1 Introduction

Oxidative damage to lipids in cell membranes is increasingly being implicated as a cause of cell death, diseases, and aging since at least the early 1990s [1,2]. Controlled oxidative damage has also been used in treatment of certain diseases by a procedure called photodynamic therapy. The treatment induces oxidative damage in diseased cells through the use of photosensitizer, light, and oxygen in a proper combination [3,4]. The targets for oxidation are poly-unsaturated lipids, or lipids with double-bonds in their hydrocarbon chains [3–5]. Even though in experiments and in photodynamic therapy reactive oxygen is produced using photosensitive molecules, these are also generated enzymatically and through respiration [1] during normal life processes. As such, much is known about the chemical changes to the lipid molecules due to oxidation [1,5,6], but little attention has been paid to the mechanics of lipid membranes subjected to irradiation-induced oxidation. In particular, irradiation results in time-varying mechanical properties of vesicles [7], yet there are no models that account for this variation in vesicle mechanics.

Oxidative damage to lipids is known to proceed in two major steps [4]. In the first step, oxidation of double bonds causes an increase in the area per molecule of the lipid membrane by about 15–20% [5]. This is accompanied by a decrease of area expansion module K_A and an increase in thermal undulations [7]. In the second step (whose effects are prominent if irradiation continues for long periods), scission of the hydrocarbon chain may occur and vesicle shrinkage occurs due to formation of pores [4]. The kinetics of both these oxidation steps can be described as first-order reactions [6] and the rate constants appearing in them have been fitted to experimental data [4]. However, the mechanics of a vesicle under simultaneous action of forces and irradiation remains to be investigated even though it plays an important role in cell membrane functions [8]. For example, membrane tension is known to regulate exo- and endo-cytosis, actin assembly, and motility in live cells [9] and may also contribute to cell growth [10]. Therefore, it is conceivable that changes in membrane tension caused by irradiation-induced area increases could affect cellular processes.

In this paper, we will build on previous experimental studies and develop a model to analyze vesicle shapes and mechanics under the action of forces and irradiation. Since adhesion and micropipette aspiration are routinely used in experimental measurements, we will focus on vesicle shapes in these assays. We will analyze both equilibrium and kinetics of irradiation-induced shape changes and take account of thermal fluctuations, which contribute significantly to membrane biophysical behavior [11]. We will constrain our analysis to the first step of oxidation, which involves structural changes that increase area and decrease elastic moduli, and to axisymmetric vesicles since these are analytically tractable [12–14]. The mechanics in the second step of oxidation is more challenging and is not treated here since it involves lipid hydrocarbon chain scission and pore formation, which are amenable to molecular simulation. Our model connects vesicle shape, mechanics, and kinetics of irradiation-induced structural changes within a tractable analytical framework that can be used to interpret experiments and generate falsifiable predictions. We are not aware of any other models that accomplish this even though there are detailed analyses of the kinetics of lipid oxidation [4,15], and a multitude of papers that predict vesicle shape changes in response to applied forces or other mechanical constraints [16–18]. In the following, we consider (a) equilibrium shapes of vesicles under the action of forces and irradiation-induced structural change in Sec. 2, and (b) the kinetics of shape evolution due to loading and irradiation-induced structural change in Secs. 3 and 4. We give a brief conclusion in Sec. 5.

2 Equilibrium Shapes of Adhered Vesicles Under Irradiation

To see how area changes due to irradiation enter into the computation of vesicle shape and mechanics, we must first review the mechanics of adhered vesicles. Consider a vesicle that is originally spherical with radius
The vesicle is surrounded by fluid (usually water for lipid vesicles) that may contain osmolytes to control its volume [16]. When it adheres to a surface, it remains axisymmetric but might not be spherical. Hence, the three-dimensional shape of the vesicle can be described by a closed curve in two dimensions with an axis of rotational symmetry [19]. Then, the pressure difference p is related to the tension τ and local mean curvature through the Young–Laplace law

$$p = 2\tau H = \tau(\kappa_1 + \kappa_2)$$

(1)

where κ_1 is the meridional principal curvature, κ_2 is the principal curvature along lines perpendicular to the meridians, and $H = \kappa_1 + \kappa_2/2$ is the mean curvature. In experiments, the deformation of the vesicle happens in such a way as the volume remains fixed (due to osmotic constraints), so the pressure difference p must change and we will determine it using the Young–Laplace law given earlier.

