hhh

]

This result suggests that the significance threshold for the private version of the chi-squared
statistic T(n) (Z) should be higher than the standard one. Otherwise, we would reject H0

too easily using the classical test, which we show in our experimental results. This motivates
the need to develop new tests that account for the distribution of the noise.

6.1.2. Monte Carlo Test: MCGOF

Given some null hypothesis ppp0 and statistic T(n) (Z), we want to determine a threshold τα

such that T(n) (Z) > τα at most an α fraction of the time when the null hypothesis is true.
As a first approach, we determine threshold τα using a Monte Carlo (MC) approach by

sampling from the distribution of T(n) (Z), where HHH ∼ Multinomial(n,ppp0) and {Zi}
i.i.d.∼ Z

for arbitrary noise distributions with mean zero (e.g. Laplace or Gaussian noise).

Let M1, · · · ,Mm be m continuous random variables that are i.i.d. from the distribution
of T(n) (Z) assuming H0 holds. Further let M be a fresh sample from the distribution of
T(n) (Z) assuming H0. We will write the density and distribution of T(n) (Z) as f(·) and
F (·), respectively. Our test will reject M if it falls above some threshold, i.e. critical value,
which we will take to be the t-th order statistic of {Mi}, also written as M(t), so that with
probability at most α, M is above this threshold. This will guarantee significance at least
1− α. We then find the smallest t ∈ [m] such that α ≥ Pr

[
M > M(t)

]
, or

α ≥
∫ ∞
−∞

f(m)
m∑
j=t

(
m

j

)
F (m)j(1− F (m))m−jdm =

∫ 1

0

m∑
j=t

(
m

j

)
pj(1− p)m−jdp

=
m∑
j=t

1

m+ 1
=⇒ t ≥ (m+ 1)(1− α).

We then set our threshold based on the d(m+1)(1−α)e ordered statistic of our m samples.
By construction, this will ensure that we achieve the significance level we want. Our test
then is to sample m points from the distribution of T(n) (Z) and then take the d(m+1)(1−
α)e- percentile as our cutoff, i.e. if our statistic falls above this value, then we reject H0.
Note that we require m ≥ 1/α, otherwise there would not be a d(m + 1)(1 − α)e ordered
statistic in m samples. We give the resulting test in Algorithm 8.
Theorem 6.1.5. The test MCGOF(·,Z, α,ppp0) has significance at least 1− α, also written as
Pr
[
MCGOF(HHH,Z, α,ppp0) = Reject |H0

]
≤ α.
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Algorithm 8 MC Private Goodness of Fit: MCGOF

Input: hhh,Z, α,H0 : ppp = ppp0

Compute q = T(n) (Z) (6.4).
Select m > 1/α.
Sample q1, · · · , qm i.i.d. from the distribution of T(n) (Z).
Sort the samples q(1) ≤ · · · ≤ q(m).
Compute threshold q(t) where t = d(m+ 1)(1− α)e.
if q > q(t) then

Decision ← Reject
else

Decision ← Fail to Reject
Output: Decision

In Section 6.4, we present the empirical power results for MCGOF (along with all our other
tests) when we fix an alternative hypothesis.

6.1.3. Asymptotic Approach: Gaussian Noise

In this section we attempt to determine an analytical approximation to the distribution of

T(n) (ρ)
defn
= T(n) (N (0, 1/ρ)), which will ensure our tests are ρ-zCDP. We focus on Gaussian

noise because it is more compatible with the asymptotic analysis of GOF, which depends on
the central limit theorem, as opposed to say Laplace noise.

Recall the random vector UUU given in (6.2). We then introduce the Gaussian noise random
vector as VVV = ρ ·(Z1, · · · , Zd)ᵀ ∼ N (000, Id). Let WWW ∈ R2d be the concatenated vector defined
as

WWW
defn
=

(
UUU

VVV

)
. (6.5)

Note that WWW
D→ N (000,ΣΣΣ) where the covariance matrix is the 2d by 2d block matrix

ΣΣΣ
defn
=

[
Σ 0
0 Id

]
(6.6)

where Σ is given in (6.3). Since Σ is idempotent, so is ΣΣΣ. We next define the 2d x 2d
positive semi-definite matrix ΛΛΛρ (composed of four d by d block matrices) as

ΛΛΛρ
defn
=

[
Id Λρ
Λρ Λ2

ρ

]
where Λρ =

1
√
ρ
·Diag

(
ppp0
)−1/2

(6.7)

We can then rewrite our private chi-square statistic as a quadratic form of the random
vectors WWW .

T(n) (ρ) = WWW ᵀΛΛΛnρWWW. (6.8)

Remark 6.1.6. If we have nρn → ρ? > 0 then the asymptotic distribution of T(n) (ρn)
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would be a quadratic form of multivariate normals.

Similar to the classical goodness of fit test we consider the limiting case that the random
vector UUU is actually a multivariate normal, which will result inWWW being multivariate normal
as well. We next want to be able to calculate the distribution of the quadratic form of
normals WWW ᵀΛΛΛρ?WWW for ρ? > 0. Note that we will write {χ2,i

1 }ri=1 as a set of r independent
chi-square random variables with one degree of freedom.
Theorem 6.1.7. Let WWW ∼ N (000,ΣΣΣ) where ΣΣΣ is idempotent and has rank r ≤ 2d. Then the
distribution of WWW ᵀΛΛΛρ?WWW where ΛΛΛρ? is positive semi-definite is

r∑
i=1

λiχ
2,i
1

where {λi}ri=1 are the eigenvalues of BTΛΛΛρ?B where B ∈ R2d×r such that BBT = ΣΣΣ and
BTB = Ir.

Proof. Let NNN (1) ∼ N (000, Ir). Because ΣΣΣ is idempotent, we know that there exists a matrix
B ∈ R2d×r as in the statement of the lemma. Then BNNN (1) has the same distribution as
WWW . Also note that because BTΛΛΛρ?B is symmetric, then it is diagonalizable and hence there
exists an orthogonal matrix D ∈ Rr×r such that

Dᵀ(BᵀΛΛΛρ?B)D = Diag(λ1, · · · , λr) where DᵀD = DDᵀ = Ir

Let NNN (1) = DNNN (2) where NNN (2) ∼ N (000, Ir). We then have

WWW ᵀΛΛΛρ?WWW ∼
(
BNNN (1)

)ᵀ
ΛΛΛρ?

(
BNNN (1)

)
∼
(
BDNNN (2)

)ᵀ
ΛΛΛρ?

(
BDNNN (2)

)
∼
(
NNN (2)

)ᵀ
Diag(λ1, · · ·λr)NNN (2)

Now we know that (NNN (2))ᵀDiag(λ1, · · · , λr)NNN (2) ∼
∑r

j=1 λjχ
2,j
1 , which gives us our result.

Note that in the non-private case, the coefficients {λi} in Theorem 6.1.7 become the eigen-
values for the rank d − 1 idempotent matrix ΣΣΣ, thus resulting in a χ2

d−1 distribution. We
use the result of Theorem 6.1.7 in order to find a threshold that will achieve the desired
significance level 1 − α, as in the classical chi-square goodness of fit test. We then set the
threshold τα to satisfy the following:

Pr

[
r∑
i=1

λiχ
2,i
1 ≥ τ

α

]
= α (6.9)

for {λi} found in Theorem 6.1.7. Note, the threshold τα is a function of n, ρ, α and ppp0, but
not the data.

We present our modified goodness of fit test when we are dealing with differentially private
counts in Algorithm 9.

90



Algorithm 9 Private Chi-Squared Goodness of Fit Test: AsymptGOF

Input: hhh, ρ, α,H0 : ppp = ppp0

Compute T(n) (ρ)
defn
= T(n) (N (0, 1/ρ)) from (6.4) and τα that satisfies (6.9).

if T(n) (ρ) > τα then
Decision ← Reject

else
Decision ← Fail to Reject

Output: Decision

6.1.4. Power Analysis of AsymptGOF

To determine the power of our new goodness of fit test AsymptGOF, we need to specify an
alternate hypothesis H1 : ppp = ppp1 for ppp1 6= ppp0. Similar to past works (Mitra, 1958; Meng and
Chapman, 1966; Guenther, 1977), we will consider alternatives where

ppp1
n

defn
= ppp0 +

1√
n
·∆∆∆ where

d∑
i=1

∆i = 0. (6.10)

Note that T(n) (ρ) uses the probability vector given in H0 but data is generated by
Multinomial(n,ppp1

n). In fact, the nonprivate statistic T(n) when the data is drawn from H1

no longer converges to a chi-square distribution. Instead, T(n) converges in distribution to
a noncentral chi-square when H1 holds.3

Lemma 6.1.8 [Bishop et al. (1975); Ferguson (1996)]. Under the alternate hypothesis H1 :
ppp = ppp1

n given in (6.10), the chi-square statistic T(n) converges in distribution to a noncentral
χ2
d−1(ν) where ν = ∆∆∆ᵀDiag(ppp0)−1∆∆∆, i.e. given H1 : ppp = ppp1

n we have

T(n) D→ χ2
d−1(ν) as n→∞.

Another classical result tells us that the vector UUU from (6.2) converges in distribution to a
multivariate normal under the alternate hypothesis.
Lemma 6.1.9 [Mitra (1955, 1958)]. Assume HHH ∼ Multinomial(n,ppp1

n) where ppp1
n is given in

(6.10). Then UUU
D→ N (µµµ,Σ) where Σ is given in (6.3) and

µµµ = Diag(ppp0)−1/2∆∆∆ (6.11)

Corollary 6.1.10. Under the alternate hypothesis H1 : ppp = ppp1
n, then the random vector

WWW
D→ N (µµµ′,ΣΣΣ) for WWW given in (6.5) where µµµ′ = (µµµ,000)ᵀ and µµµ,ΣΣΣ given in (6.11) and (6.6),

respectively.

3Note that a noncentral chi-square with noncentral parameter θ and ν degrees of freedom is the distri-
bution of ZZZTZZZ where each ZZZ ∼ N (µµµ, Iν) and θ = µµµᵀµµµ.
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We then write our private statistic as T(n) (ρ) = WWW ᵀΛΛΛnρWWW . Similar to the previous section

we will write {χ2,j
1 (νj)}rj=1 as a set of r independent noncentral chi-squares with noncentral

parameter νj and one degree of freedom.
Theorem 6.1.11. Let WWW ∼ N (µµµ′,ΣΣΣ) where µµµ′ and ΣΣΣ are given in Corollary 6.1.10. We will
write ΣΣΣ = BBᵀ where B ∈ R2d×(2d−1) has rank 2d − 1 and BᵀB = I2d−1. We define bbbᵀ =
(µµµ′)ᵀΛΛΛρ?BD where D is an orthogonal matrix such that DᵀBᵀΛΛΛρ?BD = Diag(λ1, · · · , λ2d−1)
and ΛΛΛρ? is given in (6.7). Then we have

WWW ᵀΛΛΛρ?WWW ∼
r∑
j=1

λjχ
2,j
1 (νj) +N

κ, d∑
j=r+1

4b2j

 , (6.12)

where (λj)
2d−1
j=1 are the eigen-values of BᵀΛΛΛρ?B such that λ1 ≥ λ2 ≥ λr > 0 = λr+1 = · · · =

λ2d−1 and

νj =

(
bj
λj

)2

for j ∈ [r] & κ = ∆∆∆ᵀDiag(ppp0)−1∆∆∆−
r∑
j=1

b2j
λj
.

Proof. We follow a similar analysis as Mohsenipour (2012) for finding the distribution of
a quadratic form of normals. Consider the random variable NNN (2) = BDNNN (1) + µµµ′ where
NNN (1) ∼ N (000, I2d−1). Note that NNN (2) has the same distribution as WWW . We then have for t ≥ 0

Pr [WWW ᵀΛΛΛρWWW ≥ t] = Pr
[
(NNN (1))ᵀDᵀBᵀΛΛΛρ?BDNNN

(1) + 2(µµµ′)ᵀΛΛΛρ?BDNNN
(1) + (µµµ′)ᵀΛΛΛρ?µµµ

′ ≥ t
]

= Pr
[
(NNN (1))ᵀDiag(λ1, · · · , λd+1)NNN (1) + 2bbbᵀNNN (1) + (µµµ′)ᵀΛΛΛρ?µµµ

′ ≥ t
]

= Pr

 r∑
j=1

λj ·
(
N

(1)
j + bj/λj

)2
+

d∑
j=r+1

2bjN
(1)
j + κ ≥ t


= Pr

 d∑
j=1

λj · χ2,j
1

((
bj
λj

)2
)

+N

0,

d∑
j=r+1

4b2j

+ κ ≥ t



Remark 6.1.12. Again, if we have nρn → ρ? > 0 then the asymptotic distribution of
T(n) (ρn) converges in distribution to the random variable of the form given in (6.12) when
H1 from (6.10) is true.

Obtaining the asymptotic distribution for T(n) (ρ) when the alternate hypothesis holds may
allow for future results on effective sample size, i.e. how large a sample size needs to be in
order for AsymptGOF to have Type II error at most β against H1 : ppp = ppp1

n. We see this as
an important direction for future work.
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6.2. Independence Testing

We now consider the problem of testing whether two random variables YYY 1 ∼ Multinomial(1,πππ(1))

and YYY 2 ∼ Multinomial(1,πππ(2)) are independent of each other. Note that
∑r

i=1πππ
(1)
i = 1 and∑c

j=1 π
(2)
j = 1, so we can write π

(1)
r = 1−

∑
i<r π

(1)
i and π

(2)
c = 1−

∑
j<c π

(2)
j .

We then form the null hypothesis H0 : YYY (1)⊥YYY (2), i.e. they are independent. One approach
to testing H0 is to sample n joint outcomes of YYY (1) and YYY (2) and count the number of

observed outcomes, Hi,j which is the number of times Y
(1)
i = 1 and Y

(2)
j = 1 in the n

trials, so that we can summarize all joint outcomes as a contingency table HHH = (Hi,j) ∼
Multinomial(n,ppp = (pi,j : i ∈ [r], j ∈ [c])), where pi,j is the probability that Y

(1)
i = 1 and

Y
(2)
j = 1.

In Table 2 we give a r × c contingency table giving the number of joint outcomes for the
variables YYY (1) and YYY (2) from n independent trials. We will write the full contingency table
of counts HHH = (Hi,j) as a vector with the ordering convention that we start from the top
row and move from left to right across the contingency table.

Table 2: Contingency Table with Marginals.

YYY (1)\YYY (2) 1 2 · · · c Marginals

1 H1,1 H1,2 · · · H1,c H1,·
2 H2,1 H2,2 · · · H2,c H2,·
...

...
...

. . .
...

...

r Hr,1 Hr,2 · · · Hr,c Hr,·
Marginals H·,1 H·,2 · · · H·,c n

We want to calculate the chi-square statistic as in (6.1) (where now the summation is over
all joint outcomes i and j), but now we do not know the true proportion ppp = (pi,j) which
depends on πππ(1) and πππ(2). However, we can use the maximum likelihood estimator (MLE)
p̂pp for the probability vector ppp subject to H0 to form the statistic T̂(n)

T̂(n) =
∑
i,j

(Hi,j − np̂i,j)2

np̂i,j
. (6.13)

The intuition is that if the test rejects even when the most likely probability vector that
satisfies the null hypothesis was chosen, then the test should reject against all others.

Note that under the null hypothesis we can write ppp as a function of πππ(1) and πππ(2),

ppp =
(
fi,j(πππ

(1),πππ(2)) : i ∈ [r], j ∈ [c]
)

where fi,j(πππ
(1),πππ(2)) = πππ(1)

(
πππ(2)

)ᵀ
. (6.14)

Further, we can write the MLE p̂pp as described below.
Lemma 6.2.1 [Bishop et al. (1975)]. Given HHH, which is n samples of joint outcomes
of YYY (1) ∼ Multinomial(1,πππ(1)) and YYY (2) ∼ Multinomial(1,πππ(2)), if YYY (1)⊥YYY (2), then the
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MLE for ppp = fff(πππ(1),πππ(2)) for fff = (fi,j : i ∈ [r], j ∈ [c]) given in (6.14) is the following:

p̂pp = fff(π̂ππ(1), π̂ππ(1)) where

π̂
(1)
i = Hi,·/n, π̂

(1)
j = H·,j/n for i ∈ [r], j ∈ [c] (6.15)

and Hi,· =
∑r

j=1Hi,j and H·,j =
∑c

i=1Hi,j.

We then state another classical result that gives the asymptotic distribution of T̂(n) given
H0.
Theorem 6.2.2. (Bishop et al., 1975) Given the assumptions in Lemma 6.2.1, the statistic

T̂(n) D→ χ2
ν

for ν = (r − 1)(c− 1).

Algorithm 10 Pearson Chi-Squared Independence Test: Indep

Input: hhh, α
p̂pp← MLE calculation in (6.15)
Compute T̂(n) from (6.13) and set ν = (r − 1)(c− 1).
if T̂(n) > χ2

ν,1−α and all entries of hhh are at least 5 then
Decision ← Reject

else
Decision ← Fail to Reject

Output: Decision.

The chi-square independence test is then to compare the statistic T̂(n), with the value
χ2

(r−1)(c−1),1−α for a 1 − α significance test. We formally give the Pearson chi-square test

in Algorithm 10. An often used “rule of thumb” (Triola, 2014) with this test is that it can
only be used if all the cell counts are at least 5, otherwise the test Fails to Reject H0. We
will follow this rule of thumb in our tests.

Similar to our prior analysis for goodness of fit, we aim to understand the asymptotic
distribution from Theorem 6.2.2. First, we can define ÛUU in terms of the MLE p̂pp given in
(6.15):

Ûi,j = (Hi,j − np̂i,j)/
√
np̂i,j . (6.16)

The following classical result gives the asymptotic distribution of ÛUU under H0, which also
proves Theorem 6.2.2.
Lemma 6.2.3. (Bishop et al., 1975) With the same hypotheses as Lemma 6.2.1, the random

vector ÛUU given in (6.16) converges in distribution to a multivariate normal,

ÛUU
D→ N (0,Σind)

where Σind
defn
= Irc −

√
ppp · √pppᵀ − Γ(ΓᵀΓ)−1Γᵀ with fff given in (6.14), and

Γ
defn
= Diag(ppp)−1/2 · ∇fff(πππ(1),πππ(2)),
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∇fff(πππ(1),πππ(2)) =



∂f1,1

∂π
(1)
1

· · · ∂f1,1

∂π
(1)
r−1

∂f1,1

∂π
(2)
1

· · · ∂f1,1

∂π
(2)
c−1

∂f1,2

∂π
(1)
1

· · · ∂f1,2

∂π
(1)
r−1

∂f1,2

∂π
(2)
1

· · · ∂f1,2

∂π
(2)
c−1

...
...

...
...

. . .
...

∂fr,c

∂π
(1)
1

· · · ∂fr,c

∂π
(1)
r−1

∂fr,c

∂π
(2)
1

· · · ∂fr,c

∂π
(2)
c−1


rc,r+c−2

.

In order to do a test that is similar to Indep given in Algorithm 10, we need to determine
an estimate for πππ(1) and πππ(2) where we are only given access to the noisy cell counts.

6.2.1. Estimating Parameters with Private Counts

We now assume that we do not have access to the counts Hi,j from Table 2 but instead we
have Wi,j = Hi,j + Zi,j where Zi,j ∼ Z for any type of noise distribution, and we want to
perform a test for independence. Here we will consider both Laplace and Gaussian noise
distributions. We consider the full likelihood of the noisy r × c contingency table

Pr
[
HHH +ZZZ = h̃hh|H0,πππ

(1),πππ(2)
]

=
∑

hhh:
∑
i,j hi,j=n

hi,j∈N

Pr
[
HHH = hhh|H0,πππ

(1),πππ(2)
]
· Pr

[
ZZZ = h̃hh− hhh|H0,HHH = hhh

]

=
∑

hhh:
∑
i,j hi,j=n

hi,j∈N

Pr
[
HHH = hhh|H0,πππ

(1),πππ(2)
]

︸ ︷︷ ︸
Multinomial

∏
i,j

Pr
[
Zi,j = h̃i,j −Hi,j |H0,HHH = hhh

]
︸ ︷︷ ︸

Noise

to find the best estimates for {πππ(i)} given the noisy counts.

Maximizing this quantity is computationally very expensive for values of n > 100 even for
2× 2 tables,4 so we instead follow a two step procedure similar to the work of Karwa and
Slavković (2016), where they “denoise” a private degree sequence for a synthetic graph and
then use the denoised estimator to approximate the parameters of the β-model of random
graphs. We will first find the most likely contingency table given the noisy data h̃hh and then
find the most likely probability vectors under the null hypothesis that could have generated
that denoised contingency table (this is not equivalent to maximizing the full likelihood,
but it seems to work well as our experiments later show). For the latter step, we use (6.15)
to get the MLE for πππ(1) and πππ(2) given a vector of counts hhh. For the first step, we need to
minimize ||h̃hh − hhh|| subject to

∑
i,j hi,j = n and hi,j ≥ 0 where the norm in the objective is

either `1 for Laplace noise or `2 for Gaussian noise.

Note that for Laplace noise, the above optimization problem does not give a unique solution
and it is not clear which minimizing contingency table hhh to use. One solution to overcome
this is to add a regularizer to the objective value. We will follow the work of Lee et al.

4Note that there is a poly(n) time algorithm to solve this, but the coefficients in each term of the sum
can be very large numbers, with poly(n) bits, which makes it difficult for numeric solvers.
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(2015) to overcome this problem by using an elastic net regularizer (Zou and Hastie, 2005):

argmin
hhh

(1− γ) · ||h̃hh− hhh||1 + γ · ||h̃hh− hhh||22 (6.17)

s.t.
∑
i,j

hi,j = n, hi,j ≥ 0.

where if we use Gaussian noise, we set γ = 1 and if we use Laplace noise then we pick
a small γ > 0 and then solve the resulting program. Our two step procedure for finding
an approximate MLE for πππ(1) and πππ(2) based on our noisy vector of counts h̃hh is given in
Algorithm 11, where we take into account the rule of thumb from Indep and return NULL
if any computed table has counts less than 5.

Algorithm 11 Two Step MLE Calculation: 2MLE

Input: h̃hh = HHH +ZZZ
if Z = Gauss then

set γ = 1
if Z = Lap then

set 0 < γ � 1.
h̃hh← Solution to (6.17).

if Any cell of h̃hh is less than 5 then
π̃ππ(1), π̃ππ(2) ← NULL

else
π̃ππ(1), π̃ππ(2) ← MLE with h̃hh given in (6.15).

Output: π̃ππ(1) and π̃ππ(2).

We will denote p̃pp to be the probability vector of function fff from (6.14) applied to the result
of 2MLE(HHH + ZZZ). We now write down the private chi-squared statistic when we use the
estimate p̃pp in place of the actual (unknown) probability vector ppp:

T̃(n) (Z) =
∑
i,j

(Hi,j + Zi,j − np̃i,j)2

np̃i,j
, {Zi,j}

i.i.d.∼ Z. (6.18)

6.2.2. Monte Carlo Test: MCIndep

We first follow a similar procedure as in Section 6.1.2 but using the parameter estimates
from 2MLE instead of the actual (unknown) probabilities. Our procedure MCIndep (given in
Algorithm 12 ) works as follows: given a dataset hhh, we will add the appropriately scaled

Laplace or Gaussian noise to ensure differential privacy to get the noisy table h̃hh. Then we
use 2MLE on the private data to get approximates to the parameters πππ(i), which we denote as
π̃ππ(i) for i = 1, 2. Using these probability estimates, we sample m > 1/α many contingency
tables and noise terms to get m different values for T̃(n) (Z) and choose the d(m+1)(1−α)e
ranked statistic as our threshold τ̃α. If at any stage 2MLE returns NULL, then the test Fails
to Reject H0. We formally give our test MCIndep in Algorithm 12.
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Algorithm 12 MC Independence Testing MCIndep

Input: hhh,Z, α
h̃hh← hhh+ZZZ, where {Zi,j}

i.i.d.∼ Z.

(π̃ππ(1), π̃ππ(2))← 2MLE(h̃hh) and p̃pp← fff(π̃ππ(1), π̃ππ(2)).

if (π̃ππ(1), π̃ππ(2)) == NULL then
Decision ← Fail to Reject.

else
q̃ ← T̃(n) (Z) using h̃hh and p̃pp.
Set m > 1/α and q ← NULL.
for t ∈ [m] do

Generate contingency table h̃hh using
(
π̃ππ(1), π̃ππ(2)

)
.˜̃

hhh← h̃hh+ZZZ, where {Zi,j}
i.i.d.∼ Z.(˜̃πππ(1)

, ˜̃πππ(2)
)
← 2MLE

(˜̃
hhh

)
.

if

(˜̃πππ(1)
, ˜̃πππ(2)

)
== NULL then

Decision ← Fail to Reject.
else

Compute T̃(n) (Z) from (6.18), add it to array q.
τ̃α ← the d(m+ 1)(1− α)e ranked statistic in q.
if q̃ > τ̃α then

Decision ← Reject.
else

Decision ← Fail to Reject.
Output: Decision
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6.2.3. Asymptotic Approach: AsymptIndep

We will now focus on the analytical form of our private statistic when Guassian noise is

added. We can then write T̃(n) (ρ)
defn
= T̃(n) (N (0, 1/ρ)) in its quadratic form, which is

similar to the form of T(n) (ρ) from (6.8),

T̃(n) (ρ)
defn
= W̃WW

ᵀ
Λ̃ΛΛnρW̃WW (6.19)

where W̃WW =
(
ŨUU
VVV

)
with ŨUU set in (6.16) except with p̃pp used instead of the given ppp0 in the

goodness of fit testing and VVV set as in (6.5). Further, we denote Λ̃ΛΛρ as ΛΛΛρ in (6.7) but with

estimate p̃pp instead of ppp0. We will use the 2rc by 2rc block matrix Σ̃ΣΣind to estimate the
covariance of W̃WW , where

Σ̃ΣΣind
defn
=

[
Σ̃ind 0

0 Irc

]
(6.20)

and Σ̃ind is the matrix Σind in Lemma 6.2.3, except we use our estimates π̃ππ(1), π̃ππ(2), or p̃pp
whenever we need to use the actual (unknown) parameters.

Thus, if we are given a differentially private version of a contingency table where each cell
has added independent Gaussian noise with variance 1/ρ, we calculate T̃(n) (ρ) and compare
it to the threshold τ̃α where

Pr

[
rc∑
i=1

λ̃iχ
2,i
1 ≥ τ̃

α

]
= α (6.21)

with {λ̃i} being the eigenvalues of B̃T Λ̃ΛΛρB̃ with rank ν = rc+(r−1)(c−1) matrix B̃ ∈ R2rc,ν

where B̃B̃T = Σ̃ΣΣind. Our new independence test AsymptIndep is given in Algorithm 13,
where 2MLE estimates πππ(i) for i = 1, 2 and AsymptIndep Fails to Reject if 2MLE returns
NULL.

Algorithm 13 Private Independence Test for r × c tables: AsymptIndep

Input: hhh, ρ, 1− α
h̃hh← hhh+ZZZ where ZZZ ∼ N (0, 1/ρ Ir·c).(
π̃ππ(1), π̃ππ(2)

)
← 2MLE(h̃hh).

if
(
π̃ππ(1), π̃ππ(2)

)
== NULL then

Decision ← Fail to Reject
else
p̃pp← fff

(
π̃ππ(1), π̃ππ(2)

)
for fff given in (6.14).

Set T̃(n) (ρ) = T̃(n) (N (0, 1/ρ)) from (6.18) with h̃hh and τ̃α from (6.21).
if T̃(n) (ρ) > τ̃α then

Decision ← Reject
else

Decision ← Fail to Reject
Output: Decision
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6.3. Significance Results

We now show how each of our tests perform on simulated data when H0 holds in goodness
of fit and independence testing. We fix our desired significance 1−α = 0.95. If our privacy
benchmark is differential privacy, then we set the privacy parameter ε ∈ {0.02, 0.05, 0.1}
and use Laplace noise – thus using our MC approach. If we use zCDP as our benchmark
then we set ρ = ε2/8 ∈ {0.00005, 0.0003125, 0.00125}. Note that with these parameters, the
variance for both Laplace and Gaussian noise are the same.5 Although zCDP provides a
weaker privacy guarantee than pure differential privacy (see Theorem 2.2.3), we know that
even for (ρ = 0.00125)-zCDP, we get (ε ≈ 0.24, δ = 10−6)-DP from Theorem 2.2.4, which
still provides a strong privacy guarantee.

6.3.1. GOF Testing
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Figure 6: Empirical Type I Error of AsymptGOF with error bars corresponding to 1.96 times
the standard error in 100,000 trials.

By Theorem 6.1.5, we know that MCGOF will have significance at least 1− α. We then turn
to our test AsymptGOF to compute the proportion of trials that failed to reject H0 : ppp = ppp0

when it holds. In Figure 6 we give several different null hypotheses ppp0 and sample sizes n
to show that AsymptGOF achieves near 0.95 significance in all our tested cases. We compare
this to the results if we did not modify our test due to the additional noise from Figure 5.
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Figure 7: (Log of) Critical values of AsymptGOF and MCGOF (with m = 59) with both
Gaussian (ρ = 0.00125) and Laplace noise (ε = 0.1) along with the classical critical value
as the black line.

We also plot the critical values of AsymptGOF in Figure 7. For AsymptGOF we used the
package in R “CompQuadForm” that has various methods for finding estimates to the tail

5The variance of Lap(b) is 2b2.
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probabilities for quadratic forms of normals, of which we used the “imhof” method (Imhof,
1961) to approximate the threshold for each test. Note that for reasonably sized data, the
critical values must be much larger than in the classical test, given as the horizontal line in
the plots.

To show that AsymptGOF works beyond d = 4 multinomial data, we give a table of results
in Table 3 for d = 100 data and null hypothesis p0

i = 1/100 for i ∈ [100]. We give the
proportion of 10, 000 trials that were rejected by AsymptGOF in the “AsymptGOF Type I”
column and those that were rejected after adding Gaussian noise for privacy by the classical
test GOF in the “GOF Type I” column. Note that the critical value that GOF uses is 123.23
for every test in this case, whereas AsymptGOF’s critical value changes for each test, given
in the column labeled “τα”.

Table 3: GOF testing with α = 0.05 and 0.00125-zCDP for d = 100.

ppp0 n χ2
d−1,1−α GOF Type I τα AsymptGOF Type I

0.01 · · · 0.01 1,000 123.23 1.00 10,070.47 0.0503

0.01 · · · 0.01 10,000 123.23 1.00 1,117.85 0.0494

0.01 · · · 0.01 100,000 123.23 0.9923 222.64 0.0506

0.01 · · · 0.01 1,000,000 123.23 0.1441 133.16 0.0491

6.3.2. Independence Testing

We then turn to independence testing for 2 × 2 contingency tables using AsymptIndep

and MCIndep with both Laplace and Gaussian Noise. Note that our methods do apply
to arbitrary r × c tables and run in time poly(r, c, log(n)) plus the time for the iterative
Imhof method to find the critical values. For MCIndep and AsymptIndep we sample 1,000
trials for various parameters πππ(1) = (π(1), 1− π(1)), πππ(2) = (π(2), 1− π(2)), and n that could
have generated the contingency tables. We set the number of samples m = 59 in MCIndep

regardless of the noise we added and when we use Laplace noise, we set γ = 0.01 as the
parameter in 2MLE. In Figure 8 we compute the empirical Type I Error of AsymptIndep.
Further, in Figure 9 and Figure 10 we give the empirical Type I Error on MCIndep with
Gaussian and Laplace noise, respectively.

Note that when n is small, we get that our private independence tests almost always fail to
reject. In fact, when n = 500 all of our tests in 1,000 trials fail to reject when ρ = 0.00005.
This is due to 2MLE releasing a contingency table based on the private counts with small
cell counts. When the cell counts in 2MLE are small we follow the “rule of thumb” from
the classical test Indep and output NULL, which results in AsymptIndep failing to reject.
This will ensure good significance but makes no promises on power for small n, as does the
classical test Indep. Further, another consequence of this “rule of thumb” is that when
we use Indep on private counts, with either Laplace or Gaussian noise, it tends to have
lower Type I error than for larger n. In fact, it seems like the AsymptIndep test is more
conservative, meaning the empirical Type I error is smaller than the threshold α, than the
MC approach. We can then expect AsymptIndep to have worse power.
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Figure 8: Empirical Type I Error of AsymptIndep with error bars corresponding to 1.96
times the standard error in 1,000 trials.
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Figure 9: Empirical Type I Error of MCIndep using Gaussian noise with error bars corre-
sponding to 1.96 times the standard error in 1,000 trials.

6.4. Power Results

6.4.1. GOF Testing

We now want to show that our tests can correctly reject H0 when it is false. For our
two goodness of fit tests, MCGOF(Z) (with m = 59 and either Laplace or Gaussian noise)
and AsymptGOF we test whether the multinomial data came from ppp0 when it was actually
sampled from ppp1 = ppp0 + ∆∆∆. We compare our zCDP goodness of fit tests AsymptGOF and
MCGOF(N (0, 1/ρ)) with the non-private GOF test that uses the unaltered data in Figure 11.
Then, we compare our differentially private goodness of fit tests MCGOF(Lap(2/ε)) with the
non-private test in Figure 12. We then find the proportion of 1,000 trials that each of our
tests rejected H0 : ppp = ppp0 for various n. Note that GOF has difficulty distinguishing ppp0

and ppp1 for reasonable sample sizes. From the plots, it appears that the MC methods have
empirically less power than the asymptotic methods. However the MC methods do provide
the guarantee of significance at least 1− α.
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Figure 10: Empirical Type I Error of MCIndep using Laplace noise with error bars corre-
sponding to 1.96 times the standard error in 1, 000 trials.

6.4.2. Independence Testing

We then turn to independence testing for 2×2 tables with our two differentially private tests
MCIndep and AsymptIndep. We fix the alternate H1 so that YYY 1 ∼ Multinomial(1,πππ(1) =
(π(1), 1 − π(1))) and YYY 2 ∼ Multinomial(1,πππ(1) = (π(2), 1 − π(2))) are not independent. We
then sample contingency tables from a multinomial distribution with probability πππ(1)

(
πππ(2)

)ᵀ
+

∆∆∆ and various sizes n. We compute the proportion of 1, 000 trials that MCIndep and
AsymptIndep rejected H0 : YYY 1⊥YYY 2 in Figure 13 and Figure 14 for Gaussian and Laplace
noise, respectively. For MCIndep we set the number of samples m = 59 and when we use
Laplace noise, we set γ = 0.01 in 2MLE.

6.5. Conclusion

We proposed new hypothesis tests based on a private version of the chi-square statistic
for goodness of fit and independence tests. For each test, we showed analytically or ex-
perimentally that we can achieve significance close to the target 1 − α level similar to the
nonprivate tests. We also showed that all the tests have a loss in power with respect to the
non-private classical tests. Depending on the privacy benchmark, we would add Laplace or
Gaussian noise. If Gaussian noise was used, we computed the asymptotic distribution of the
chi-square statistic, so that we could bypass an MC approach. Typically, one would expect
differential privacy to require the sample size to blow up by a multiplicative 1/ε factor.
However, we see a better performance because the noise is dominated by the sampling error
for certain privacy levels.
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H1 : ppp0 + ∆∆∆ where ∆∆∆ = 0.01 · (1,−1,−1, 1)ᵀ.
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(b) H0 : ppp0 = (1/2, 1/6, 1/6, 1/6)ᵀ and
H1 : ppp0 + ∆∆∆ where ∆∆∆ = 0.01 ·
(1,−1/3,−1/3,−1/3)ᵀ.

Figure 11: Comparison of empirical power of classical non-private test versus AsymptGOF

(solid line) and MCGOF (dashed line) with Gaussian noise for alternate H1 : ppp1 = ppp0 + ∆∆∆ in
10, 000 trials.
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(a) H0 : ppp = ppp0 = (1/4, 1/4, 1/4, 1/4)ᵀ and
H1 : ppp0 + ∆∆∆ where ∆∆∆ = 0.01 · (1,−1,−1, 1)ᵀ.
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(b) H0 : ppp0 = (1/2, 1/6, 1/6, 1/6)ᵀ and
H1 : ppp0 + ∆∆∆ where ∆∆∆ = 0.01 ·
(1,−1/3,−1/3,−1/3)ᵀ.

Figure 12: Comparison of empirical power of classical non-private test versus MCGOF with
Laplace noise for alternate H1 : ppp1 = ppp0 + ∆∆∆ in 10, 000 trials.
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(a) We set π(1) = π(2) = 1/2 and ∆∆∆ = 0.01 ·
(1,−1)ᵀ(1,−1).
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(b) We set π(1) = 2/3, π(2) = 1/2 and ∆∆∆ =
0.01 · (1,−1)ᵀ(1, 0).

Figure 13: Comparison of empirical power of classical non-private test versus AsymptIndep
(solid line) and MCIndep (dashed line) with Gaussian noise in 1, 000 trials.
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(a) We set π(1) = π(2) = 1/2 and ∆∆∆ = 0.01 ·
(1,−1)ᵀ(1,−1).
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(b) We set π(1) = 2/3, π(2) = 1/2 and ∆∆∆ =
0.01 · (1,−1)ᵀ(1, 0).

Figure 14: Comparison of empirical power of classical non-private test versus MCIndep with
Laplace noise in 1, 000 trials.
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CHAPTER 7

PRIVATE GENERAL CHI-SQUARE TESTS

This chapter largely follows the work in Kifer and Rogers (2016). Our main contribution
here is a general template for creating test statistics involving categorical data. Empirically,
they improve on the power of previous work on differentially private hypothesis testing,
namely the tests given in Chapter 6 and Wang et al. (2015), while maintaining at most
some given Type I error α. Our approach is to select certain properties of non-private
hypothesis tests (e.g., their asymptotic distributions) and then build new test statistics
that match these properties when Gaussian noise is added. Although the test statistics
are designed with Gaussian noise in mind, other noise distributions can be applied, e.g.
Laplace.1

7.1. General Chi-Square Tests

We start by providing a general framework for hypothesis tests involving categorical data
that will include goodness of fit and independence testing as special cases, which we covered
in Chapter 6. In the non-private setting, a chi-square test involves a histogram HHH and a
model H0 that produces expected counts H̄HH over the d buckets. In general, H0 will have
fewer than d parameters and will estimate the parameters from HHH. The chi-square test
statistic is defined as the following (compare this statistic to the statistic T(n) from (6.1)
for GOF testing)

T
(n)
chi =

d∑
i=1

(Hi − H̄i)
2/H̄i.

If the data were generated from H0 and if s parameters had to be estimated, then the

asymptotic distribution of T
(n)
chi is χ2

d−s−1, a chi-square random variable with d − s − 1
degrees of freedom. This is the property we want our statistics to have when they are
computed from the noisy histogram H̃HH instead of HHH. Note that in the classical chi-square

tests (e.g. Pearson independence test GOF in Algorithm 7), the statistic T
(n)
chi is computed

and if it is larger than the 1− α percentile of χ2
d−s−1, then the model is rejected.