Adhesion changes the tension in the membrane and also causes an increase in the area by 1–2\% [20,21]. However, this area increase in the membrane in the absence of fluctuations and tension. Let $A_{\text{red}}(\tau)$ represent the amount by which the projected area is reduced below the area A by thermal fluctuations at tension τ and temperature T, then we know that [19,22]

$$A_{\text{red}}(0) - A_{\text{red}}(\tau) = \frac{k_B T}{8\pi K_0} \log \left(1 + \frac{\tau A}{\pi K_0}\right) + \frac{\tau}{K_A}$$

(2)

where k_B is the Boltzmann constant, K_0 is the bending modulus of the membrane, and K_A is the stretching or area expansion modulus.

Now, let us assume that the vesicle is adhered to a substrate and a force F is exerted on it by a micropipette while it remains axisymmetric. $F > 0$ when the force is pushing the vesicle against the substrate. If we make a cut perpendicular to the axis of the vesicle where the radius is $r(s)$ and the tangent angle to the contour of the axisymmetric shape is $\phi(s)$, s being a position parameter along the arc length of the closed curve, then equilibrium demands that

$$2\pi r(s) \sin \phi(s) = \pi r^2(s) p - F$$

(3)

The vesicle makes contact with the substrate over a circular region of radius r_1. The angle ϕ_1 at $r = r_1$ depends on the adhesion energy per unit area between the vesicle and the substrate. If Γ is the adhesion energy per unit area, then

$$\Gamma = \tau(1 - \cos \phi_1)$$

(4)

which is known as the Young–Dupre equilibrium [17]. To get the vesicle shape, we note that

$$\frac{dr}{ds} = \cos \phi(s) = \sqrt{1 - \sin^2 \phi(s)}, \quad \frac{dz}{ds} = \sin \phi(s)$$

(5)

where $\sin \phi(s)$ is given by Eq. (3) in terms of $r(s)$ and F, and $z(s)$ is the height of point s with $z(0) = 0$ at the equator of the vesicle. We can therefore integrate the differential equation for $r(s)$ and get

$$r(s) = \frac{\sqrt{2\pi}}{p} \sqrt{1 + \frac{Fp}{2\pi\tau} + \sqrt{1 + \frac{Fp}{\pi\tau^2} \cos \frac{ps}{\tau}}}$$

(6)

Now, we claim that the term $\kappa_1 + \kappa_2/2$ equals a constant c_0 for an axisymmetric shape if and only if

$$\frac{d}{ds} \left(\frac{r^2}{s}\right) = c_0 \frac{d(r^2)}{ds}$$

(7)

By using Eqs. (3) and (5), it is easy to show that Eq. (7) is equivalent to

$$\frac{p}{2\tau} = c_0$$

(8)

which implies that $\kappa_1 + \kappa_2/2 = p/\tau$. Therefore, the Young–Laplace law Eq. (1) is automatically satisfied on the nonadhered part of the vesicle. Let $s = s_1$ be such that $r(s_1) = r_1$ and $\phi(s_1) = \phi_1$ at the bottom of the vesicle where adhesion occurs. Then the expression for s_1 becomes

$$s_1 = -\frac{p}{F} \cos^{-1} \left(\frac{p^2 r_1^2 + Fp}{2\pi \tau^2} \sqrt{1 + \frac{Fp}{\pi\tau^2}} \right)$$

(9)

From Eq. (9), we get

$$s_1 = -\frac{p}{F} \cos^{-1} \left(\frac{p^2 r_1^2}{2\pi \tau^2} - 1 \sqrt{1 + \frac{Fp}{\pi\tau^2}}\right)$$

(10)