The above facts are part of a more general minimum chi-square asymptotic theory (Ferguson,
1996), which we overview in Section 7.1.2. However, we first explain the differences between
private and non-private asymptotics.

7.1.1. Private Asymptotics

In non-private statistics, a function of n data records is considered a random variable, and
non-private asymptotics considers this distribution as n→∞. In private asymptotics, there

1If we use Laplace noise instead, we cannot match properties like the asymptotic distribution of the non-
private statistics, but the new test statistics still empirically improve the power of the tests from previous
works.
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is another quantity σ2
n, the variance of the added noise.

In the classical private regime, one studies what happens as n/σ2
n → ∞; i.e., when the

variance due to privacy is insignificant compared to sampling variance in the data (i.e.
O(n)), as we assumed in Lemma 6.1.3. In practice, asymptotic distributions derived under
this regime result in unreliable hypothesis tests because privacy noise is significant; e.g. see
Figure 5 and Uhler et al. (2013).

In the variance-aware private regime, one studies what happens as n/σ2
n → constant as

n→∞; that is, when the variance due to privacy is proportional to sampling variance. In
practice, asymptotic distributions derived under this regime result in hypothesis tests with
reliable Type I error (i.e. the p-values they generate are accurate); see Chapter 6 and Wang
et al. (2015). 2

7.1.2. Minimum Chi-Square Theory

In this section, we present important results about minimum chi-square theory. The dis-
cussion is based largely on Ferguson (1996) (see Chapter 23 there). Our work relies on this
theory to construct new private test statistics in Section 7.2 and Section 7.3 whose asymp-
totic behavior matches the non-private asymptotic behavior of the classical chi-square test.

We consider a sequence of d-dimensional random vectors VVV(n) for n ≥ 1 (e.g. the data
histogram). The parameter space Θ is a non-empty open subset of Rs, where s ≤ d.
The model A maps a s-dimensional parameter θθθ ∈ Θ into a d-dimensional vector (e.g.,
the expected value of VVV(n)), hence it maps Θ to a subset of a s-dimensional manifold in
d-dimensional space.

In this abstract setting, the null hypothesis H0 is that there exists a θθθ0 ∈ Θ such that:

√
n
(
VVV(n) −A(θθθ0)

)
D→ N

(
0, C(θθθ0)

)
(7.1)

where C(θθθ) ∈ Rd×d is an invertible covariance matrix. Intuitively, Equation 7.1 says that
the Central Limit Theorem can be applied for θθθ0.

We measure the distance between VVV(n) and A(θθθ) with a test statistic given by the following
quadratic form:

D(n)(θθθ)
defn
= n

(
VVV(n) −A(θθθ)

)ᵀ
M(θθθ)

(
VVV(n) −A(θθθ)

)
(7.2)

where M(θθθ) ∈ Rd×d is a symmetric positive-semidefinite matrix; different choices of M will
result in different test statistics. We make the following standard assumptions about A(θθθ)
and M(θθθ).
Assumption 7.1.1. For all θθθ ∈ Θ, we have:

2Note that taking n and σ2
n to infinity is just a mathematical tool for simplifying expressions while

mathematically keeping privacy noise variance proportional to the data variance; it does not mean that the
amount of actual noise added to the data depends on the data size.
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• A(θθθ) is bicontinuous,3

• A(θθθ) has continuous first partial derivatives, denoted as Ȧ(θθθ) with full rank s,

• M(θθθ) is continuous in θθθ and there exists an η > 0 such that M(θθθ) − ηId is positive
definite in an open neighborhood of θθθ0.

The following theorem will be useful in determining the distribution for the quadratic form
D(n)(θθθ).
Theorem 7.1.2 [Ferguson (1996)]. Let WWW ∼ N (0,Λ). WWW ᵀWWW ∼ χ2

r if and only if Λ is a
projection of rank r. If Λ ∈ Rd×d is invertible, WWW ᵀΛ−1WWW ∼ χ2

d.

If θθθ0 is known, setting M(θθθ) = C(θθθ)−1 in (7.2) and applying Theorem 7.1.2 shows that then
D(n)(θθθ0) converges in distribution to χ2

d. However, as we show in Section 7.2, this can be a
sub-optimal choice of middle matrix M .

When θθθ0 is not known, we need to estimate a good parameter θ̂θθ
(n)

to plug into (7.2). One

approach is to set θ̂θθ
(n)

= arg minθθθ∈Θ D(n)(θθθ). However, this can be a difficult optimization.
If there is a rough estimate of θθθ0 based on the data, call it φ(VVV(n)), and if it converges in

probability to θθθ0 (i.e. φ(VVV(n))
P→ θθθ0 as n→∞), then we can plug it into the middle matrix

to get:

D̂(n)(θθθ)
defn
= n

(
VVV(n) −A(θθθ)

)ᵀ
M(φ(VVV(n)))

(
VVV(n) −A(θθθ)

)
. (7.3)

and then set our estimator θ̂θθ
(n)

= arg minθθθ∈Θ D̂(n)(θθθ). The test statistic becomes D̂(n)(θ̂θθ
(n)

)
and the following theorems describe its asymptotic properties under the null hypothesis.

We use the shorthand A = A(θθθ0), M = M(θθθ0), and C = C(θθθ0). The following result follows
a similar argument as Theorem 23 in Ferguson (1996).

Theorem 7.1.3. Let θ̂θθ
(n)

= argminθθθ∈Θ D̂(n)(θθθ). Given Assumption 7.1.1 and (7.1), we

have
√
n(θ̂θθ

(n)
− θθθ0)

D→ N (000,Ψ) where θθθ0 is the true parameter and

Ψ =
(
ȦᵀMȦ

)−1
ȦᵀMCMȦ

(
ȦᵀMȦ

)−1
.

Proof. Since φ(VVV(n)) converges in probability to θθθ0 and M(·) is a continuous mapping, then
for any b > 0, c > 0 there exists an n0 such that when n ≥ n0 then M(φ(VVV(n))) is within
a distance b from M(θθθ0) with probability at least 1− c, which makes M(φ(VVV(n))) positive
definite with high probability for sufficiently large n. Furthermore, for any g > 0, we can
choose n large enough so that the smallest eigenvalue of M(φ(VVV(n))) is at least η − g, by
assumption.

3i.e. θθθj → θθθ ⇔ A(θθθj)→ A(θθθ).

107



Since the parameter space is compact, we know a minimizer exists for D̂(n)(θθθ) Together,

this implies that for sufficiently large n and with high probability D̂(n)(θ̂θθ
(n)

) ≥ 0.

Also, D̂(n)(θ̂θθ
(n)

) ≤ D̂(n)(θθθ0) but D̂(n)(θθθ0)/n
P→ 0 since M(φ(VVV(n)))

P→ M and VVV(n) P→ A.

Thus D̂(n)(θ̂θθ
(n)

)/n
P→ 0 which means VVV(n) − A(θ̂θθ

(n)
)

P→ 0 (since M(φ(VVV(n))) is positive
definite with high probability and uniformly bounded away from 0 in a neighborhood of θθθ0).

This implies that A(θ̂θθ
(n)

)
P→ A and so θ̂θθ

(n) P→ θθθ0 since A(θθθ) is bicontinuous by assumption.

Thus, with high probability (e.g., ≥ 1 − c for large enough n), θ̂θθ
(n)

satisfies the first order

optimality condition ∇D̂(n)(θ̂θθ
(n)

) = 0. This is the same as

Ȧ(θ̂θθ
(n)

)ᵀM(φ(VVV(n))(VVV(n) −A(θ̂θθ
(n)

)) = 0 (7.4)

Expanding A(θ̂θθ
(n)

) around θθθ0.

A(θ̂θθ
(n)

) = A(θθθ0) +

∫ 1

0
Ȧ(θθθ0 + t(θ̂θθ

(n)
− θθθ0)) dt︸ ︷︷ ︸

defn
= B(θ̂θθ

(n)
)

(θ̂θθ
(n)
− θθθ0) (7.5)

Substituting (7.5) into (7.4), we get:

Ȧ(θ̂θθ
(n)

)ᵀM(φ(VVV(n)))
(
VVV(n) −A(θθθ0)−B(θ̂θθ

(n)
)(θ̂θθ

(n)
− θθθ0)

)
= 0 (7.6)

Ȧ(θ̂θθ
(n)

)ᵀM(φ(VVV(n)))B(θ̂θθ
(n)

)
√
n(θ̂θθ

(n)
− θθθ0) = Ȧ(θ̂θθ

(n)
)ᵀM(φ(VVV(n)))

√
n(VVV(n) − p(θθθ0)) (7.7)

Now, by the continuity of Ȧ(·) and the definition of B(·) and the convergence in probability

of θ̂θθ
(n)

to θθθ0, we have B(θ̂θθ
(n)

)
P→ Ȧ(θθθ0). Since Ȧ(θθθ) has full rank by assumption, then for

sufficiently large n, B(θ̂θθ
(n)

) has full rank with high probability. This leads to the following
expression with high probability for sufficiently large n,

√
n(θ̂θθ

(n)
− θθθ0) =

(
Ȧ(θ̂θθ

(n)
)ᵀM(φ(VVV(n)))B(θ̂θθ

(n)
)
)−1

Ȧ(θ̂θθ
(n)

)ᵀM(φ(VVV(n)))
√
n(VVV(n) −A) (7.8)

Since M(φ(VVV(n))) has smallest eigenvalue at least η − g > 0 with high probability for n

large enough, and since φ(VVV(n))
P→ θθθ0, θ̂θθ

(n) P→ θθθ0, B(θ̂θθ
(n)

) → Ȧ(θθθ0) in probability, using
continuity in all of the above functions, and the assumption that

√
n(VVV(n) −A)→ N (0, C)

in distribution (and Slutsky’s theorem) we get:

√
n(θ̂θθ

(n)
− θθθ0)

D→ N (0,Ψ) as n→∞. (7.9)

We then prove the following result using a slight modification of Theorem 24 in Ferguson
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(1996).
Theorem 7.1.4. Let ν be the rank of C(θθθ0). If Assumption 7.1.1 and (7.1) hold, and, for
all θθθ ∈ Θ,

C(θθθ)M(θθθ)C(θθθ) = C(θθθ)

and
C(θθθ)M(θθθ)Ȧ(θθθ) = Ȧ(θθθ)

then for θ̂θθ
(n)

given in Theorem 7.1.3 and D̂(n)(θθθ) given in (7.3) we have:

D̂(n)

(
θ̂θθ

(n)
)

D→ χ2
ν−s.

Proof. Note that Theorem 24 in Ferguson (1996) shows that if the hypotheses hold then

n

(
VVV(n) −A(θ̂θθ

(n)
)

)ᵀ

M(θ̂θθ
(n)

)

(
VVV(n) −A(θ̂θθ

(n)
)

)
D→ χ2

ν−s.

Note that we have φ(VVV(n))
P→ θθθ0 and θ̂θθ

(n) P→ θθθ0 for the true parameter θθθ0 ∈ Θ. We
can then apply Slutsky’s Theorem due to M(·) being continuous, to obtain the result for

D̂(n)(θ̂θθ
(n)

).

7.2. Private Goodness of Fit Tests

As we did in Chapter 6, we will first cover goodness of fit testing where the null hypoth-
esis is simply testing whether the underlying unknown parameter is equal to a particular
probability vector. This will be crucial in introducing our new statistics for testing in this
chapter. Once again, we consider categorical data HHH = (H1, · · · , Hd)

ᵀ ∼ Multinomial(n,ppp)
where ppp = (p1, · · · , pd) is some probability vector over the d outcomes. We want to test the
null hypothesis H0 : ppp = ppp0, where each component of ppp0 is positive, but we want to do so
in a private way. We then have the following classical result (Bishop et al., 1975).
Lemma 7.2.1. Under the null hypothesis H0 : ppp = ppp0, HHH/n is asymptotically normal

√
n

(
HHH

n
− ppp0

)
D→ N

(
000,Σ0

)
where Σ0 has rank d− 1 and can be written as,4

Σ0 defn
= Diag(ppp0)− ppp0(ppp0)ᵀ. (7.10)

4Compare Σ0 with Σ from (6.3).
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7.2.1. Nonprojected Private Test Statistic

As we did in Chapter 6, in order to preserve ρ-zCDP, we will add appropriately scaled
Gaussian noise to each component of the histogram HHH. We then define the zCDP statistic

VVV
(n)
ρ =

(
V

(n)
ρ,1 , · · · ,V

(n)
ρ,d

)ᵀ
where we write ZZZ ∼ N (000, 1/ρ · Id) and

VVV(n)
ρ

defn
=
√
n

(
HHH +ZZZ

n
− ppp0

)
. (7.11)

We next derive the asymptotic distribution of VVV
(n)
ρ under both private asymptotic regimes

defined in Section 7.1.1 (note that σ2 = 1/ρ).

Lemma 7.2.2. The random vector VVV
(n)
ρn from (7.11) under the null hypothesis H0 : ppp = ppp0

has the following asymptotic distribution. If nρn → ∞ then VVV
(n)
ρn

D→ N
(
000,Σ0

)
. Further, if

nρn → ρ? > 0 then VVV
(n)
ρn

D→ N
(
000,Σ0

ρ?
)

where Σ0
ρ? has full rank and

Σ0
ρ?

defn
= Σ0 + 1/ρ? · Id. (7.12)

Proof. We know from the central limit theorem that VVV
(n)
ρ? will converge in distribution to

a multivariate normal with covariance matrix given in (7.12). We now show that Σ0
ρ? is

full rank. From (7.10) we know that Σ0 is positive-semidefinite because it is a covariance
matrix, hence it has all nonnegative eigenvalues. We then consider the eigenvalues of Σ0

ρ? .

Let vvv ∈ Rd be an eigenvector of Σ0
ρ? with eigenvalue λ ∈ R, i.e.

Σ0
ρ? vvv = λ vvv =⇒ Σ0 vvv = (λ− 1/ρ?) bbb.

We then must have that vvv is also an eigenvector of Σ0. Because Σ0 is positive-semidefinite
we have the following inequality

λ− 1/ρ? ≥ 0 =⇒ λ ≥ 1/ρ? > 0.

Thus, all the eigenvalues of Σ0
ρ? are positive, which results in Σ0

ρ? being nonsingular.

Because Σ0
nρ is invertible when the privacy parameter ρ > 0, we can create a new statistic

based on VVV
(n)
ρ that has a chi-square asymptotic distribution under variance-aware privacy

asymptotics.

Theorem 7.2.3. Let VVV
(n)
ρn be given in (7.11) for nρn → ρ? > 0. If the null hypothesis

H0 : ppp = ppp0 holds, then for Σ0
nρn given in (7.12), we have

Q(n)
ρn

defn
=
(
VVV(n)
ρn

)ᵀ (
Σ0
nρn

)−1
VVV(n)
ρn

D→ χ2
d. (7.13)

Proof. We directly apply Theorem 7.1.2 with WWW (n) =
(
Σ0
nρn

)−1/2
VVV

(n)
ρn which is asymptoti-
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cally multivariate normal with mean zero and covariance
(
Σ0
ρ?
)−1/2

Σ0
ρ?
(
Σ0
ρ?
)−1/2

= Id.

By computing the inverse of Σ0
nρn we can simplify the statistic Q

(n)
ρn .

Lemma 7.2.4. We can rewrite the statistic in (7.13) as

Q(n)
ρ =

d∑
i=1

(
V

(n)
ρ,i

)2

p0
i + 1

nρ

+
nρ∑d

`=1
p0`

p0`+
1
nρ

 d∑
j=1

p0
j

p0
j + 1

nρ

·V(n)
ρ,j

2

. (7.14)

Proof. We begin by writing the inverse of the covariance matrix Σ0
ρ from (7.12) by applying

Woodbury’s formula (Woodbury, 1950) which gives the inverse of a modified rank deficient
matrix, (

Σ0
ρ

)−1
= Diag(ppp0 + 1/ρ · 111)−1 +

1

1− ppp0 · ω(ρ)
ω(ρ)ω(ρ)ᵀ (7.15)

where ω(ρ)
defn
=
(

p01
p01+1/ρ

, · · · , p0d
p0d+1/ρ

)ᵀ
= ppp0

ppp0+1/ρ·111 .

We note that the vector 111 is an eigenvector of Σρ and Σ−1
ρ with eigenvalue 1/ρ and ρ,

respectively. Letting H̃i = Hi + Zi leads to the test statistic

(
VVV(n)
ρ

)ᵀ (
Σ0
nρ

)−1
VVV(n)
ρ =

d∑
i=1

(H̃i − np0
i )

2

np0
i + 1/ρ

+
1

1−
∑

i
(p0i )

2

p0i+
1
nρ

(
d∑
i=1

(H̃i − np0
i )√

n

p0
i

p0
i + 1

nρ

)2

=

d∑
i=1

(H̃i − np0
i )

2

np0
i + 1/ρ

+
1

1−
∑

i
(p0i )

2

p0i+
1
nρ

(
d∑
i=1

(H̃i − np0
i )√

n

p0
i

p0
i + 1

nρ

)2

We can then rewrite the denominator of the coefficient of the second term,

1−
d∑
i=1

(p0
i )

2

p0
i + 1

nρ

=

d∑
i=1

(
p0
i (p

0
i + 1

nρ)

p0
i + 1

nρ

− (p0
i )

2

p0
i + 1

nρ

)
=

1

nρ
·

d∑
i=1

p0
i

p0
i + 1

nρ

.

Recalling the form of VVV
(n)
ρ from (7.11) concludes the proof.

Note that the coefficient on the second term of (7.14) grows large as nρ→∞, so this test
statistic does not approach the nonprivate test for a fixed ρ. This is not surprising since
Σ0
nρ must converge to a singular matrix as nρ→∞.

Further, the additional noise adds a degree of freedom to the asymptotic distribution of the
original statistic. This additional degree of freedom results in increasing the point in which
we reject the null hypothesis, i.e. the critical value. Thus, rejecting an incorrect model
becomes harder as we increase the degrees of freedom, and hence decreases power.
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7.2.2. Projected Private Test Statistic

Given that the test statistic in the previous section depends on a nearly singular matrix,
we now derive a new test statistic for the private goodness of fit test. It has the remarkable
property that its asymptotic distribution is χ2

d−1 under both private asymptotics.

We start with the following observation. In the classical chi-square test, the random variable(
(Hi−np0i )√

np0i

)d
i=1

has covariance matrix Σ0 = Id−
√
ppp0
√
ppp0

ᵀ
under the null hypothesis H0 : ppp =

ppp0. The classical test essentially uncorrelates these random variables and projects them onto
the subspace orthogonal to

√
ppp0. We will use a similar intuition for the privacy-preserving

random vector VVV
(n)
ρ .

The matrix Σ0
ρ in (7.12) has eigenvector 111 with eigenvalue 1/ρ – regardless of the true

parameters of the data-generating distribution. Hence we think of this direction as pure

noise. We therefore project VVV
(n)
ρ onto the space orthogonal to 111 (i.e. enforce the constraint

that the entries in VVV
(n)
ρ add up to 0, as they would in the noiseless case). We then define the

projected statistic Q(n)
ρ as the following where we write the projection matrix Π

defn
= Id− 1

d111111ᵀ

Q(n)
ρ

defn
=
(
VVV(n)
ρ

)ᵀ
Π
(
Σ0
nρ

)−1
Π VVV(n)

ρ . (7.16)

It will be useful to write out the middle matrix in Q(n)
ρn for analyzing its asymptotic distri-

bution.
Lemma 7.2.5. For the covariance matrix Σ0

nρn given in (7.12), we have the following
identity when nρn → ρ? > 0

Π
(
Σ0
nρn

)−1
Π→

(
Σ0
ρ?
)−1 − ρ?

d
· 111111ᵀ (7.17)

Further, when nρn →∞, we have the following

Π
(
Σ0
nρn

)−1
Π→ Π

(
Diag

(
ppp0
))−1

Π (7.18)

Proof. To prove (7.17), we use the fact that
(
Σ0
ρ?
)−1

has eigenvalue ρ? with eigenvector

111. We then focus on proving (7.18). We use the identity for the inverse of
(
Σ0
nρn

)−1
from

(7.15).