We must solve for $\sin \phi_1$ using the Young–Dupre equilibrium Eq. (4)

$$\sin \phi_1 = \sqrt{1 - \left(1 - \frac{\Gamma^2}{\tau^2}\right)} = \frac{pr_1}{2\tau} - \frac{F}{2\tau r_1}$$

(11)

By using Eq. (11), r_1 can be solved

$$r_1 = \frac{\tau}{p} \left(\sin \phi_1 + \sqrt{\sin^2 \phi_1 + \frac{Fp}{\pi\tau^2}}\right)$$

(12)

At the top of the vesicle, $r = r_2$. If $s = s_2$ at the top of the vesicle, then it can be determined using

$$s_2 = \frac{\tau}{p} \cos^{-1} \left(\frac{p^2 r_2^2}{2\pi \tau^2} - 1 \frac{Fp}{\pi\tau^2} \sqrt{1 + \frac{Fp}{\pi\tau^2}}\right)$$

(13)

It should be noted that $1 + (Fp/2\pi\tau^2) > \sqrt{1 + (Fp/\pi\tau^2)}$, which implies that $r_2 \neq 0$ if $F \neq 0$. Integrating Eq. (5) for $z(s)$, we get

$$z(s) = \int_0^s \sin \phi(s) \, ds = \int_0^s \left(\frac{pr(s)}{2\tau} - \frac{F}{2\pi \tau r(s)}\right) \, ds$$

(14)

where $r(s)$ is given by Eq. (6). We substitute for $r(s)$ to get

$$z(s) = \frac{1}{\sqrt{2}} \int_0^s \frac{Fp}{2\pi\tau} + \frac{1 + \frac{Fp}{\pi\tau^2}}{2\tau} \sqrt{1 + \frac{Fp}{\pi\tau^2} \sin \frac{ps}{\tau}} \, ds$$

(15)
This can be reduced to

\[z(s) = \frac{\tau}{p} \left(1 + \sqrt{1 + \frac{Fp}{\pi^2}} \right) \int_0^s \sqrt{1 - m^2 \sin^2 \theta} \, d\theta - \frac{F}{\pi^2} \frac{1}{1 + \sqrt{1 + \frac{Fp}{\pi^2}}} \int_0^\phi \sqrt{1 - m^2 \sin^2 \theta} \, d\theta \]

(16)

where

\[m^2 = \frac{2 \sqrt{1 + \frac{Fp}{\pi^2}}}{1 + \frac{Fp}{2\pi^2} + \sqrt{1 + \frac{Fp}{\pi^2}}} \leq 1 \]

(17)

Recognizing the incomplete elliptic integrals above, we write

\[z(s) = \frac{\tau}{p} \left(1 + \sqrt{1 + \frac{Fp}{\pi^2}} \right) E \left(\frac{ps}{2\pi} \mid m \right) - \frac{F}{\pi^2} \frac{1}{1 + \sqrt{1 + \frac{Fp}{\pi^2}}} F \left(\frac{ps}{2\pi} \mid m \right) \]

(18)

where \(E(\frac{ps}{2\pi} \mid m) \) is the incomplete elliptic integral of the second kind with modulus \(m \) and \(F(\frac{ps}{2\pi} \mid m) \) is the incomplete elliptic integral of the first kind with modulus \(m \). We use Eqs. (6) and (18) to plot vesicle shapes later in this paper.

When \(F = 0 \), from Eqs. (12) and (9), we see that

\[r_1 = \frac{2\tau}{p} \sqrt{2\Gamma - \frac{\Gamma^2}{\pi^2}} \]

(19)

\[\cos \frac{ps_1}{\tau} = 2 \left(\frac{2\Gamma}{\pi^2} \right) - 1 \]

(20)

Hence, the shape of the adhered vesicle is described by

\[r(s) = \frac{2\tau}{p} \cos \frac{ps}{2\tau} \]

(21)

\[z(s) = \frac{2\tau}{p} \sin \frac{ps}{2\tau} \]

(22)

\[s_1 = -\text{sgn} \left(\cos \phi_1 \right) \frac{\tau}{p} \cos^{-1} \left(\frac{4\Gamma}{\pi^2} - \frac{2\Gamma^2}{\pi^2} \right) \]

(23)

\[s_2 = \frac{\tau}{p} \cos^{-1} \left(\frac{ps_1^2}{2\pi^2} \right) - 1 \]

(24)

Now, let us consider the case of a spherical vesicle of radius \(R_0 \) about to adhere to a substrate. The vesicle radius \(R \) after adhesion and its shape is given by Eqs. (21)–(24).