Π
(
Σ0
nρn

)−1
Π

= Π

(
Diag(ppp0 +

1

nρn
· 111)

)−1

Π

+
nρn∑d

i=1
p0i

p0i+
1

nρn

·Π

(
ppp0

ppp0 + 1
nρn

111

)(
ppp0

ppp0 + 1
nρn

111

)ᵀ

Π
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We then focus on the second term in the sum and write λn =
∑d

i=1
p0i

p0i+
1

nρn

.

nρn
λn
·Π

(
ppp0

ppp0 + 1
nρn

111

)(
ppp0

ppp0 + 1
nρn

111

)ᵀ

Π

=
nρn
λn
·

(
ppp0

ppp0 + 1
nρn

111
− λn

d
· 111

)(
ppp0

ppp0 + 1
nρn
· 111
− λn

d
· 111

)ᵀ

=
nρn
λn
·

(
ppp0

ppp0 + 1
nρn
· 111

)(
ppp0

ppp0 + 1
nρn
· 111

)ᵀ

− nρn
d
·

(
ppp0

ppp0 + 1
nρn
· 111

)
111ᵀ − nρn

d
· 111

(
ppp0

ppp0 + 1
nρn
· 111

)ᵀ

+
nρnλn
d2

· 111111ᵀ

We consider entry (i, j) of the above matrix, which we can write as

nρn
λn
·

(
p0
i

p0
i + 1

nρn

)
·

(
p0
j

p0
j + 1

nρn

)
− nρn

d

(
p0
i

p0
i + 1

nρn

+
p0
j

p0
j + 1

nρn

)
+
nρnλn
d2

=
nρn
dλn

(
λ2
n

d
− 1

(p0
i + 1

nρn
)(p0

j + 1
nρn

)

(
λn
nρn

(p0
i + p0

j )− p0
i p

0
j (d− 2λn)

))

= nρn

(
λn
d2
−

(2λn − d)p0
i p

0
j

d(p0
i + 1

nρn
)(p0

j + 1
nρn

)

)
−

p0
i + p0

j

dλn(p0
i + 1

nρn
)(p0

j + 1
nρn

)
.

We then let n→∞ to get

nρn
d

(
λn
d
−

(2λn − d)p0
i p

0
j

λn(p0
i + 1

nρn
)(p0

j + 1
nρn

)

)
−

p0
i + p0

j

dλn(p0
i + 1

nρn
)(p0

j + 1
nρn

)

→ 1

p0
i

+
1

p0
j

− 1

p0
i

− 1

p0
j

= 0.

Thus, we have shown that for nρn →∞,

Π
(
Σ0
nρn

)−1
Π→ Π

(
Diag

(
ppp0
))−1

Π.

We now show that the projected statistic is asymptotically chi-square distributed in both
private asymptotic regimes, in fact we can prove it more generally for ρn = Ω(1/n).

Theorem 7.2.6. Let VVV
(n)
ρ be given in (7.11). For null hypothesis H0 : ppp = ppp0, we can write
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the projected statistic Q(n)
ρ in the following way for ñ =

∑d
i=1(Hi + Zi)

Q(n)
ρ =

d∑
i=1

(
V

(n)
ρ,i

)2

p0
i + 1

nρ

− ρ

d
(ñ− n)2

+
nρ∑d

`=1
p0`

p0`+
1
nρ

 d∑
j=1

p0
j

p0
j + 1

nρ

·V(n)
ρ,j

2

. (7.19)

For ρn = Ω(1/n), if the null hypothesis holds then Q(n)
ρn

D→ χ2
d−1. Further, for nρn → ∞,

the difference between Q(n)
ρn and the classical chi-square statistic

∑d
i=1

(Hi−np0i )
2

np0i
converges

in probability to 0.

Proof. We first show that we can write the projected statistic in (7.16) in the proposed way.
Using (7.17), we can write the projected statistic in terms of the nonprojected statistic in
(7.14), which will give the expression in (7.19)

Q(n)
ρn =

(
VVV(n)
ρn

)ᵀ ((
Σ0
nρn

)−1 − nρn
d
· 111111ᵀ

)
VVV(n)
ρn = Q(n)

ρn −
nρn
d
·
(
VVV(n)
ρn

)ᵀ
111111ᵀ VVV(n)

ρn .

Recall that 111 is an eigenvector of Σ0
nρn for nρn > 0, otherwise the matrix is not defined.

Note that Σ0
nρn is diagonalizable, i.e. Σ0

nρn = BDBᵀ where D is a diagonal matrix and B
is an orthogonal matrix with one column being 1/d · 111. For the following matrix Λ, we can
write it as a d× d identity matrix except one of the entries on the diagonal is zero.

Λ =
(
Σ0
nρn

)−1/2
Π BDBᵀ Π

(
Σ0
nρn

)−1/2
.

Thus, Λ is idempotent and has rank d − 1 for each n where nρn > 0. We define WWW ∼
N (000, Id−1). We then know that Q(n)

ρn has the same asymptotic distribution as WWW ᵀWWW and so
we can apply Theorem 7.1.2.

When nρn →∞, we also have that VVV
(n)
ρn

D→ N
(
000,Σ0

)
from Lemma 7.2.2. We then analyze

the asymptotic distribution of the projected statistic, where we write VVV ∼ N
(
000,Σ0

)
and

study the distribution of VVVᵀ Π
(
Diag(ppp0)

)−1
Π VVV. We note that we have VVVᵀ111 = 0, which

simplifies the asymptotic distribution of the projected statistic.

VVVᵀ Π
(
Diag(ppp0)

)−1
Π VVV =

d∑
i=1

V2
i

p0
i

Note that this last final form is exactly the original chi-square statistic used in the classical
test, which is known to converge to χ2

d−1.
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7.2.3. Comparison of Statistics

We now want to compare the two private chi-square statistics in (7.13) and (7.16) to see
which may lead to a larger power (i.e. smaller Type II error). The following theorem shows
that we can write the nonprojected statistic (7.13) as a combination of both the projected
statistic (7.16) and squared independent Gaussian noise.
Theorem 7.2.7. Consider histogram data HHH that has Gaussian noise ZZZ ∼ N (000, 1/ρ · Id)
added to it. For the statistics Q

(n)
ρ and Q(n)

ρ based on the noisy counts given in (7.13) and
(7.16) respectively, we have

Q(n)
ρ = Q(n)

ρ +
ρ

d

(
d∑
i=1

Zi

)2

.

Further, for any fixed data HHH, Q(n)
ρ is independent of

(∑d
i=1 Zi

)2
.

To prove this we will use the noncentral version of Craig’s Theorem.
Theorem 7.2.8 [Craig’s Theorem (John G. Reid, 1988)]. Let YYY ∼ N (µµµ,C). Then the
quadratic forms YYY ᵀAYYY and YYY ᵀBYYY are independent if ACB = 0.

We are now ready to prove our theorem.

Proof of Theorem 7.2.7. We first show that we can write Q
(n)
ρ −Q(n)

ρ = ρ
d

(∑d
i=1 Zi

)2
. Note

that
(
VVV

(n)
ρ

)ᵀ
111 =

∑d
i=1 Zi/

√
n and

(
Σ0
ρ

)−1
has eigenvalue ρ with eigenvector 111. We then

have

Q(n)
ρ =

(
VVV(n)
ρ

)ᵀ (
Σ0
nρ

)−1
VVV(n)
ρ

=
(
VVV(n)
ρ

)ᵀ(
Id −

1

d
111111ᵀ +

1

d
111111ᵀ
)ᵀ (

Σ0
nρ

)−1
(
Id −

1

d
111111ᵀ +

1

d
111111ᵀ
)

VVV(n)
ρ

= Q(n)
ρ +

2

d
(VVV(n)

ρ )ᵀ111111ᵀ
(
Σ0
nρ

)−1
(
Id −

1

d
111111ᵀ
)

VVV(n)
ρ +

1

d2
(VVV(n)

ρ )ᵀ111111ᵀ
(
Σ0
nρ

)−1
111111ᵀVVV(n)

ρ

= Q(n)
ρ +

2

d
(VVV(n)

ρ )ᵀ111111ᵀ
(
Σ0
nρ

)−1
Π VVV(n)

ρ +
ρ

d

(
d∑
i=1

Zi

)2

= Q(n)
ρ +

2nρ

d

(
d∑
i=1

Zi/
√
n

)
111ᵀVVV(n)

ρ −
2ρ

d

(
d∑
i=1

Zi

)2

+
ρ

d

(
d∑
i=1

Zi

)2

= Q(n)
ρ +

ρ

d

(
d∑
i=1

Zi

)2

We now apply Craig’s Theorem to show that for a fixed histogram HHH, we have Q(n)
ρ is

independent of
(∑d

i=1 Zi

)2
. When HHH is fixed, we can define the random variable YYY ∼

N (µµµ, 1/ρId) where µµµ = (HHH − nppp0)/
√
n. If we set A = Π

(
Σ0
nρ

)−1
Π , then our projected
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statistic can be rewritten as YYY ᵀAYYY . Further, if we define B = 111111ᵀ, then
(∑d

i=1 Yi

)2
=

YYY ᵀBYYY . We then have A (1/ρ · Id)B = 0, so that the projected statistic is independent of(∑d
i=1 Yi

)2
by Theorem 7.2.8. We next note that YYY = ZZZ +µµµ and that 111ᵀµ = 0. Hence,

YYY ᵀBYYY = (ZZZ +µµµ)ᵀB(ZZZ +µµµ) = ZZZᵀBZZZ + 2µµµᵀBZZZ +µµµᵀBµµµ = ZZZᵀBZZZ =

(
d∑
i=1

Zi

)2

.

Algorithm 14 with procedure NewStatAsymptGOF shows how to perform goodness of fit
testing with either of these two test statistics, i.e. nonprojected (7.13) or projected (7.16).

We note that our test is zCDP for neighboring histogram datasets due to it being an
application of the Gaussian mechanism and Theorem 2.2.5. Hence:
Theorem 7.2.9. NewStatAsymptGOF(·; ρ, α,ppp0) is ρ-zCDP.

Algorithm 14 New Private Statistic Goodness of Fit Test: NewStatAsymptGOF

Input: hhh ρ, α, H0 : ppp = ppp0

Set h̃hh← hhh+ZZZ where ZZZ ∼ N (000, 1/ρ · Id).
For the nonprojected statistic:

T← 1
n

(
h̃hh− nppp0

)ᵀ (
Σ0
nρ

)−1
(
h̃hh− nppp0

)
τ ← (1− α) quantile of χ2

d

For the projected statistic:

T← 1
n

(
h̃hh− nppp0

)ᵀ
Π
(
Σ0
nρ

)−1
Π
(
h̃hh− nppp0

)
τ ← (1− α) quantile of χ2

d−1

if T > τ then
Decision ← Reject

else
Decision ← Fail to Reject

Output: Decision

7.2.4. Power Analysis

From Theorem 7.2.7 we see that the difference between Q
(n)
ρ and Q(n)

ρ is the addition of
squared independent noise. This additional noise can only hurt power, because for the same

data the statistic Q
(n)
ρ has larger variance than Q(n)

ρ and does not depend on the underlying
data. If we fix an alternate hypothesis – as we did in the previous chapter – we can obtain
asymptotic distributions for our two test statistics.
Theorem 7.2.10. Consider the null hypothesis H0 : ppp = ppp0 and the alternate hypothesis
H1 : ppp = ppp0 + 1√

n
∆∆∆ where

∑d
i=1 ∆i = 0. Assuming the data HHH comes from the alternate

H1, the two statistics Q(n)
ρn , and Q

(n)
ρn have noncentral chi-square distributions when nρn →
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ρ? > 0, i.e.

Q(n)
ρn

D→ χ2
d

(
∆∆∆ᵀ (Σ0

ρ?
)−1

∆∆∆
)

& Q(n)
ρn

D→ χ2
d−1

(
∆∆∆ᵀ (Σ0

ρ?
)−1

∆∆∆
)
.

Further, if nρn →∞ then

Q(n)
ρn

D→ χ2
d−1

(∑
i

∆2
i

p0
i

)

We point out that in the case where nρn →∞, the projected statistic has the same asymp-
totic distribution as the classical (nonprivate) chi-square test under the same alternate
hypothesis, given in Lemma 6.1.8.

We will use the following result to prove this theorem.
Lemma 7.2.11 [Ferguson (1996)]. Suppose WWW ∼ N (µµµ,C). If C is a projection of rank ν
and Cµµµ = µµµ then WWW ᵀWWW ∼ χ2

ν(µµµᵀµµµ).

Proof of Theorem 7.2.10. In this case we have the random vector VVV
(n)
ρn from (7.11) con-

verging in distribution to N
(
∆∆∆,Σ0

ρ?
)

if nρn → ρ? > 0 or N
(
∆∆∆,Σ0

)
if nρn → ∞ by

Lemma 7.2.2. We first consider the case when nρn → ρ? > 0. Consider VVV ∼ N
(
∆∆∆,Σ0

ρ?
)

and

WWW =
(
Σ0
ρ?
)−1/2

VVV ∼ N
((

Σ0
ρ?
)−1/2

∆∆∆, Id

)
. We then know that WWW ᵀWWW and the nonprojected

statistic Q
(n)
ρn have the same asymptotic distribution. In order to use Lemma 7.2.11, we need

to verify that
(
Σ0
ρ

)−1/2
Σ0
ρ?
(
Σ0
ρ?
)−1/2

((
Σ0
ρ

)−1/2
∆∆∆
)

=
(
Σ0
ρ?
)−1/2

∆∆∆, which indeed holds.

We then consider the projected statistic Q(n)
ρn where nρn → ρ? > 0. Similar to the proof

of Theorem 7.2.6, we diagonalize Σ0
ρ? = BDBᵀ where B is an orthogonal matrix with one

column being 1/d · 111 and D is a diagonal matrix. We then let

YYY =
(
Σ0
ρ?
)−1/2

Π VVV

We then know that YYY ᵀYYY and Q(n)
ρn will have the same asymptotic distribution. Recall

that Λ =
(
Σ0
ρ?
)−1/2

Π Σ0
ρ? Π

(
Σ0
ρ?
)−1/2

is idempotent with rank d − 1. Lastly, to apply
Lemma 7.2.11 we need to show the following

Λ
((

Σ0
ρ?
)−1/2

Π ∆∆∆
)

=
(
Σ0
ρ?
)−1/2

Π ∆∆∆.

Let B̂ ∈ Rd×(d−1) be the same as matrix B whose corresponding column for 1/d·111 is missing,
which we assume to be the last column of B. Further, we define D̂ ∈ R(d−1)×(d−1) to be
the same as D without the last row and column. We can then write Π Σ0

ρ? Π = B̂D̂B̂ᵀ to
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simplify Λ
(
Σ0
ρ?
)−1/2

Π, i.e.(
Σ0
ρ?
)−1/2

Π Σ0
ρ? Π

(
Σ0
ρ?
)−1

Π

= BD−1/2Bᵀ Π Σ0
ρ?B̂D̂

−1B̂ᵀ

= BD−1/2BᵀB̂DBᵀB̂D̂−1B̂ᵀ

= BD−1/2BᵀB̂DD̂−1B̂ᵀ

= BD−1/2B̂ᵀ

= BD−1/2BᵀΠ

=
(
Σ0
ρ?
)−1/2

Π

The noncentral parameter is then

∆∆∆ᵀΠ
(
Σ0
ρ?
)−1

Π∆∆∆

We then note that
∑

i ∆i = 0.

For the case when nρn → ∞. From (7.18), we have Π Σ0
nρn Π → Π

(
Diag(ppp0)

)−1
Π, which

can be diagonalized. As we showed in Theorem 7.2.6, we have(
VVV(n)
ρn

)ᵀ
Π
(
Diag(ppp0)

)−1
ΠVVV(n)

ρn =
(
VVV(n)
ρn

)ᵀ
Diag(ppp0)−1VVV(n)

ρn

From Lemma 7.2.2, we know that VVV
(n)
ρn

D→ N
(
∆∆∆,Σ0

)
. We then write UUU ∼ N

(
∆∆∆,Σ0

)
so that

our projected chi-square statistic has the same asymptotic distribution as

UUUᵀ (Diag(ppp0)
)−1

UUU

which has a χ2
d−1(∆∆∆ᵀ

(
Diag(ppp0)

)−1
∆∆∆) distribution.

Note that the noncentral parameters in the previous theorem are the same for both statistics
and only the degrees of freedom are different when nρn → ρ? > 0.

We now compare the variance of the projected and nonprojected statistics with the classical
statistic T(n) (N (0, 1/ρ)) in (6.4) under the alternate hypothesis.
Theorem 7.2.12. Let nρn → ρ? > 0 and let H0 : ppp = ppp0 but the data is actually drawn
from H1 : ppp = ppp0 + 1/

√
n ·∆∆∆. We then have the following as n→∞

V
[
T(n) (N (0, 1/ρn))

]
→ 2 ·

(
d− 1 +

2

ρ?

(
d∑
i=1

1

p0
i

− d

)
+

1

(ρ?)2

(
d∑
i=1

1

(p0
i )

2

)
+ 2 ·

(
d∑
i=1

∆2
i

p0
i

+
1

ρ?

d∑
i=1

∆2
i

(p0
i )

2

))

V
[
Q(n)
ρn

]
→ 2

(
d+ 2 ·∆∆∆ᵀ (Σ0

ρ?
)−1

∆∆∆
)
, V

[
Q(n)
ρn

]
→ 2(d− 1 + 2 ·∆∆∆ᵀ (Σ0

ρ?
)−1

∆∆∆)
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Further if nρn →∞, then

V
[
T(n) (N (0, 1/ρn))

]
→ 2

(
d− 1 + 2

d∑
i=1

∆2
i

p0
i

)
, V

[
Q(n)
ρn

]
→ 2

(
d− 1 + 2

d∑
i=1

∆2
i

p0
i

)

We prove this result by using the following.
Lemma 7.2.13 [Petersen and Pedersen (2012)]. Let WWW ∼ N (mmm,C), then

V [WWW ᵀAWWW ] = Trace (AC(A+Aᵀ)C) +mmmᵀ ((A+Aᵀ)C(A+Aᵀ))mmm.

We are now ready to prove our result about the variance of our statistics.

Proof of Theorem 7.2.12. For the projected and nonprojected statistics, we can obtain the

variance by using Theorem 7.2.10. We then focus on the statistic T(n) (ρn)
defn
= T(n) (N (0, 1/ρn)).

We first point out that when nρn →∞, the noise in the statistic becomes insignificant and
we end up with a noncentral chi-square statistic. Hence, we consider nρn → ρ?. We can
then directly apply Lemma 7.2.13, where T(n) (ρn) has the same asymptotic distribution as
WWW ᵀΛΛΛρ?WWW where ΛΛΛρ? is given in (6.7) and WWW ∼ N (µµµ′,ΣΣΣ) for µ′µ′µ′ given in Corollary 6.1.10 and
ΣΣΣ given in (6.6).

With this result, we can compare which statistic has higher variance which we would expect
would lead to worse power. Note that the projected statistic always has smaller asymptotic
variance than the nonprojected statistic. As an example, consider ppp0 = (1/d, · · · , 1/d)ᵀ and
nρn → ρ? > 0. We can then write the inverse of the covariance in this case,

(
Σ0
ρ?
)−1

=
ρ?

ρ? + d

(
d · Id +

(ρ?)2

ρ? + d
· 111111ᵀ

)
. (7.20)

The projected statistic then has asymptotic variance

2 · (d− 1) + 4d ·
(

ρ?

ρ? + d

)
∆∆∆ᵀ∆∆∆.

Now the variance of the original chi-square statistic which uses the noisy histogram from
Chapter 6 is then,

2(d− 1)

(
1 +

2d

ρ?

)
+

d3

(ρ?)2
+ 4d ·

(
ρ? + d

ρ?

)
∆∆∆ᵀ∆∆∆.

Comparing the variance of these two statistics shows that we would expect the projected
statistic to have better power.
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Figure 15: Empirical Type I Error for our goodness of fit tests in NewStatAsymptGOF with

the nonprojected statistic Q
(n)
ρ .
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Figure 16: Empirical Type I Error for our goodness of fit tests in NewStatAsymptGOF with

the projected statistic Q(n)
ρ .

7.2.5. Experiments for Goodness of Fit Testing

As we did in Chapter 6, we will fix α = 0.05 throughout all of our experiments. All of our
tests are designed to achieve Type I error at most α as we empirically show for different
null hypotheses ppp0, privacy parameters ρ, and sample size n in Figure 15 and Figure 16 for
the nonprojected and projected statistic, respectively. We include 1.96 times the standard
error of our 100, 000 independent trials (giving a 95% confidence interval) as well as the
target α = 0.05 Type I Error as a horizontal line.

We then empirically check the power of our new tests in NewStatAsymptGOF for both the
projected and nonprojected statistic. Subject to the constraint that our tests achieve Type
I error at most α, we seek to maximize power, or the probability of rejecting the null
hypothesis when a distribution ppp1 6= ppp0, called the alternate hypothesis, is true. We expect
to see the projected statistic achieve higher power than the nonprojected statistic due to
Theorem 7.2.7. Further, the fact that the critical value we use for the projected statistic
is smaller than the critical value for the nonprojected statistic might lead to the projected
statistic having higher power.

For demonstrating the power of our tests, we want to find “bad” alternate hypotheses,
which would be hard for our test to reject. The way in which we choose the alternate
then is by finding vectors ∆∆∆ that make the variance of the statistics that we computed in
Theorem 7.2.12 as large as possible. Intuitively, the larger the variance the harder it will be
for our test to distinguish between fluctuations in the data due to sampling or due to the
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(a) H0 : ppp = ppp0 = (1/4, 1/4, 1/4, 1/4)ᵀ and
H1 : ppp0 + ∆∆∆ where ∆∆∆ = 0.01 · (1,−1,−1, 1)ᵀ.
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(b) H0 : ppp = ppp0 = (1/2, 1/6, 1/6, 1/6)ᵀ

and H1 : ppp0 + ∆∆∆ where ∆∆∆ = 0.01 ·
(1,−1/3,−1/3,−1/3)ᵀ.

Figure 17: Comparison of empirical power of classical non-private test versus
NewStatAsymptGOF with both projected (solid line) and nonprojected statistics (dashed
line).

null hypothesis being incorrect. We ultimately want the distribution of the test statistic
under the null and alternate hypotheses to be far apart.

We then set a null hypothesis ppp0 and then find the eigenvector ∆∆∆ of Σ0
nρ with the largest

eigenvalue. Ultimately, for a fixed ρ > 0 we want to find a probability vector ppp0 so that the

max eigenvalue of
(
Σ0
nρ

)−1
=
(

Diag(ppp0)− ppp0(ppp0)ᵀ + 1
nρ Id

)−1
is as large as possible.

As we did in our power experiments in Section 6.4, we set the null hypothesis ppp0 and
alternate hypothesis ppp1 = ppp0 + ∆∆∆ for various sample sizes. For each sample size n, we
sample 10, 000 independent datasets from the alternate hypothesis and test H0 : ppp = ppp0 in
NewStatAsymptGOF. We present the resulting power plots in Figure 17 for NewStatAsymptGOF
from Algorithm 14.

We then compare the projected and nonprojected statistic in NewStatAsymptGOF to the
classical statistic used in Chapter 6 for Type I Error level α = 0.05 and ρ = 0.00125. Since
the projected statistic outperforms the other tests, we plot the difference in power between
the projected statistic and the other tests for ppp0 = (1/2, 1/6, 1/6, 1/6)ᵀ but the data is
drawn from ppp1 = ppp0 + ∆∆∆ where ∆∆∆ = 0.01 · (1,−1/3,−1/3,−1/3)ᵀ. Note that the error
bars show 1.96 times the standard error in the difference of proportions from 100, 000 trials,
giving a 95% confidence interval. We give the corresponding plot in Figure 18. Recall that
MCGOF with Gaussian noise is the test in Algorithm 8, AsymptGOF is the test in Algorithm 9,
and NewStatAsymptGOF with the non-projected statistic is labeled as “NonProjGOF” in the
plot.
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where ∆∆∆ = 0.01 · (1,−1,−1, 1)ᵀ.
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(b) ppp0 = (1/2, 1/6, 1/6, 1/6)ᵀ and H1 : ppp0+∆∆∆
where ∆∆∆ = 0.01 · (1,−1/3,−1/3,−1/3)ᵀ.

Figure 18: Comparison of empirical power between all zCDP hypothesis tests for goodness
of fit and NewStatAsymptGOF with projected statistic.

7.3. General Chi-Square Private Tests

We now consider the case where the null hypothesis contains a subset of data distributions,
so that the best fitting distribution must be estimated and used in the test statistics. The
data is multinomialHHH ∼ Multinomial(n,ppp(θθθ0)) and ppp is a function that converts parameters
into a s-dimensional multinomial probability vector. The null hypothesis is H0 : θθθ0 ∈ Θ;
i.e. ppp(θθθ0) belongs to a subset of a lower-dimensional manifold. We again use Gaussian noise
ZZZ ∼ N (000, 1/ρ · Id) to ensure ρ-zCDP, and we define

VVV(n)
ρ (θθθ)

defn
=
√
n

(
HHH +ZZZ

n
− ppp (θθθ)

)
. (7.21)

With θθθ0 being the unknown true parameter, we are now ready to define our two test statistics

in terms of some function φ : Rd → R, such that φ(HHH +ZZZ)
P→ θθθ0 (recall from Section 7.1.2

that φ is a simple but possibly a suboptimal estimate of the true parameter θθθ0 based on
the noisy data) and the covariance matrix

Σ0
ρ(θθθ)

defn
= Diag (ppp(θθθ))− ppp(θθθ)ppp(θθθ)ᵀ + 1/ρ · Id.

We define the nonprojected statistic R
(n)
ρ (θθθ) as follows:

M̂nρ
defn
=
(
Σ0
nρ (φ(HHH +ZZZ))

)−1

R(n)
ρ (θθθ)

defn
= VVV(n)

ρ (θθθ)ᵀM̂nρVVV
(n)
ρ (θθθ). (7.22)

This is a specialization of (7.3) in Section 7.1.2 with the following substitutions: VVV(n) =
HHH+ZZZ
n , A(θθθ) = ppp(θθθ), and M(θθθ) =

(
Σ0
nρ(θθθ)

)−1
.

122



For the projected statistic R(n)
ρ (θ), the corresponding substitutions are

Π = Id − 1
d111111ᵀ, VVV(n) = Π ·

(
HHH+ZZZ
n

)
, A(θθθ) = Π · ppp(θθθ), and again M(θθθ) =

(
Σ0
nρ(θθθ)

)−1
giving:

R(n)
ρ (θθθ)

defn
= VVV(n)

ρ (θθθ)ᵀ Π M̂nρ Π VVV(n)
ρ (θθθ). (7.23)

We then assume that for both the projected and nonprojected statistic Assumption 7.1.1
holds using their relative vectors VVV(n), A(θθθ), and matrix M(θθθ). We now present the asymp-
totic distribution of both statistics, which is proved using the result in Theorem 7.1.4.

Theorem 7.3.1. Under H0 : θθθ0 ∈ Θ, the following are true as n → ∞. Setting θ̂θθ
(n)

=

arg minθθθ∈Θ R
(n)
ρn (θθθ) we have R

(n)
ρn (θ̂θθ

(n)
)

D→ χ2
d−s if nρn → ρ? > 0. Furthermore, setting

θ̂θθ
(n)

= arg minθ∈ΘR
(n)
ρn (θ) we have R(n)

ρn (θ̂θθ
(n)

)
D→ χ2

d−s−1 if ρn = Ω(1/n).

Proof. To prove this result, we appeal to Theorem 7.1.4. For the nonprojected statistic

R
(n)
ρn (·) we have that C(θθθ) = Σ0

nρn(θθθ) and the middle matrix M(θθθ) is simply the inverse of
it, which satisfies the hypotheses of Theorem 7.1.4.

For the projected statisticR(n)
nρn(·), we will write C(θθθ) = Π Σ0

nρn(θθθ) Π, M(θθθ) =
(
Σ0
nρn

)−1
(θθθ),

and Ȧ(θθθ) = Π·∇ppp(θθθ) ∈ Rd×m. Note that C(θθθ) has rank d−1 for all θθθ ∈ Θ in a neighborhood
of θθθ0 and all n. We will now show that we can satisfy the hypotheses in Theorem 7.1.4 with
these matrices, i.e. we show the following two equalities hold for all θθθ ∈ Θ

C(θθθ) M(θθθ) C(θθθ) = C(θθθ) & C(θθθ) M(θθθ) Ȧ(θθθ) = Ȧ(θθθ).

We first focus on proving the first equality C(θθθ) M(θθθ) C(θθθ) = C(θθθ). From (7.17), we can
simplify the left hand side of the equality significantly by rewriting it as

Π Σ0
nρn(θθθ) Π− nρn

d
·Π Σ0

nρn(θθθ) 111111ᵀ Σ0
nρn(θθθ) Π

We now show that Π Σ0
nρn(θθθ) 111111ᵀ Σ0

nρn(θθθ) = 0 for all n, which would prove this equality.

Note that Σ0
nρn(θθθ) is symmetric and has eigenvector 111 with eigenvalue 1

nρn
. Thus,

Π Σ0
nρn(θθθ) 111111ᵀ Σ0

nρn(θθθ) =
1

n2ρ2
n

·Π 111111ᵀ = 0 ∀n.

We now prove the second equality C(θθθ) ·M(θθθ) ·Ȧ(θθθ) = Ȧ(θθθ). We again use (7.17) to simplify
the left hand side of the equality:

Π Σ0
nρn(θθθ)

[(
Σ0
nρn(θθθ)

)−1 − nρn
d
· 111111ᵀ

]
∇ppp(θθθ)

= Π
[
Id −

nρn
d
· Σ0

nρn(θθθ) 111111ᵀ
]
∇ppp(θ)

= Π Π∇ppp(θθθ)
= Π ∇ppp(θθθ).
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This completes the proof for ρn = Ω(1/n).

Again, the projected statistic has the same distribution under both private asymptotic
regimes and matches the non-private chi-square test asymptotics. We present our more
general test GenChiTest in Algorithm 15. The quick-and-dirty estimator φ(·) is application-
specific (Section 7.3.1 gives independence testing as an example).5 Further, for neighboring
histogram data, we have the following privacy guarantee.
Theorem 7.3.2. GenChiTest(·; ρ, α, φ,Θ) is ρ-zCDP.

Algorithm 15 Private General Chi-Square Test: GenChiTest

Input: hhh; ρ, α, φ, H0 : θθθ0 ∈ Θ
Set h̃hh← hhh+ZZZ where ZZZ ∼ N (000, 1/ρ · Id).
Set M̂ =

(
Σ0
nρ

(
φ(h̃hh)

))−1

For the nonprojected statistic:

T(θθθ) =
1

n

(
h̃hh− nppp(θθθ)

)ᵀ
M̂nρ

(
h̃hh− nppp(θθθ)

)

Set θ̂θθ
(n)

= argminθθθ∈Θ T(θθθ), t← (1− α) quantile of χ2
d−m

For the projected statistic:

T(θθθ) =
1

n

(
h̃hh− nppp(θθθ)

)ᵀ
Π M̂nρ Π

(
h̃hh− nppp(θθθ)

)

Set θ̂θθ
(n)

= argminθθθ∈Θ T(θθθ), t← (1− α) quantile of χ2
d−m−1

if T(θ̂θθ
(n)

) > t then
Decision ← Reject.

else
Decision ← Fail to Reject.

Output: Decision.

7.3.1. Application - Independence Test

We showcase our general chi-square test GenChiTest by giving results for independence
testing. Conceptually, it is convenient to think of the data histogram as an r× c table, with
pi,j being the probability a person is in the bucket in row i and column j. We then consider
two multinomial random variables YYY (1) ∼ Multinomial(1,πππ(1)) for πππ(1) ∈ Rr (the marginal
row probability vector) and YYY (2) ∼ Multinomial(1,πππ(2)) for πππ(2) ∈ Rc (the marginal column
probability vector). Under the null hypothesis of independence between YYY (1) and YYY (2),

pi,j = π
(1)
i π

(2)
j . Generally, we write the probabilities as ppp(πππ(1),πππ(2)) = πππ(1)

(
πππ(2)

)ᵀ
so that

HHH ∼ Multinomial
(
n,ppp(πππ(1),πππ(2))

)
.

5For goodness-of-fit testing, φ always returns ppp0 and s = 0 so GenChiTest is a generalization of
NewStatAsymptGOF.
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Thus we have the underlying parameter vector θθθ0 =
(
π

(1)
1 , · · · , π(1)

r−1, π
(2)
1 , · · · , π(2)

c−1

)
- we

do not need the last component of πππ(1) or πππ(2) because we know that each must sum to 1.
Also, we have d = rc and s = (r − 1) + (c− 1) in this case. We want to test whether YYY (1)

is independent of YYY (2). For our data, we are given a collection of n independent trials of
YYY (1) and YYY (2). We then count the number of joint outcomes in a contingency table given in
Table 2. Each cell in the contingency table contains element Hi,j that gives the number of

occurrences of Y
(1)
i = 1 and Y

(2)
j = 1. Since our test statistics notationally treat the data

as a vector, when needed, we convert HHH to a vector that goes from left to right along each
row of the table.

In order to compute the statistic R
(n)
ρ

(
θ̂θθ

(n)
)

or R(n)
ρ

(
θ̂θθ

(n)
)

in GenChiTest, we need to find

a quick-and-dirty estimator φ(HHH +ZZZ) that converges in probability to ppp
(
πππ(1),πππ(2)

)
as n→

∞. We will use the estimator for the unknown probability vector based on the marginals

of the table with noisy counts, so that for näıve estimates π̃
(1)
i =

Hi,·+Zi,·
ñ , π̃

(2)
j =

H·,j+Z·,j
ñ

where ñ = n+
∑

i,j Zi,j we have,6

φ (HHH +ZZZ) =
(
π̃

(1)
1 , · · · , π̃(1)

r−1, π̃
(2)
1 , · · · , π̃(2)

c−1

)
. (7.24)

Note that as n → ∞, the marginals converge in probability to the true probabilities even

for ZZZ ∼ N (000, 1/ρn · Irc) with ρn = ω(1/n2), i.e. we have that π̃
(1)
i

P→ π
(1)
i and π̃

(2)
j

P→ π
(2)
j

for all i ∈ [r] and j ∈ [c]. Recall that in Theorem 7.3.1, in order to guarantee the correct
asymptotic distribution we require the nρn → ρ? > 0, or in the case of the projected statistic,
we need ρn = Ω(1/n). Thus, Theorem 7.3.1 imposes more restrictive settings of ρn for the
nonprojected statistic than what we need in order for the näıve estimate to converge to
the true underlying probability. For the projected statistic, we only need ρn = Ω(1/n) to

satisfy the conditions in Theorem 7.3.1 and for φ(HHH +ZZZ)
P→ ppp

(
πππ(1),πππ(2)

)
.

We then use this statistic φ(HHH+ZZZ) in our nonprojected and projected statistic in GenChiTest

to have a ρ-zCDP hypothesis test for independence between two categorical variables. Note
that in this setting, the projected statistic has a χ2

(r−1)(c−1) distribution, which is exactly
the same asymptotic distribution used in the classical Pearson chi-square independence test.

For our results we will again fix α = 0.05, which we give as a horizontal line in our plots.
For our data distributions, we will again consider 2 × 2 contingency tables where πππ(1) =
(π(1), 1− π(1)) and πππ(2) = (π(2), 1− π(2)). In Figure 19 and Figure 20 we give the empirical
Type I error for our independence tests given in GenChiTest for both the nonprojected
and projected statistics for various n, data distributions, and zCDP parameter ρ. We also
include error bars denoting 1.96 times the standard error over the 10, 000 trials. We note
that for small sample sizes we are achieving much smaller Type I Errors than the target α
due to the fact that sometimes the noise forces us to have small expected counts (< 5 in
any cell) in the contingency table based on the noisy counts, in which case our tests are

6We note that in the case of small sample sizes, we follow a common rule of thumb where if any of the
expected cell counts are less than 5, i.e. if n π̃

(1)
i π̃

(2)
j ≤ 5 for any (i, j) ∈ [r]× [c], then we do not make any

conclusion.
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Figure 19: Empirical Type I Error for our new independence tests in GenChiTest with the
nonprojected statistic.
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Figure 20: Empirical Type I Error for our new independence tests in GenChiTest with the
projected statistic.

inconclusive.

We then compare the power that GenChiTest achieves for both of our test statistics. We
then sample our contingency table HHH from Multinomial(n,ppp(πππ(1),πππ(2)) + ∆∆∆) for various ∆∆∆,
so that the null hypothesis is indeed false and should be rejected. We give the empirical

power in 1, 000 trials of GenChiTest in Figure 21 using both the nonprojected R
(n)
ρ

(
θ̂θθ

(n)
)

from (7.22) and projected statistic R(n)
ρ

(
θ̂θθ

(n)
)

from (7.23). Note that again we pick θ̂θθ
(n)

from Theorem 7.1.3 relative to the statistic we use. We label the test from GenChiTest

with the nonprojected statistic with a dashed line whereas the solid line uses the projected
statistic.

As we did for our goodness of fit tests, we compare the projected and nonprojected statistic
in GenChiTest to the classical Pearson chi-square statistic used for independence testing
in Chapter 6 for Type I Error level α = 0.05 and ρ = 0.00125 to ensure our hypothesis
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(a) We set π(1) = π(2) = 1/2 and ∆∆∆ = 0.01 ·
(1,−1)ᵀ(1,−1).
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(b) We set π(1) = 2/3, π(2) = 1/2 and ∆∆∆ =
0.01 · (1,−1)ᵀ(1, 0).

Figure 21: Comparison of empirical power of classical non-private test versus GenChiTest

in 1, 000 trials. The solid line is with the projected statistic and the dashed line is with the
nonprojected statistic.

tests for independence are 0.00125-zCDP. Once again, the projected statistic outperforms
the other tests, so we plot the difference in power between the projected statistic and the
other tests for πππ(1) = (π(1), 1 − π(1)) and πππ(2) = (π(2), 1 − π(2)) where π(1) = 2/3 and
π(2) = 1/2 but the data is not independent and is then drawn from the following table of
probabilities πππ(1)

(
πππ(2)

)ᵀ
+ 0.01 · (1,−1)ᵀ(1, 0). Note that the error bars show 1.96 times the

standard error in the difference of proportions from 10, 000 trials, giving a 95% confidence
interval. We give the corresponding plot in Figure 22. Recall that MCIndep with Gaussian
noise is the test in Algorithm 12, AsymptIndep is the test in Algorithm 13, and we label
“NonProjIndep” as the test GenChiTest with the nonprojected statistic.