Then the volume is easily computed

\[V = \frac{1}{2} \pi \left(\sqrt{R^2 - r^2} + \cos \phi_1 R \right) \cdot \left(R^2 \sin^2 \phi_1 + r^2 + \frac{1}{3} \left(\sqrt{R^2 - r^2} + \cos \phi_1 R \right)^2 \right) \]

(25)

where \(R = 2\tau/p \) is derived from the Young–Laplace law Eq. (1).

Similarly, the surface area of the spherical section can be computed

\[A_{sp} = 2\pi R \left(\sqrt{R^2 - r^2} + \cos \phi_1 R \right) \]

(26)

The area of the circular portion in contact with the substrate is \(\pi R^2 \sin^2 \phi_1 \). Let \(A_0 \) be the contour area when the vesicle is a perfect sphere. Then we have \(A_0 = A_{red}(0) + 4\pi R_0^2 \). If the changes in area are due to stretching out of thermal fluctuations, then \(A_{red}(0) = A_0(k_b T/8\pi K_b) \log(A_0/b^2) \) [19]. Hence, we can compute \(A_0 \) through

\[4\pi R_0^2 = A_0 \left(1 - \frac{k_b T}{8\pi K_b} \log \frac{A_0}{b^2} \right) \]

(27)

where \(b = 1 \text{ nm} \) is intermolecular spacing [19].

2.2 Application to an Adhered Vesicle. We will now use the ideas above to estimate the adhesion energy per unit area, \(\Gamma \), from experimental data. In an experiment conducted by Aoki et al. [24], the radius of a dipalmitoylphosphatidylcholine giant unilamellar vesicle after adhesion is estimated to be \(R = 1.73 \times 10^{-5} \text{ m} \) (using the scale bar in Fig. 1(c) of Ref. [24]). We will take stretching modulus \(K_s = 230 \text{ mN m}^{-1} \) and bending modulus \(K_b = 21k_b T = 21 \times 4.1 \text{ pN nm} \) at \(T = 300 \text{ K} \) as typical values for dipalmitoylphosphatidylcholine vesicles [7,19]. Then, \(A_0 \) can be numerically solved from Eq. (27). We assume there is no thermal fluctuation in the part of the vesicle attached to the substrate. Let \(A' \) denote the contour area of the fluctuating part of the vesicle (the area at \(r = R \)). Then we have \(A' = A_0 - \pi R^2 \sin^2 \phi_1 - \pi R_2^2 \). Under tension \(\tau \), \(A_{red}(\tau) \) can be computed through

\[A_{red}(\tau) = A' + 2\pi \left(\sqrt{R^2 - r^2} + \cos \phi_1 R \right) \]

(28)

At present, \(\phi_1, R_0, \) and \(\tau \) are all unknown. They will be determined by the Young–Dupre equilibrium Eq. (4), tension area relation, and volume constraints, respectively, through

\[A' = \frac{k_b T}{8\pi K_b} \log \left(\frac{A'}{r^2} \right) + 2\pi R \left(\sqrt{R^2 - r^2} + \cos \phi_1 R \right) = \frac{k_b T}{8\pi K_b} \log \left(1 + \frac{A'}{\pi K_b} \right) + \frac{\tau}{K_s} \]

(29)

Fig. 1 Computed vesicle shapes before (solid line) and after (dashed line) irradiation for parameters in Aoki et al. [24]. These shapes are in qualitative agreement with shapes in Ref. [24] validating our model.
Here, we take \(r_2 = 0 \) since there is no pipette or adhering surface on the top of the vesicle. Now, Eqs. (29), (30), and (4) are three equations for three unknown \(R_0, \phi_1 \), and \(\phi_2 \) if the adhesion energy per unit area \(\Gamma \) is given. However, \(\Gamma \) is not immediately known from the experiments of Aoki et al. [24] who report that \(r_1/R_0 \) lies between 0.5 and 0.7 when there is no irradiation. Using this information, \(R_0, \phi_1 \), and \(\phi_2 \) can be numerically computed by choosing \(r_1/R_0 \) to be in this range and combining with Eqs. (29) and (30).

Then, \(\Gamma \) is estimated from Eq. (4). We find that \(\Gamma \) is between \(10^{-10}\text{ N/m} \) and \(10^{-7}\text{ N/m} \). Other experimental and theoretical works [20,25] estimate that \(\Gamma \) mostly lies between \(10^{-5}\text{ N/m} \) and \(10^{-2}\text{ N/m} \). Trial and error reveals that the estimated \(\Gamma \) is quite sensitive to changes in \(r_1/R_0 \). To make progress, we take \(\Gamma = 2.53 \times 10^{-5}\text{ N/m} \), which corresponds to \(r_1/R_0 \approx 0.8 \) for experiments in Ref. [24]. The uncertainty in \(\Gamma \) is probably also the reason why Sankhagowit et al. [4] measure changes in area using optical traps rather than adhesion.

2.3 Shapes of Adhered Vesicles Before and After Irradiation With Zero Force.

Once the three unknowns \(R_0, \phi_1 \), and \(\phi_2 \) have been solved, we can plot the shape of an adhered vesicle using Eqs. (21)–(24). Next, we must account for increases in vesicle surface area caused by irradiation. Let \(A \) be the area after irradiation, which can be represented as

\[
A = A_0 \times \pi (\pi > 1)
\]

In Ref. [24], the maximum surface area ratio is \(\pi = 1.1801, 1.1878, 1.1936 \) under irradiation powers 1/4, 1/32, 1, respectively. Here, 1 represents maximum radiation intensity and we refer the reader to Aoki et al. [24] for quantitative details. We take \(\pi = 1.1878 \) in Eq. (31) as an example. We are not aware of measurements of \(K_0 \) as a vesicle suffers oxidation. However, Boal and Boal [19] point out that \(K_0 \) is proportional to \(K_A \), or \(K_0 = \zeta K_A \) where \(\zeta \) is a constant depending on the bilayer thickness. The bilayer thickness is determined by the length of the hydro-carbon chains in the lipid tails, which does not change in the first step of oxidation before chain scission happens. Hence, from the known values of \(K_A \) after irradiation is completed, we can estimate the \(K_0 \) of oxidized vesicles. Using \(K_A = 80\text{ mN/m}^{-1} \) [7] after irradiation for DOPC, the corresponding \(K_0 = 7.3 k_BT \). Note that \(A_0 \) is dependent on \(K_0 \), through Eq. (27); hence, it will change when \(K_0 \) is changed. Then, with \(\Gamma \) known from Sec. 2, we can solve for the new values of \(R, \phi_1 \), and \(\phi_2 \) in the adhered vesicle after irradiation. Accordingly, the adhered vesicle shapes before and after irradiation can be plotted using Eqs. (21)–(24). The shapes are shown in Fig. 1. In both situations (with and without irradiation), the shapes of the vesicle adhering to the substrate under no force in the experiments of Aoki et al. [24] are qualitatively described by our model.