7.3.2. Application - GWAS Testing

We next turn to demonstrating that our new general class of private hypothesis tests for
categorical data significantly improves over existing private hypothesis tests even when
extra structure is assumed about the dataset. Specifically, we will be interested in GWAS
data, which was the primary application for private hypothesis tests due to the attack from
Homer et al. (2008). We will then assume that r = 3 and c = 2 and the data is evenly split
between the two columns - as is the case in a trial with both a control and case group. For
such tables, we can directly compute the sensitivity of the classical chi-square statistic:

3∑
i=1

2∑
j=1

n ·
(
Hi,j − H·,j ·Hi,·

n

)2

H·,j ·Hi,·

Lemma 7.3.3 [Uhler et al. (2013); Yu et al. (2014)]. The `1 and `2 global sensitivity of the
chi-square statistic based on a 3× 2 contingency table with positive margins and n/2 cases
and n/2 controls is ∆χ = 4n/(n+ 2).
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Figure 22: Comparison of empirical power between all zCDP hypothesis tests for indepen-
dence and GenChiTest with projected statistic.

Hence, a different approach for a private independence test is to add Gaussian noise with

variance
∆2
χ

2ρ to the chi-square statistic itself, which we call output perturbation. Our statistic
is then simply the Gaussian mechanism for the chi-square statistic. We then compare the

private statistic value with the distribution of T = χ2
2 + N

(
0,

∆2
χ

2ρ

)
where the degrees of

freedom is 2 because we have (r− 1) · (c− 1) = 2. Thus, given a Type I error of at most α,
we then set our critical value as τGauss(α;n, ρ) where

Pr [T > τGauss(α;n, ρ)] = α

We note that V [T ] = 4+ 16n2

2ρ(n+2)2
, whereasR(n)

ρ

(
θ̂θθ

(n)
)

has asymptotic (as n→∞) variance

4. As we will see in our simulations, this additional term in the variance turns out to hurt
power substantially. Thus, output perturbation does not seem to be a useful approach in
hypothesis testing even if extra conditions on the data are assumed – as in the even split
between case and control groups.

For our experiments, we again set Type I error threshold α = 0.05 and consider the empirical
power in 10, 000 trials. We fix the probability vector (1/3, 1/3, 1/3) over the 3 rows in the
first column whereas in the second column we set (1/2, 1/4, 1/4), therefore the case and
control groups do not produce the same outcomes and thus not independent of the disease.
In Figure 23, we show a comparison in the power between our test with the projected
statistic, which assumes no structure on the data, and the output perturbation test, which
crucially relies on the fact that the data is evenly split between the case and control groups.
Note that our new proposed test does not require evenly split data and significantly improves
on the output perturbation test – we can get comparable power to the output perturbation
test when the privacy parameter ρ is 25 times smaller.
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Figure 23: A comparison of empirical power between GenChiTest with projected statistic
and output perturbation from Yu et al. (2014) for independence testing for GWAS type
datasets.

7.4. General Chi-Square Tests with Arbitrary Noise Distributions

We next show that we can apply our testing framework in Algorithm 15 for any type of
noise distribution we want to include for privacy concerns. For example, we consider adding
Laplace noise rather than Gaussian noise if our privacy benchmark were (pure) differential
privacy. In this case, we add Laplace noise with variance 8/ε2 when computing the two

statistics R
(n)
ε2/8

(
θ̂θθ

(n)
)

from (7.22) and R(n)
ε2/8

(
θ̂θθ

(n)
)

from (7.23) so that the resulting tests

will be ε-DP and hence ε2

2 -zCDP from Theorem 2.2.3. Note that the resulting asymptotic
distribution in this case will not be chi-square when we use noise other than Gaussian. We
will then rely on Monte Carlo (MC) sampling to find the critical value in which to reject
the null hypothesis. We give the MC based test which adds independent Laplace noise with
variance 8/ε2 in Algorithm 16 and is thus ε-DP, but any noise distribution can be used
where we replace the parameter 1/ρ in the two statistics to be the variance of the noise that
is added to each count. In fact, Gaussian noise can be used in this framework although the
asymptotic distribution seems to do well in practice even for small sample sizes.

We show that we can use the general chi-square test MC-GenChiTest with ε-DP which uses
Laplace noise in Algorithm 16 for goodness of fit testing H0 : ppp = ppp0. In this case we select

ppp(θ̂θθ
(n)

) = ppp0 and φ(HHH +ZZZ) = ppp0 in both the nonprojected and projected statistics. From
the way that we have selected the critical value τ(α, ε2/8) in Algorithm 16, we have the
following result on Type I error, which follows directly from Theorem 6.1.5.
Theorem 7.4.1. When the number of independent samples m we choose for our MC sam-
pling is larger than 1/α, testing H0 : ppp = ppp0 in Algorithm 16 guarantees Type I error at
most α.

Note, that we are not guaranteed to have Type I error at most α when we have composite
tests, e.g. independence testing, in MC-GenChiTest because we are not sampling from the
exact data distribution.
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Algorithm 16 Private Minimum Chi-Square Test using MC MC-GenChiTest

Input: Histogram data hhh; ε, α, H0 : θθθ0 ∈ Θ, m trials.

Set h̃hh← hhh+ZZZ where ZZZ = (Z1, · · · , Zd), where {Zi}
i.i.d.∼ P where V [Zi] = σ2.

Set M̂ =
(

Σ0
n/σ2

(
φ(h̃hh)

))−1

For the nonprojected statistic:

T(θ) =
1

n

(
h̃hh− nppp(θθθ)

)ᵀ
M̂
(
h̃hh− nppp(θθθ)

)

Set θ̂θθ
(n)

= argminθθθ∈Θ T(θθθ)

Sample {r1, · · · , rm} as m samples from the distribution of T(θ̂θθ
(n)

).
Set τ(α, σ2) to be the d(m+ 1)(1− α)e-largest value of {r1, · · · , rm}.
For the projected statistic:

T(θθθ) =
1

n

(
h̃hh− nppp(θθθ)

)ᵀ
Π M̂ Π

(
h̃hh− nppp(θθθ)

)

Set θ̂θθ
(n)

= argminθθθ∈Θ T(θθθ)

Sample {r1, · · · , rm} as m samples from the distribution of T(θ̂θθ
(n)

).
Set τ(α, σ2) to be the d(m+ 1)(1− α)e-largest value of {r1, · · · , rm}.
if T(θ̂θθ

(n)
) > τ(α, σ2) then

Decision ← Reject.
else

Decision ← Fail to Reject.
Output: Decision
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7.5. Conclusion

We have demonstrated a new broad class of private hypothesis tests GenChiTest for cate-
gorical data based on the minimum chi-square theory. We gave two statistics (nonprojected
and projected) that converge to a chi-square distribution when we use Gaussian noise and
thus lead to zCDP hypothesis tests. Unlike prior work, these statistics have the same
asymptotic distributions in the private asymptotic regime as the classical chi-square tests
have in the classical asymptotic regime.

Our simulations show that with either the nonprojected or projected statistic our tests
achieve at most α Type I error. We then empirically showed that our tests using the pro-
jected statistic significantly improves the Type II error when compared to the nonprojected
statistic and previous private hypothesis tests from Chapter 6 which used the traditional
chi-square statistic. Further, our new tests give comparable power to the classical (nonpri-
vate) chi-square tests. We then gave further applications of our new statistics to GWAS
data and how we can incorporate other noise distributions (e.g. Laplace) using an MC
sampling approach.
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CHAPTER 8

LOCAL PRIVATE HYPOTHESIS TESTS

8.1. Introduction

We now explore some differentially private hypothesis tests in the local model, i.e. there is
no trusted curator that collects the data of all the individuals. In this model, each person
injects their own independent noise and releases only the sanitized version of their data.
The first differentially private algorithm called randomized response – in fact it predates the
definition of differential privacy by more than 40 years – guarantees differential privacy in
the local model (Warner, 1965). Recall that we have already presented randomized response
in Definition 5.2.1.

Most of the work in differential privacy has been in the curator model so that the raw data
of all the individuals is stored in some centralized location. One of the main reasons for this
is that we can achieve much greater accuracy in our differentially private statistics when
used in the curator setting, where accuracy is measured as the difference between the true
value of the statistic on the data and the differentially private version.

We now define local differential privacy, which was formalized by Raskhodnikova et al.
(2008) and gives the strongest level of privacy presented thus far.
Definition 8.1.1 [LR Oracle]. An LR Oracle LRxxx(·, ·) takes an input an index i ∈ [n] and
ε-DP algorithm R and outputs y ∈ Y chosen according to the distribution of R(xi), i.e.
LRxxx(i, R) = R(xi).
Definition 8.1.2. An algorithm M : X n → Y is ε-local differentially private (LDP) if it
accesses input database xxx via the LR oracle LRxxx with the following restriction: if LR(i, Rj)
for j ∈ [k] are the M’s invocations of LRxxx on index i, where each Rj for j ∈ [k] is an εj-

DP and
∑k

j=1 εj ≤ ε.

An easy consequence of this definition is that an algorithm which is ε-LDP is also ε-DP. Note
that we can easily extend these definitions to include versions of (ε, δ)-LDP and (ξ, ρ)-local
zCDP (LzCDP).

The utility guarantees that we are after in hypothesis testing is to fix a bound on the
probability of Type I error and then minimize the probability of Type II error. We now
explore some differentially private hypothesis tests in the local model.

8.2. Local Private Chi-Square Tests

8.2.1. Local zCDP – Gaussian Noise

The two previous chapters have looked at private chi-square tests in the curator model and
so here we look at private chi-square tests in the local model. We start by considering adding
Gaussian noise to each person’s data. Recall that before in the curator model we started
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with a histogram of everyone’s data HHH ∼ Multinomial(n,ppp) and then added independent
Gaussian noise N (0, 1/ρ) to each of the d bins to ensure ρ-zCDP. We can writeHHH =

∑n
i=1XXXi

where XXXi = (Xi,1, · · · , Xi,d) ∼ Multinomial(1, ppp). Each individual i’s data is represented as
a vector XXXi which is a standard basis element of Rd. Hence, in the local model we can add

ZZZi ∼ N
(
000, 1

ρ Id

)
independent noise to XXXi to ensure ρ-LzCDP.

The resulting noisy histogram that we get after accumulating all the noise terms from each
individual is then

H̃HH = HHH +ZZZ where ZZZ ∼ N

(
000,
n

ρ
Id

)
. (8.1)

We compare this to the noisy histogram we used in the previous two chapters, which was
HHH + ZZZ where ZZZ ∼ N(0, 1/ρ Id). Thus, we have increased the variance of the noise by a
factor of n by moving to the local model. Recall that in the variance aware privacy regime,
we think of ρ ≡ ρn and require nρn → ρ? > 0. This is the asymptotic rate we required for
the modified asymptotic distribution of the statistic in Chapter 6 and for the asymptotic
distribution of the non-projected statistic in Chapter 7. However, in the local model the
variance of the noise we are adding is n/ρn, thus the variance aware privacy regime in the
local model requires ρn → ρ? > 0, or simply put we could just have ρn > 0 fixed for each
n. We then restate the asymptotic distributions of the statistics in Chapters 6 and 7 in the
local model.
Theorem 8.2.1. Under the null hypothesis H0 : ppp = ppp0, the statistic T(n)

(
N
(

0, nρ

))
=

WWW ᵀΛΛΛρWWW (compare with (6.8)) for ρ > 0 converges in distribution to the linear combina-
tion of independent chi-squared random variables each with one degree of freedom given in
Theorem 6.1.7, where we replace ρ? with ρ.

Theorem 8.2.2. Under the null hypothesis H0 : ppp = ppp0, the statistic Q
(n)
ρ/n given in (7.13)

for ρ > 0 converges in distribution to χ2
d (compare with Theorem 7.2.3). Further, the

statistic Q(n)
ρ/n from (7.16) converges in distribution to χ2

d−1 (compare with Theorem 7.2.6).

We also point out that all of the zCDP tests in the two previous chapters are already
nρ-LzCDP. Thus, we have already considered the power of these locally private hypothesis
tests. However, for a fixed level ρ-LzCDP, our loss in power will follow the power curves
in our experiments for ρ/n-zCDP. Hence, there is a cost in power of our tests in the local
setting versus the curator setting.

For our composite tests, we again can say that AsymptIndep and GenChiTest from Algo-
rithm 13 and Algorithm 15, respectively, are nρ-LzCDP.

8.2.2. Local DP

Note that the sum of two Laplace random variables is not Laplace. Thus, our MC based
tests are not automatically LDP. We can modify the MC tests where we now add Laplace
noise with parameter 2/ε to each component of each person’s input vector so that the

histogram has the added random vector ZZZ
i.i.d.∼ L where L is distributed as the sum of n

independent Lap(2/ε).
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Rather than having to add noise to each component of the original data histogram with
variance n 8

ε2
, we consider applying randomized response to obtain a LDP hypothesis test.

We will use a form of the exponential mechanism (McSherry and Talwar, 2007) given in
Algorithm 17 which takes a single data entry from the set {eee1, · · · , eeed}, where eeej ∈ Rd is the
standard basis element with a 1 in the jth coordinate and is zero elsewhere, and reports the
original entry with probability slightly more than uniform and otherwise reports a different
element. Note that MEXP takes a single data entry and is ε-DP.1

Algorithm 17 Exponential Mechanism MEXP

Input: Data xxx ∈ {eee1, · · · , eeed}, privacy parameter ε.
Let q(xxx,zzz) = 1{xxx = zzz}
Select x̃xx with probability exp[ε q(xxx,x̃xx)]

eε−1+d
Output: x̃xx

We have the following result when we useMEXP on each individual’s data to obtain a private
histogram.

Lemma 8.2.3. If we have histogram HHH =
∑n

i=1XXXi, where {XXXi}
i.i.d.∼ Multinomial(1, ppp) and

we write ȞHH =
∑n

i=1 ȞHH i, where ȞHH i =MEXP(XXXi, ε) for each i ∈ [n], then

ȞHH ∼ Multinomial(n, p̌pp) where p̌pp = ppp

(
eε

eε + d− 1

)
+ (1− ppp)

(
1

eε + d− 1

)
. (8.2)

We can then form a chi-square statistic using the private histogram ȞHH, which gives us the
following result.
Theorem 8.2.4. Let HHH ∼ Multinomial(n,ppp) and ȞHH be given in Lemma 8.2.3 with privacy
parameter ε > 0. Under the null hypothesis H0 : ppp = ppp0, we have for p̌pp0 = 1

eε+d−1

(
eεppp0 + (1− ppp0)

)
Ť(n)
ε

defn
=

d∑
j=1

(Ȟj − np̌0
j )

2

np̌0
j

D→ χ2
d−1. (8.3)

We then base our LDP goodness of fit test on this result, which is presented in Algorithm 18

Theorem 8.2.5. The test LocalGOF(·, ε, α,ppp0) is ε-LDP.

Proof. The proof follows simply from the fact that we use MEXP for each individual’s data
and then LocalGOF aggregates the privatized data, which is just a post-processing function.

Although we cannot guarantee the probability of a Type I error at most α due to the fact

1We point out thatMEXP is ε-DP, whereas the traditional exponential mechanism tells us that it is 2ε-DP.
The savings in the factor of 2 results in that the normalizing constant is not affected by the input data, it
is always 1

eε−1+d
.
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Algorithm 18 Local DP GOF Test LocalGOF

Input: xxx = (xxx1, · · · ,xxxn), ε, α, H0 : ppp = ppp0.
Let p̌pp0 = 1

eε+d−1

(
eεppp0 + (1− ppp0)

)
.

Let ȟhh =
∑n

i=1 x̌xxi where x̌xxi =MEXP(xxxi, ε).

Set q =
∑d

j=1

ȟj−np̌0j
np̌0j

if q > χ2
d−1,1−α then

Decision ← Reject.
else

Decision ← Fail to Reject.
Output: Decision

that we use the asymptotic distribution (as in the tests from the previous chapters), we
can show experimentally that we can bound this error. We expect the Type I errors to be
similar to those from the nonprivate test.

We now turn to the power of our test, LocalGOF. Recall from Equation (6.10) that we
consider the alternate H1 : ppp = ppp1

n where ppp1
n = ppp0 + ∆∆∆/

√
n where

∑d
j=1 ∆j = 0.

Theorem 8.2.6. Assume HHH ∼ Multinomial(n,ppp1
n) where ppp1

n is given in (6.10). Then we
have

Ť(n)
ε

D→ χ2
d−1

( eε − 1

eε + d− 1

)2 d∑
j=1

∆2
j

p̌0
j

 .

Proof. This follows the same analysis as in Lemma 6.1.8

We point out here that the noncentral parameter has been reduced by roughly a multiplica-

tive factor of
(

eε−1
eε+d−1

)2
≈ ε2/d2 from the noncentral term in Lemma 6.1.8. Thus, if we

consider an alternate H1 : ppp = ppp0 + ∆∆∆ (without the factor of
√
n) for a fixed significance

1 − α, and null hypothesis ppp0, we would expect LocalGOF to have similar power with d
εn

many samples when compared to the nonprivate classical test GOF with n samples.

We can also compare LocalGOF with the addition of Gaussian noise from the previous
section. For a fair comparison, we use the test which has empirically the best power,

NewStatAsymptGOF with the projected statistic Q(n)
ρ/n, which ensures ρ-LzCDP. Further, for

a fixed ε > 0 we will set ρ = ε2/2, so that both LocalGOF and NewStatAsymptGOF are
ρ-LzCDP, by Theorem 2.2.3 . We summarize this in the following result.
Theorem 8.2.7. For ε > 0, both tests LocalGOF and NewStatAsymptGOF with projected

statistic Q(n)
ε2/(2n)

are ε2/2-LzCDP. Further, assuming that HHH ∼ Multinomial(n,ppp1
n) where

ppp1
n is given in (6.10), we have

Q(n)
ε2/(2n)

D→ χ2
d−1

(
∆∆∆ᵀ
(

Σ0
ε2/2

)−1
∆∆∆

)
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Proof. The second statement follows directly from Theorem 7.2.10

To compare the two noncentral parameters
(

eε−1
eε+d−1

)2∑d
j=1

∆2
j

p̌0j
and ∆∆∆ᵀ

(
Σ0
ε2/2

)−1
∆∆∆, we

use the form of the
(
Σ0
ρ

)−1
given in (7.15). As an example, let ppp0 = (1/d, · · · , 1/d)ᵀ. We

can then directly compare the two noncentral parameters

∆∆∆ᵀ
(

Σ0
ε2/2

)−1
∆∆∆ =

dε2 ∆∆∆ᵀ∆∆∆

ε2 + 2d
&

(
eε − 1

eε + d− 1

)2 d∑
j=1

∆2
j

p̌0
j

= d

(
eε − 1

eε + d− 1

)2

∆∆∆ᵀ ∆∆∆

Thus, for large d we would have a smaller noncentral parameter for the test LocalGOF than
for the other tests, thus LocalGOF would be expected to have worse power. However, for
small values of d, we might expect LocalGOF to have better power.

We then empirically check the power comparison between LocalGOF and MC-GenChiTest

in Algorithm 16 with the projected statistic using ZZZ
i.i.d.∼ L to ensure ε-LDP. We consider

various null hypotheses ppp0 in Figure 24.
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Figure 24: Comparison of empirical power of classical non-private test versus local private
tests LocalGOF (solid line) and MC-GenChiTest with projected statistic and Laplace noise
(dashed line) for alternate H1 : ppp1 = ppp0 +∆∆∆ in 1, 000 trials. We set ppp0 = (1/4, 1/4, 1/4, 1/4)ᵀ

and H1 : ppp0 + ∆∆∆ where ∆∆∆ = 0.01 · (1,−1,−1, 1)ᵀ.