2.4 Shapes of Adhered Vesicles Under Tensile and Compressive Forces After Irradiation.

Tensile forces are exerted on adhered vesicles (with known mechanical properties) to estimate the adhesion energy density \(\Gamma \) on various substrates [13], while compressive forces are exerted on cells to estimate membrane tension [9]. The changes of vesicle (or cell) shape under these circumstances can be measured and used to estimate \(\Gamma, \phi_1, \phi_2 \), etc. In a previous work, Lin and Freund [17] studied the shapes of an adhered vesicle under pulling force in the absence of irradiation. Our goal here is to determine how shapes change when both pulling force and irradiation are applied. Following the assumptions of Brochard-Wyart and deGennes [13], we consider a vesicle bound on one side to a pipette with fixed pipette radius \(R_2 = 0.2 R_0 \) and constant contact angle \(\phi_3 = \pi/4 \). The height of the cylindrical portion of the vesicle in the pipette, \(h \), is adjustable [26]. For convenience, we assume the top of the vesicle is flat and that there is no thermal fluctuation in the part of the vesicle inside the pipette and the part that is adhered. When \(F \neq 0 \), the constraint equations are only the tension-area relation and volume constraint. Since \(\Gamma \) is given and \(\phi_1 \) is fixed, \(\Gamma \) can easily be obtained from Eq. (4). Thus, Eqs. (29) and (30) are, respectively, replaced by

\[
\frac{A_0 k_BT \log \frac{A_r}{A_s}}{8\pi K_b} - \left(A_r - 2\pi \int_{\phi_1}^{\phi_2} r(x) dx \right) = \frac{k_BT \log \left(1 + \frac{\tau A_r}{\pi^2 K_b} \right) - \frac{4}{3} \pi R_0^3}{8 \pi K_b} \left(\frac{1}{2} \left(1 + 1 \right) \int_{\phi_1}^{\phi_2} \left(\sqrt{1 - m^2 \sin^2 \theta} \right) ^3 d\theta - \frac{F_T}{2} \left(1 + 1 \right) \int_{\phi_1}^{\phi_2} \sqrt{1 - m^2 \sin^2 \theta} d\theta \right)
\]

where the area of the fluctuating part of the vesicle \(A_r \) in Eq. (32) is replaced by

\[
A_r = A - \left(\pi r_1^2 + \pi r_2^2 + 2\pi r_2 h \right)
\]

Recall that \(r_2 \) is the radius of the flat region of the vesicle inside the pipette. We have two equations, Eqs. (32) and (33), for two unknowns \(p \) and \(h \), which can be solved numerically.

Once we solve for \(p \) and \(h \), we can plot the shapes of the vesicle for both \(F < 0 \) (tensile force causing detachment) and \(F > 0 \) (compressive force causing adhesion). In Fig. 2(b), we plot the shapes when a tensile force \(F \) is applied. The corresponding contact radii are plotted in Fig. 2(a). Similarly, in Fig. 3, we plot the shapes and the corresponding contact radii when a compressive force \(F \) is applied. The predictions in these figures can be tested with routine micropipette experiments. For \(F < 0 \), there are three important points \(A_1, B_1, \) and \(C_1 \), where \(A_1 \) represents the start of the detachment process when the contact radius is maximum, \(B_1 \) represents the state of maximum achievable detachment force, which \(F_{cl} \approx 0.43\pi r_0^2 \) compared to \(F_{cl} \approx 0.30\pi r_0^2 \) in the case without irradiation studied by Lin and Freund [17]. Since the non-dimensional initial contact radius \(r_1/R_0 \approx 0.7 \) in our work is slightly larger than the one \(r_1/R_0 \approx 0.6 \) in Ref. [17], it requires stronger force to detach the vesicle from the substrate after
irradiation that increases contact area. In addition, \(C_1 \) represents the state when detachment is about to occur. As pointed out by Lin and Freund [17], the vesicle is in stable equilibrium from \(A_1 \) to \(B_1 \) while from \(B_1 \) to \(C_1 \), it is not. As for \(F > 0 \), we found that the pressure difference and contact area monotonically increase as the compressive force increases, as expected.

3. Kinetics of Attachment of Vesicle Under Irradiation

So far, we have gained some understanding of how vesicle shapes and mechanics can be modulated by adhesion, applied forces, and irradiation. Our methods can be used to estimate difficult to measure quantities (i.e., pressure difference, adhesion energy, tension) when other experimental observables (i.e., contact radius, vesicle height sucked into pipette) are measured under various applied forces and irradiation intensities. Next, we hope to garner some insights into the kinetics of processes, such as adhesion and oxidation, that happen simultaneously in experiments.