We also point out that we can do more general chi-square tests where the null hypothesis
represents a family of distributions H0 : θθθ0 ∈ Θ ⊆ Rs after we have applied randomized
response to each individual’s data. We just need to keep in mind that for ppp(θθθ) where θθθ ∈ Rs,
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the privatized data ȞHH ∼ Multinomial(n, p̌pp(θθθ)) where

p̌pp(θθθ) =

(
1

eε + d− 1

)
(eεppp(θθθ) + (1− ppp(θθθ))) .

In order to find a good estimate for the unknown true parameter θθθ0, we find a function φ such

that φ
(
ȞHH
n

)
P→ θθθ0 and then find θ̂θθ

(n)
= arg minθθθ∈Θ D̂(n)(θθθ), for the statistic D̂(n)(θθθ) given

in (7.3) with the following substitutions: VVV(n) = ȞHH/n, A(θθθ) = p̌pp(θθθ), M(θθθ) = Diag (p̌pp(θθθ))−1,
and C(θθθ) = M(θθθ) − A(θθθ)A(θθθ)ᵀ. Note that in this case that C(θθθ) is the covariance matrix
of a multinomial, which has rank d− 1. The following result follows from Theorem 7.1.4.
Theorem 8.2.8. Under the null hypothesis H0 : θθθ ∈ Θ, let conditions given in As-
sumption 7.1.1 and (7.1) hold where VVV(n) = ȞHH/n, A(θθθ) = p̌pp(θθθ), M(θθθ) = Diag (p̌pp(θθθ))−1,
C(θθθ) = p̌pp(θθθ)− p̌pp(θθθ)p̌pp(θθθ)ᵀ, and true parameter θθθ0 ∈ Θ. We then have,

d∑
j=1

(
Ȟj − np̌j

(
θ̂θθ

(n)
))2

np̌j

(
θ̂θθ

(n)
) D→ χ2

d−1−s

We then present our more general chi-square test in Algorithm 19.

Algorithm 19 Local DP General Chi-Square Test LocalGeneral

Input: xxx = (xxx1, · · · ,xxxn), φ, ε, α, H0 : θθθ ∈ Θ.

Let p̌ppMIN = p̌pp(
ˇ
θ̂θθ

(n)
).

Let ȟhh =
∑n

i=1 x̌xxi where x̌xxi =MEXP(xxxi, ε).

Set q =
∑d

j=1

ȟj−np̌MIN
j

np̌MIN
j

if q > χ2
d−1−s,1−α then

Decision ← Reject.
else

Decision ← Fail to Reject.
Output: Decision

As an example of our more general test, we again consider independence testing with null
hypothesis ppp(πππ(1),πππ(2)) = πππ(1)

(
πππ(2)

)ᵀ
. Thus from a contingency table ȞHH with r rows and c

columns and each person’s data is sanitized by MEXP, we can form the estimate where

φ

(
ȞHH

n

)
=
(
π̌ππ(1), π̌ππ(2)

)
where π̌

(1)
i =

(
eε + d− 1

eε − 1

)(
Ȟi,·
n
− c

eε + d− 1

)
for i ∈ [r]

π̌
(2)
i =

(
eε + d− 1

eε − 1

)(
Ȟ·,j
n
− r

eε + d− 1

)
for i ∈ [c]
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which does converge in probability to the true parameters (πππ(1),πππ(2)). We then form the
chi-square statistic

T
(
πππ(1),πππ(2)

)
= n

∑
i,j

(
Ȟi,j
n − p̌i,j

(
πππ(1),πππ(2)

))2

p̌i,j
(
π̌ππ(1), π̌ππ(2)

)
= n(eε + d− 1)

∑
i,j

[
Ȟi,j
n −

(
1

eε+d−1

)(
eε π

(1)
i π

(2)
j + (1− π(1)

i π
(2)
j )
)]2

eε π̌(1)π̌(2) +
(
1− π̌(1)π̌(2)

)
We then maximize T

(
πππ(1),πππ(2)

)
over the region πππ(t) ≥ 000 for t ∈ {1, 2},

∑r
i=1 π

(1)
i = 1, and∑c

j=1 π
(2)
j = 1.

We then turn to empirical results demonstrating the power of our local private independence
test using randomized response. We consider the same setting as in the previous two
chapters: 2× 2 contingency table where πππ(i) = (π(i), 1− π(i)) for i ∈ {1, 2}. We present our
results in Figure 25.
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Figure 25: Comparison of empirical power of classical non-private test versus local private
tests LocalGOF (solid line) and MC-GenChiTest with Laplace noise and projected statistic
(dashed line) in 1, 000 trials. We set π(1) = π(2) = 1/2 and ∆∆∆ = 0.025 · (1,−1)ᵀ(1,−1).

8.2.3. Local DP - Flip Components

We next consider another differentially private algorithmM : {eee1, · · · , eeed} → {0, 1}d, given
in Algorithm 20.2

Theorem 8.2.9. The algorithm MFC is ε-DP.

We then want to form a statistic based on the output xxx1, · · · ,xxxn, (where xxxi = (xi,j : j ∈ [d]))

2Special thanks to Adam Smith for recommending to use this particular algorithm.
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Algorithm 20 Local Randomizer MFC

Input: Data xxx ∈ {eee1, · · · , eeed}, privacy parameter ε.
for j ∈ [d] do

Set zj = xj with probability eε/2

eε/2+1
, otherwise zj = (1− xj).

Output: zzz

that is asymptotically distributed as a chi-square under the null hypothesis.
Theorem 8.2.10. Let H0 : ppp = ppp0. We consider data XXXi ∼ Multinomial(1, ppp) for each
i ∈ [n]. We define the following covariance matrix

ΣFC =

(
eε/2 − 1

eε/2 + 1

)2 [
Diag

(
ppp0
)
− ppp0

(
ppp0
)ᵀ]

+
eε/2(

eε/2 + 1
)2 Id.

If H0 holds, then the empirical average HHHFC = 1
n

∑n
i=1MFC(XXXi) has the following asymptotic

distribution
√
n

(
HHHFC − 1

1 + eε/2

[(
eε/2 − 1

)
ppp0 + 1

])
D→ N

(
000,ΣFC

)
.

Further, ΣFC is invertible for any ε ≥ 0.

Proof. Follows from the central limit theorem. We first compute the expected value

E
[
HHHFC

]
=

eε/2

eε/2 + 1
ppp0 +

1

eε/2 + 1
(1− ppp0).

In order to compute the covariance matrix, we consider the diagonal term (j, j)

E
[
(HFC

j )2
]

=
eε/2

eε/2 + 1
p0
j +

1

eε/2 + 1
(1− p0

j )

Next we compute the off diagonal term (j, k)

E
[
HFC
j HFC

k

]
=

(
eε/2

eε/2 + 1

)2

Pr [Xj = 1 & Xk = 1]

+
eε/2(

eε/2 + 1
)2 (Pr [Xj = 1 & Xk = 0] + Pr [Xj = 0 & Xk = 1])

+
1(

eε/2 + 1
)2 Pr [Xj = 0 & Xk = 0]

=

(
1

eε/2 + 1

)2 [
eε/2

(
p0
j + p0

k

)
+ (1− p0

j − p0
k)
]
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Before we construct the covariance matrix, we simplify a few terms

E
[
(HFC

j )2
]
− E

[
HFC
j

]2
=

(
1

eε/2 + 1

)2 [(
eε/2 − 1

)(
eε/2 + 1

)
p0
j + 1 + eε/2 −

((
eε/2 − 1

)
p0
j + 1

)2
]

=

(
1

eε/2 + 1

)2 [(
eε/2 − 1

)(
eε/2 + 1− 2

)
p0
j − (eε/2 − 1)2

(
p0
j

)2
+ eε/2

]
=

1(
eε/2 + 1

)2 [(eε/2 − 1
)2
p0
j

(
1− p0

j

)
+ eε/2

]

Further, we have

E
[
(HFC

j H
FC
k

]
− E

[
HFC
j

]
E
[
HFC
k

]
=

(
1

eε/2 + 1

)2 [(
eε/2 − 1

) (
p0
j + p0

k

)
+ 1−

(
(eε/2 − 1)p0

j + 1
)(

(eε/2 − 1)p0
k + 1

)]
= −

(
eε/2 − 1

eε/2 + 1

)2

p0
jp

0
k

Putting this together, the covariance matrix can then be written as

ΣFC = E
[
HHHFC

(
HHHFC

)ᵀ]− E
[
HHHFC

] (
E
[
HHHFC

])ᵀ
=

(
eε/2 − 1

eε/2 + 1

)2 [
Diag

(
ppp0
)
− ppp0

(
ppp0
)ᵀ]

+
eε/2(

eε/2 + 1
)2 Id

As we did in Chapter 7, we can form the projected statistic in terms of the histogram HHHFC.
Theorem 8.2.11. We define the following quantities

µµµ =
1

1 + eε/2

[(
eε/2 − 1

)
ppp0 + 1

]
& Π = Id −

1

d
111111ᵀ

qqq = (eε/2 − 1)2ppp0 + eε/2111

If the null hypothesis H0 : ppp = ppp0 holds, then the following statistic

TFC = n
(
eε/2 + 1

)2 (
HHHFC −µµµ

)ᵀ
·Π

Diag (qqq)−1 +

 1(
eε/2 − 1

)2 − d∑
j=1

(p0
j )

2

qj

−1 (
ppp0/qqq

) (
ppp0/qqq

)ᵀΠ
(
HHHFC −µµµ

)
is asymptotically distributed as a chi-square, TFC D→ χ2

d−1.
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Proof. We first note that ΣFC has eigenvector 111 with eigenvalue eε/2

(eε/2+1)
2 . Hence, we can

project out this eigenvector with Π = Id − 1/d111111ᵀ, as we did in Theorem 7.2.6 to get that
the following statistic is asymptotically distributed as χ2

d−1,

n

(
HHHFC − 1

1 + eε/2

[(
eε/2 − 1

)
ppp0 + 1

])ᵀ

Π
(
ΣFC
)−1

Π

(
HHHFC − 1

1 + eε/2

[(
eε/2 − 1

)
ppp0 + 1

])
.

We then compute
(
ΣFC
)−1

using the Woodbury formula (Woodbury, 1950).

(
ΣFC
)−1

=
(
eε/2 + 1

)2
[
Diag (qqq)−

(
eε/2 − 1

)2
ppp0
(
ppp0
)ᵀ]−1

=
(
eε/2 + 1

)2

Diag (qqq)−1 +

 1(
eε/2 − 1

)2 − d∑
j=1

(p0
j )

2

qj

−1 (
ppp0/qqq

) (
ppp0/qqq

)ᵀ

8.3. Ongoing Work

As part of ongoing work, we compare the various local DP hypothesis tests to see which
performs best as a function of the dimensionality of the data d and the privacy parameters.
We expect that as d gets large enough that the statistic TFC will get lower Type II error

than using statistic Ť
(n)
ε . Further, we hope to analyze other hypothesis tests, e.g. analysis

of variance (ANOVA), in the local model.

141



Part IV

CONCLUSION
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This dissertation presented some of the recent work in understanding adaptivity in data
analysis. We discussed why traditional statistical inference methods break down when an
analyst can select an analysis based on previous outcomes from the same dataset, perhaps
as part of some exploratory study. As a potential fix, we showed how if each analysis
is differentially private – or more generally has bounded max-information – then we can
still correct for the adaptivity. It is then a tradeoff between the amount of noise that we
incorporate to ensure validity over an entire sequence of analyses and the usefulness of
each analysis: with too much noise, the analyses are essentially independent but makes the
results of each analysis worthless, alternatively with no noise we run the risk of overfitting.
By optimizing for the tradeoff between these two sources of error, we showed how we can
take the previous results along this line of work to develop confidence intervals for a large
number of adaptively selected statistical queries that outperforms traditional data-splitting
techniques.

We then presented work that extended the connection of differential privacy to adaptive
data analysis. Specifically, we proved that approximately differentially private algorithms
have bounded max-information (when data comes from a product distributions). This
allowed us to correct for adaptivity in more general types of analyses, like post-selection hy-
pothesis testing. Further, previous results for specific types of analyses, like low-sensitivity
queries, could then be proven as special cases of this connection between max-information
and approximate-differential privacy. One of the main benefits of approximate differential
privacy is that we can apply nice composition theorems which tells us that the privacy
parameters degrade gracefully, even sublinearly with the number of analyses that are con-
ducted – a feature that is necessary in order to show these methods outperform traditional
data-splitting techniques. However, there is a caveat to applying the composition theorems,
and that is that the parameters and the number of analyses need to all be fixed up front. We
then provided a new framework for differential privacy composition where the parameters
and number of analyses to be conducted do not need to be known upfront, prior to running
any computation on the dataset.

These results linking differential privacy and adaptive data analysis are only practical if
we actually have differentially private analyses that an analyst would want to use. We
then presented some differentially private hypothesis tests for categorical data, specifically
chi-square tests. We developed tests that ensured (theoretically or empirically) probability
at most α of a false discovery with the probability of Type II error being comparable to
the classical, non-private tests. In ongoing work, we hope to develop an entire suite of
differentially private tools that can be used in adaptive data analysis.

There are many unanswered questions in this line of work, showing that we do not fully
understand adaptivity. Some fundamental questions left include, which types of analyses can
be composed without causing problems? We showed that we cannot use an algorithm with
bounded description length followed by an approximately differentially private algorithm
because we could output the entire dataset, thus causing us to potentially overfit on the
next query. We also showed that algorithms that robustly generalize do not compose. If a
new type of algorithm is shown to have good generalization guarantees, can we use it in
sequence with other types of algorithms? It would be nice to have a general theory for why
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composition breaks down for different types of analyses.

Further, is there some unifying measure in adaptive data analysis? We argued that max-
information partially unified some existing techniques, but then showed that compression
schemes do not have bounded max-information. Is differential privacy even the right ap-
proach? Currently, there is a gap between the best lower-bounds for estimating adaptively
chosen statistical queries and what we can achieve with differentially private methods from
Bassily et al. (2016). We know that the connection between differential privacy and gener-
alization is optimal, so any improvement would have to come a different method.
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APPENDIX

A.1. Sensitivity of p-Values

We use this section to demonstrate that hypothesis testing is beyond the setting of statistical
or low-sensitivity queries. It will be useful in our argument to use McDiarmid’s inequality
Theorem A.1.1 [McDiarmid’s Inequality]. Let X1, · · · , Xn be independent random vari-
ables with domain X . Further, let f : X n → R be a function of sensitivity ∆f > 0. Then
for every τ > 0 and µ = E [f(X1, · · · , Xn)] we have

Pr [f(X1, · · · , Xn)− µ ≥ τ ] ≤ exp

(
−2τ2

n∆2

)
.

We then show that the sensitivity of the p-values for a hypothesis test is not low sensi-
tivity enough for the existing results from Bassily et al. (2016) to give meaningful p-value
corrections.
Lemma A.1.2. Let φ : X n → R be a test statistic with null hypothesis H0, and p : R →
[0, 1], where p(a) = Prxxx∼Dn [φ(xxx) ≥ a], and D ∈ H0. The sensitivity of p ◦ φ must be larger
than 0.37/

√
n.

Proof. Note that if XXX ∼ Dn, then p ◦ φ(XXX) is uniform on [0, 1], and thus, has mean 1/2.
From Theorem A.1.1, we know that if p ◦ φ has sensitivity ∆, then for any 0 < δ < 1/2, we
have:

Pr

[
p ◦ φ(XXX) ≥ 1/2 + ∆

√
n

2
ln(1/δ)

]
≤ δ.

However, we also know that p ◦ φ(XXX) is uniform, so that

Pr [p ◦ φ(XXX) ≥ 1− δ] = δ.

Hence, if ∆ < 1/2−δ√
n
2

ln(1/δ)
, we obtain a contradiction:

δ ≥ Pr

[
p ◦ φ(XXX) ≥ 1/2 + ∆

√
n

2
ln(1/δ)

]
> Pr [p ◦ φ(XXX) ≥ 1− δ] = δ.

We then set δ = 0.08 to get our stated bound on sensitivity.

Thus, the sensitivity ∆ for the p-value for any test statistic and any null hypothesis must
be at least 0.37/

√
n. This is too large for the following theorem, proven in Bassily et al.

(2016), to give a nontrivial guarantee:

Theorem A.1.3 [Bassily et al. (2016)]. Let ε ∈ (0, 1/3), δ ∈ (0, ε/4), and n ≥ log(4ε/δ)
ε2

. Let
Y denote the class of ∆-sensitive functions. Let XXX ∼ Dn for some distribution D over X .
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There exists an algorithm M : X n → Y where φ =M(XXX) with the following guarantee:

Pr
XXX,M

[|φ(Dn)− φ(XXX)| ≥ 18ε∆n] <
δ

ε
.

When we attempt to apply this theorem to a p-value, we see that the error it guarantees,
by Lemma A.1.2, is at least: 18ε∆n ≥ 18ε(.37)

√
n. However, the theorem is only valid

for n ≥ 1
ε2

ln
(

4ε
δ

)
. Plugging this in, we see that 18ε(.37)

√
n ≥ 1, which is a trivial error

guarantee for p-values (which take values in [0, 1]).

A.2. Omitted Proofs from Chapter 3

We now present the proofs for Theorem 3.3.1 and Theorem 3.4.1. This requires going
through the argument of Bassily et al. (2016) to improve the constants as much as we can
via their analysis to get a decent confidence bound on k adaptively chosen statistical queries.
We then present their monitoring argument, which amplifies the guarantee that a single
query has good generalization error with constant probability so that the generalization
error holds with high probability and the guarantee holds simultaneously over all queries in
an adaptively chosen sequence. We replicate the analysis here in order to improve constants
that appear in Theorem 3.3.1 while also applying the analysis to results in Russo and Zou
(2016) to get a new accuracy guarantee via mutual information. We begin with a technical
lemma which considers an algorithm W that takes as input a collection of s samples and
outputs both an index in [s] and a statistical query, where we denote QSQ as the set of all
statistical queries q : X → [0, 1] and their negation.

Lemma A.2.1 [Bassily et al. (2016)]. Let W : (X n)s → QSQ × [s] be (ε, δ)-DP. If ~XXX =
(XXX(1), · · · ,XXX(s)) ∼ (Dn)s then∣∣∣∣∣ E

~XXX,(q,t)∼W(~XXX)

[
q(D)− q(XXX(t))

]∣∣∣∣∣ ≤ eε − 1 + sδ

The particular algorithmW, called the monitor, that we use is given in Algorithm 21, which
is a more general version that what appeared in Algorithm 1. We then present a series of
lemmas that leads to an accuracy bound from Bassily et al. (2016).
Lemma A.2.2 [Bassily et al. (2016)]. For each ε, δ ≥ 0, if M is (ε, δ)-DP for k adaptively
chosen queries from QSQ, then for every data distribution D and analyst A, the monitor
WD[M,A] is (ε, δ)-DP.
Lemma A.2.3 [Bassily et al. (2016)]. If M fails to be (τ, β)-accurate, and q∗(D)− a∗ > 0,
where a∗ is the answer to q∗ during the simulation (A can determine a∗ from output (q∗, t∗))
then

Pr
~XXX∼(Dn)s,(q∗,t∗)∼WD[M,A](~XXX)

[q∗(D)− a∗ > τ ] > 1− (1− β)s

The following result is not stated exactly the same as in Bassily et al. (2016), but it follows
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Algorithm 21 Extended Monitor WD[M,A](~XXX)

Input: ~xxx = (xxx(1), · · · ,xxx(s)) ∈ (X n)s

for t ∈ [s] do
As we outlined in Section 1.1, we simulate M(XXX(t)) and A interacting. We write
qt,1, · · · , qt,k ∈ QSQ as the queries chosen by A and write at,1, · · · , at,k ∈ R as the
corresponding answers of M.