3.1 Oxidation Kinetics and Corresponding Area Increase

In this section, we study a palmitoyloleoylphosphatidylcholine (POPC) vesicle with radius \(R_0 = 0.75 \times 10^{-5} \text{ m} \) under irradiation at constant intensity. In the experiment conducted by Weber et al. [7], the top of the vesicle is sucked into a micropipette with radius \(r_s = 0.47 \mu \text{ m} \) and the constant membrane tension is fixed at \(0.7 \text{ mN m}^{-1} \). Since there is no adhesion, the contact radius \(r_1 = 0 \).

Sankhagowit et al. [4] illustrated that oxidation has two stages where \(\text{OX1} \) is an oxidized lipid which is the product of the first reaction and it occupies more membrane area than nonoxidized DOPC and OX2 is the product of the second reaction, which occupies less surface area than DOPC. For simplicity, we assume only \(\text{OX1} \) appears during the irradiation and the model built for DOPC could be applied to POPC, since both have double bonds. Also, the bending modulus of POPC is about 20.7 k\(\text{g} \text{m}^{-1} \text{t} \) at room temperature \(T = 303 \text{ K} \) [27] that is not too different from the bending modulus of DOPC. The second reaction, which involves OX2, is known to be slower than that involving \(\text{OX1} \) and its effects (decrease in area) are seen when irradiation is continued for a long time [4]. We will confine our analysis to only the early stages of irradiation when area increases are seen. Sankhagowit et al. [4] gives the formula to compute the concentration of \(\text{OX1} \)

\[
C_{\text{OX1}}(t) = 1 - e^{-k_1 t}
\]

where \(k_1 \) scales roughly as \(I^{1/2} \) where \(I \) is the radiation intensity or radiation power. Let \(A_{\text{OX1}} \) be the area per lipid of \(\text{OX1} \) relative to that of POPC (i.e. \(A_{\text{POPC}} = 1, A_{\text{OX1}} > 1 \)). Then the surface area increment \(S(t) \) can be expressed as

\[
S(t) = A_{\text{POPC}}(1 - C_{\text{OX1}}(t)) + A_{\text{OX1}} C_{\text{OX1}}(t) - 1
\]

\[
= (A_{\text{OX1}} - 1)(1 - e^{-k_1 t})
\]

When the irradiation time is sufficiently long, the surface area will reach \(\max_{t>0} S(t) \) and then not change. This requires that \(A_{\text{OX1}} = \max_{t>0} S(t) + 1 \). In order to be consistent with the experimental data in Fig. 3 of Weber et al. [7], we need to set \(A_{\text{OX1}} = 1.138, k_1 = 0.1979 \text{ s}^{-1} \) as shown in Fig. 4(a) by the orange line (passing through the experimental data). Note that the value of \(k_1 \) used here is in the same range as that reported by Sankhagowit et al. [4]. The good fit of the orange curve to the experimental data from Ref. [7] shows that our assumption of confining attention to the first step of oxidation is justified. Now, Eqs. (32) and (33) can be used again to solve the two unknowns \(p, h \). In order to do so, we need to (a) set \(r_1 = 0, r_2 = 4.7 \mu \text{ m} \) in Eq. (34), (b) in Eq. (31) the surface area should be a function of time \(A(t) = A_0 \times (1 + S(t)) \), where \(A_0 \) can be solved numerically from Eq. (27) based on vesicle initial radius \(R_0 = 0.75 \times 10^{-5} \text{ m} \), (c) \(S(t) \) is given in Eq. (36) and (d) the mechanical moduli \(K_A \) and \(K_B \) vary with time as discussed later.