Let
(j∗, t∗) = argmax

j∈[k],t∈[s]
|qt,j(D)− at,j | .

if at∗,j∗ − qt∗,j∗(D) ≥ 0 then
q∗ ← qt∗,j∗

else
q∗ ← −qt∗,j∗

Output: (q∗, t∗)

the same analysis – we just do not simplify the expressions in the inequalities as they did.
Lemma A.2.4. If M is (τ ′, β′) accurate on the sample but not (τ, β)-accurate for the
population, then∣∣∣∣∣ E

~XXX∼(Dn)s,(q,t)∼W[M,A](~XXX)

[
q(D)− q(XXX(t))

]∣∣∣∣∣ ≥ τ (1− (1− β)s)−
(
τ ′ + 2sβ′

)

We are now put everything together to get our result.

Proof of Theorem 3.3.1. We ultimately want a contradiction between the result given in
Lemma A.2.1 and Lemma A.2.4. Thus, we want to find the parameter values that minimizes
τ but satisfies the following inequality

τ (1− (1− β)s)−
(
τ ′ + 2sβ′

)
> eε − 1 + sδ. (A.1)

We first analyze the case when we add noise Lap
(

1
nε′

)
to each query answer on the sample

to preserve ε′-DP of each query and then use advanced composition Theorem 2.1.5 to get
total privacy parameter ε.

ε =

(
eε
′ − 1

eε′ + 1

)
ε′k + ε′

√
2k log(1/δ).

Further, we obtain (τ ′, β′)-accuracy on the sample from (3.2) where for β′ > 0 we have

τ ′ =
log(k/β′)

ε′n
.
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We then plug these values into (A.1) to get the following bound on τ

τ ≥
(

1

1− (1− β)s

)(
log(k/β′)

ε′n
+ 2sβ′ + exp

[(
eε
′ − 1

eε′ + 1

)
ε′k + ε′

√
2k log(1/δ)

]
− 1 + sδ

)

We then choose some of the parameters to be the same as in Bassily et al. (2016), like
s = b1/βc and β′ = δ/2. We then want to find the best parameters ε′, δ that makes the
right hand side as small as possible. Thus, the best confidence width τ that we can get
with this approach is the following

1

1− (1− β)b1/βc
·

inf
ε′>0,δ∈(0,1)

{
log(2k/δ)

ε′n
+ 2b1/βcδ + exp

(
eε
′ − 1

eε′ + 1
ε′k + ε′

√
2k log(1/δ)

)
− 1

}

Using the same analysis but with Gaussian noise added to each statistical query answer
with variance 1

2ρ′n2 (so that M is ρ′k-zCDP), we get the following confidence width τ ,

1

1− (1− β)b1/βc
·

inf
ρ′>0,δ∈(0,1)

{
1

n

√
1/ρ′ · log(4k/δ) + 2b1/βcδ + exp

(
kρ′ + 2

√
kρ′ log(

√
πρ′k/δ)

)
− 1

}

A.3. Omitted Proofs from Chapter 4

Before getting into the details of our analysis of Theorem 4.4.1, we present some prelimi-
naries for linear codes.

A.3.1. Preliminaries for Linear Codes

For the current and the next subsections, we limit our scope to F2, i.e., the finite field with
2 elements. First, we define linear codes:
Definition A.3.1 [Linear Code]. A code C ⊆ {0, 1}n of length n and rank k is called linear
iff it is a k dimensional linear subspace of the vector space Fn2 . The vectors in C are called
codewords.

The minimum distance t of a linear code C is t = min
ccc1,ccc2∈C

distHamm(ccc1, ccc2), where, distHamm(ppp,qqq)

denotes the Hamming distance between binary vectors ppp and qqq.

We now define parity check matrices, which can be used to construct linear codes. Every
linear code has a parity-check matrix corresponding to it. Thus, given a parity-check matrix,
one can reconstruct the corresponding linear code.
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Definition A.3.2 [Parity-check matrix]. For a linear code C ⊆ {0, 1}n of length n and
rank k, H ∈ {0, 1}(n−k)×n is a parity-check matrix of C iff H is a matrix whose null space
is C, i.e., ccc ∈ C iff Hccc = 0, where 0 represents the zero vector.

Now, we state a theorem which shows the existence of high-rank linear codes when the
minimum distance is less than half the code length:
Theorem A.3.3 [From Theorem 5.1.8 in Lint (1999)]. For every t ∈ (0, n2 ), there exists a
linear code of rank k such that k ≥ n− 3t log(n).

Next, we will define an affine code, which is a translation of a linear code by a fixed vector
in the vector space of the linear code:
Definition A.3.4 [Affine Code]. Let C ⊆ {0, 1}n be a linear code of length n, rank k and
minimum distance t. For any vector bbb ∈ {0, 1}n, the code defined by Caaa = {ccc+ bbb : ccc ∈ C},
where aaa = Hbbb, is called an affine code.
Lemma A.3.5. If C is a linear code with parity check matrix H and minimum distance
t, then the affine code Caaa also has minimum distance t. Further, for all ccc′ ∈ Caaa, we have
Hccc′ = aaa.

Proof. Let ccc′ ∈ Caaa. We know that there exists a ccc ∈ C such that

Hccc′ = H(ccc+ bbb) = 0 +Hbbb = aaa.

Lastly, we define the concept of a Hamming ball around a point, which is helpful in under-
standing the point’s neighborhood – i.e., the points close to it with respect to Hamming
distance.
Definition A.3.6 [Hamming ball]. A Hamming ball of radius r around a point ppp ∈ {0, 1}n,
denoted by Br(ppp), is the set of strings xxx ∈ {0, 1}n such that distHamm(xxx,ppp) ≤ r.

The volume of a Hamming ball, denoted by V ol(Br), is independent of the point around
which the ball is centered, i.e., for any point ppp ∈ {0, 1}n:

V ol(Br) =
∣∣Br(ppp)∣∣ =

r∑
i=0

∣∣{xxx ∈ {0, 1}n : distHamm(xxx,ppp) = i}
∣∣ =

r∑
i=0

(
n

i

)
. (A.2)

A.3.2. Proof of Theorem 4.4.1

In this section, we define the mechanisms M1 and M2 from the theorem statement, and
then prove our result in three parts: First, we show that the first bullet in the theorem
statement directly follows from setting the parameters appropriately and from Dwork et al.
(2015a). Next, we show the proof of the second bullet in two pieces. We start by showing
that the algorithm M2 that we define is differentially private, and then, we show that the
approximate max-information of M2 is small when its inputs are chosen independently.
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Lastly, we prove the third bullet by first showing that the adaptive composition of M1 fol-
lowed byM2 results in the reconstruction of the input with high probability. Subsequently,
we show that such a composition has large approximate max-information.

Before we define the mechanisms M1 and M2, we must set up some notation. We fix t

such that t =
8 log(1/δ)

ε
+ 1. We know that t ≥ 33 because ε ∈ (0, 1/2] and δ ∈ (0, 1/4].

Now, fix an ((n−k)×n) parity-check matrix H for a linear code C ⊆ {0, 1}n of rank k over
F2 where t is the minimum distance of C and k = n− 3t log n, and let r = n− k = 3t log n.
We can ensure the existence of C from Theorem A.3.3.

We define the mechanisms M1 and M2 from the theorem statement in Algorithm 22 and
Algorithm 23, respectively.

Brief description of M1: For any input xxx ∈ X n, mechanism M1 returns a vector aaaxxx ∈
{0, 1}r such that xxx ∈ Caaaxxx , where Caaaxxx is an affine code with minimum distance t. This
follows as aaaxxx =M1(xxx) = Hxxx, and from Lemma A.3.5, as Caaaxxx = {ccc ∈ X n : Hccc = aaaxxx}.

Algorithm 22 First Algorithm in Lower Bound Construction: M1

Input: xxx ∈ {0, 1}n
Let aaaxxx ← Hxxx ∈ {0, 1}r (multiplication in F2)

Output: aaaxxx

Brief description of M2: For any input xxx ∈ X n and aaa ∈ {0, 1}r, mechanism M2 first
computes dxxx, which is the distance of xxx from f(xxx), i.e., the nearest codeword to xxx in code
Caaa. Next, it sets d̂xxx to be dxxx perturbed with Laplace noise L ∼ Lap(1/ε). It returns f(xxx)

if d̂xxx is below a threshold w
defn
=

(
t− 1

4
− log(1/δ)

ε

)
, and ⊥ otherwise.

Algorithm 23 Second Algorithm in Lower Bound Construction: M2

Input: xxx ∈ {0, 1}n (private) and aaa ∈ {0, 1}r(public)
Compute the distance of xxx to the nearest codeword in code Caaa.
Let dxxx = min

ccc∈Caaa
(distHamm(xxx,ccc)).

Let f(xxx) = arg min
ccc∈Caaa

(distHamm(xxx,ccc)) (breaking ties arbitrarily).

Let d̂xxx = dxxx + L, where L ∼ Lap(1/ε).

if d̂xxx <

(
t− 1

4
− log(1/δ)

ε

)
then

bbb← f(xxx)
else
bbb← ⊥

Output: bbb ∈ Y

Now, we present the proof of our theorem.
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Proof of Theorem 4.4.1, part 1. Observe that r = O

(
log(1/δ) log n

ε

)
from the value as-

signed to t. We know that the second statement holds by the max-information bound for
mechanisms with bounded description length from Dwork et al. (2015a).

Proof of Theorem 4.4.1, part 2. First, we show that M2 is indeed differentially private.

Lemma A.3.7. M2(·, aaa) is (ε, δ)-differentially private for every aaa ∈ {0, 1}r.

Proof. We will prove this lemma by following the proof of Proposition 3 in Smith and
Thakurta (2013). Fix any aaa ∈ {0, 1}r. Firstly, observe that for every xxx ∈ {0, 1}n, there
are only 2 possible outputs for M2(xxx,aaa): ⊥ or f(xxx) = arg min

ccc∈Caaa
(distHamm(xxx,ccc)). Also,

M2(xxx,aaa) = f(xxx) iff d̂xxx = dxxx + L < w in Algorithm 23, where dxxx = min
ccc∈Caaa

(distHamm(xxx,ccc))

and L ∼ Lap(1/ε).

Now, for any pair of points xxx and xxx′ such that distHamm(xxx,xxx′) = 1, there are two possible
cases:

1. f(xxx) 6= f(xxx′):

In this case,

π
defn
= Pr [M2(xxx,aaa) = f(xxx)] = Pr

[
d̂xxx < w

]
= Pr

[
dxxx + L <

t− 1

4
− log(1/δ)

ε

]
≤ Pr

[
t− 1

2
+ L <

t− 1

4
− log(1/δ)

ε

]
≤ Pr

[
L < − log(1/δ)

ε

]
≤ δ

where the first inequality follows as f(xxx) 6= f(xxx′) implies dxxx >
t− 1

2
, and the last

inequality follows from the tail property of the Laplace distribution. Therefore,
Pr [M(xxx,aaa) = ⊥] = 1− π.

Similarly, π′
defn
= Pr [M2(xxx′, aaa) = f(xxx′)] ≤ δ, and consequently, Pr [M2(xxx′, aaa) = ⊥] =

1− π′.

Thus, for any set O ⊆ Y, we can bound the following difference in terms of the total
variation distance TV (M2(xxx,aaa),M2(xxx′, aaa))∣∣Pr [M2(xxx,aaa) ∈ O]− Pr

[
M2(xxx′, aaa) ∈ O

] ∣∣ ≤ TV (M2(xxx,aaa),M2(xxx′, aaa))

=
(π − 0) + (π′ − 0) + |(1− π)− (1− π′)|

2

=
π + π′ + |π′ − π|

2
= max{π, π′} ≤ δ

2. f(xxx) = f(xxx′):
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Observe that for every xxx′′ ∈ {0, 1}n, the value of dxxx′′ can change by at most 1 if exactly
one coordinate is changed in xxx′′. Computing d̂xxx′′ is then just an instantiation of the
Laplace mechanism, given in Theorem 2.1.2. Therefore, d̂xxx′′ satisfies (ε, 0)-differential
privacy. Notice that determining whether to output f(xxx) = f(xxx′) or ⊥ is a post-
processing function of the (ε, 0)-differentially private d̂xxx, and thus, by Theorem 2.1.3,
M2(·, aaa) is (ε, 0)-differentially private for such inputs.

Therefore, from the above two cases, for any set O ⊆ Y, we have that:

Pr [M2(xxx,aaa) ∈ O] ≤ eε Pr
[
M2(xxx′, aaa) ∈ O

]
+ δ.

Thus, we can conclude thatM2(·, aaa) is (ε, δ)-differentially private for every aaa ∈ {0, 1}r.

Next, we look at the outcome of M2(XXX,aaa) when XXX is drawn uniformly over X n and aaa is a
fixed r-bit string. Note that M2(XXX,aaa) outputs either ⊥ or a codeword of Caaa. Thus,

Pr [M2(XXX,aaa) 6= ⊥] = Pr
[
d̂XXX < w

]
= Pr

[
dXXX + L <

(
t− 1

4
− log(1/δ)

ε

)]
(A.3)

Now, let us define the setR =

{
xxx ∈ X n : dxxx <

(
t− 1

4

)}
. If

(
dXXX + L <

(
t− 1

4
− log(1/δ)

ε

))
,

then either XXX ∈ R, or L < − log(1/δ)

ε
, or both. Thus,

Pr [M2(XXX,aaa) 6= ⊥] ≤ Pr [XXX ∈ R] + Pr

[
L < − log(1/δ)

ε

]
(A.4)

From the tail bound of the Laplace distribution,

Pr

[
L < − log(1/δ)

ε

]
≤ δ (A.5)

Next, we will calculate the probability of XXX ∈ R. We then assign s
defn
= t−1

4 . Notice that as
the minimum distance of Caaa is t, the Hamming balls B2s of radius 2s around the codewords
of Caaa are disjoint and thus we can bound the volume (defined in (A.2)) of each,

|Caaa| · V ol(B2s) ≤ 2n (A.6)
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Therefore,

|Caaa| · V ol(Bs) ≤
2n · V ol(Bs)
V ol(B2s)

= 2n ·

s∑
i=0

(
n
i

)
2s∑
j=0

(
n
j

)
≤ 2n ·

s ·
(
n
s

)(
n
2s

) ≤ 2n ·
s ·
(ne
s

)s
( n

2s

)2s = 2ns

(
4es

n

)s
(A.7)

where the first inequality follows from equation (A.6), and the last inequality follows as(
n
k

)k ≤ (nk) ≤ (nek )k for k ≥ 1 (from Appendix C.1 in Cormen et al. (2009)).

Thus,

Pr [XXX ∈ R] =
|Caaa| · V ol(Bs)

2n
≤ s

(
4s e

n

)s
(A.8)

where the inequality follows from equation (A.7).

Hence,

Pr [M2(XXX,aaa) 6= ⊥] ≤ s
(

4s e

n

)s
+ δ < s · 2−s + δ (A.9)

where the first inequality follows from equations (A.4),(A.5) and (A.8), and the last in-
equality follows from the fact that n > 8s e = 2(t− 1) e.

Bounding the term s · 2−s from above, we have

s · 2−s =
t− 1

4
· 2(1−t)/4 =

2 log(1/δ)

ε
· 2−2 log(1/δ)/ε

=
2 log(1/δ)

ε
· δ2/ε = (δ log(1/δ))

(
2

ε
· δ(2/ε)−2

)
δ ≤ δ (A.10)

where the inequality follows as δ log(1/δ) ≤ 1 for δ ∈
(
0, 1

4

]
, and

2

ε
· δ(2/ε)−2 ≤ 1 for

ε ∈
(
0, 1

2

]
, δ ∈

(
0, 1

4

]
. From equations (A.9) and (A.10),

Pr [M2(XXX,aaa) = ⊥] > 1− 2δ (A.11)
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Now, for any xxx ∈ X n,

log

(
Pr [(XXX,M2(XXX,aaa)) = (xxx,⊥)]

Pr [XXX ⊗M2(XXX,aaa) = (xxx,⊥)]

)
= log

(
Pr [M2(XXX,aaa) = ⊥|XXX = xxx]

Pr [M2(XXX,aaa) = ⊥]

)
< log

(
1

1− 2δ

)
≤ log

(
1

1− 0.5

)
= 1 (A.12)

where the first inequality follows from equation (A.11), and the second inequality follows
from the fact that δ ≤ 1

4 .

We then apply Lemma 4.2.2 using (A.11) and (A.12) to get,

Iβ∞ (XXX;M2(XXX,aaa)) ≤ 1, for β ≥ 2δ.

Proof of Theorem 4.4.1, part 3. Let us look at the outcome of M2(xxx,M1(xxx)). First, as
xxx ∈ CM1(xxx), f(xxx) = xxx and dxxx = 0. Thus, M2(xxx,M1(xxx)) will either return xxx or ⊥.
Furthermore, we can show the probability of outputting xxx is high:

Pr
coins

of M2

[M2(xxx,M1(xxx)) = xxx] = Pr
[
d̂xxx < w

]
≥ Pr

[
d̂xxx <

log(1/δ)

ε

]
= Pr

[
Lap(1/ε) <

log(1/δ)

ε

]
≥ 1− δ

where the first inequality follows from the fact that

(
t− 1

4
− log(1/δ)

ε

)
≥ log(1/δ)

ε
, the

equality after it follows since dxxx = 0, and the last inequality follows from a tail bound of
the Laplace distribution. Thus, for every xxx ∈ X n,

Pr [M2(xxx,M1(xxx)) = xxx] ≥ 1− δ. (A.13)

Consider the event E defn
= {(xxx,xxx) : xxx ∈ X n}. From equation (A.13),

Pr [(XXX,M2(XXX,M1(XXX))) ∈ E ] ≥ 1− δ. (A.14)

Also, for bbb ∈ Y, if bbb = ⊥, then Pr [XXX = bbb] = 0, and if bbb ∈ X n, then Pr [XXX = bbb] = 2−n as XXX
is drawn uniformly over X n. Thus, for all bbb ∈ Y,

Pr [(XXX,bbb) ∈ E ] ≤ 2−n.
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Hence,

Pr [(XXX ⊗M2(XXX,M1(XXX))) ∈ E ]

=
∑
bbb∈Y

Pr [(XXX,bbb) ∈ E ] Pr [M(XXX,M(XXX)) = bbb] ≤ 2−n (A.15)

Therefore, for β ≤ 1

2
− δ,

Iβ∞ (XXX;M2(XXX,M1(XXX))) = log

 max
O⊆(X×Y),

Pr[(XXX,M2(XXX,M1(XXX)))∈O]>β

Pr [(XXX,M2(XXX,M1(XXX))) ∈ O]− β
Pr [(XXX ⊗M2(XXX,M1(XXX))) ∈ O]


≥ log

(
Pr [(XXX,M2(XXX,M1(XXX))) ∈ E ]− β
Pr [(XXX ⊗M2(XXX,M1(XXX))) ∈ E ]

)
≥ log

(
1− δ − β

2−n

)
= n+ log(1− δ − β) ≥ n− 1

where the first inequality follows from equation (A.14) and as (1 − δ) > β, the second
inequality follows from equations (A.14) and (A.15), and the last inequality follows from

the fact that β ≤ 1

2
− δ.
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