Weber et al. [7] point out that the stretching modulus of vesicles, \(K_A \), varies as irradiation progresses. Ordinarily, the mechanical properties of homogeneous vesicles are constants, but the appearance of an oxidized phase during irradiation decreases \(K_A \). This oxidized phase appears everywhere on the vesicle since irradiation is applied globally; hence, \(K_A \) is taken to be independent of position. Since the fraction of the oxidized phase increases with time, the modulus \(K_A \) decreases with time. We use the information in Fig. 5 of Ref. [7] to treat \(K_A \) as a function of irradiation time \(t \) : \(K_A = 230 \text{ mN m}^{-1} - 1.6 \text{ mN m}^{-1} t \), \(0 \leq t \leq 50 \text{ s} \). Since \(K_B \) is proportional to \(K_A \), the variation of \(K_B \) with time can be estimated if the initial \(K_A = 20.7 \text{ k\text{g}m}^{-1} \text{t} \) for the POPC vesicle before irradiation is known. Note that \(K_B \) plays an important role at low tensions, while \(K_A \) weighs in at high tension. Further, \(K_A \) varies with time as discussed later.

The predicted pressure difference \(p'p_0 \) as irradiation progresses is shown in Fig. 4(b) and the result for the predicted pipette height \(h'/h_0 \) is shown in Fig. 4(a). Note that the \(h'/h_0 \) values for \(t = 0.75 \text{ mN m}^{-1} \) are similar to the insets in Fig. 3(a) of Ref. [7] where \(h'/R_0 \) is between 1 and 2 suggesting that our analysis is reasonable.

3.2 Ordinary Differential Equation Model of Contact Radius Increase Without Irradiation

Now, we study the dynamics of an initially spherical vesicle (with initial contact radius \(R_0 = 10 \text{ nm} \) and initial radius \(R_0 = 1.68 \times 10^{-5} \text{ m} \) consistent with the experiment in Ref. [24]) adhering to the substrate in
the absence of irradiation \((x = 1)\). In this context, we do not consider a pipette for aspiration on the top \((h = 0, r_2 = 0, F = 0)\). Note that \(S(t) = 0, \forall t \geq 0\) when there is no irradiation. As there is no applied force, the vesicle remains spherical in the unadhered region. Let \(R(t)\) denote the radius of the spherical cap at time \(t\). Then, \(A'(0) = A_0\), and \(A'(t) = A_0 \cdot (1 + S(t) - \pi R^2(t) \sin^2 \phi_1(t))\). From Ref. \([20]\), we know that the contact radius \(r_1\) is determined by
\[
\tau = \frac{\pi^2 K_0}{a^2_0} \exp \left(-\frac{8\pi K_0}{k_BT} \right) t
\]
where \(a^2_0\) is the surface area of a lipid molecule with linear size \(a_0 \approx 0.8 \text{ nm}\), and \(\epsilon = (A'(t) - 2\pi R^2(t)(1 + \cos \phi_1(t))/(2\pi R^2(t)(1 + \cos \phi_1(t)))\) denotes the area strain of the membrane, which is the proportion of the surface area stored in the undulations. Note that Eq. (37) is very close to the inverse formula of Eq. (8.74) in Ref. \([19]\), which is valid in the low tension regime. The constraint for fixed volume Eq. (32) at time \(t\) can be rewritten as
\[
\frac{4}{3} \pi R_0^3 = \pi R(t)^3 \left(\frac{2}{3} + \cos \phi_1(t) - \frac{\cos^3 \phi_1(t)}{3} \right)
\]
Thus, \(R(t)\) can be expressed as a function of contact angle \(\phi_1(t)\)
\[
R(t) = \frac{2R_0}{(4 + 6 \cos \phi_1(t) - 2 \cos^3 \phi_1(t))^\frac{3}{2}}
\]
If we know the contact radius \(r_1(t)\) at time \(t\), then we should have \(R(t) \sin \phi_1(t) = r_1(t)\). Substituting this into Eq. (39), we have
\[
r_1(t) = \frac{2R_0}{(4 + 6 \cos \phi_1(t) - 2 \cos^3 \phi_1(t))^\frac{3}{2}}
\]
Thus, \(r_1(t)\) is monotonically decreasing as \(\cos \phi_1(t)\) is increasing and we can find an implicit relation as
\[
\cos \phi_1(t) = f_1(r_1(t))
\]
Substituting this into Eq. (41), we have
\[
R(t) = \frac{2R_0}{(4 + 6 f_1(r_1(t)) - 2 f_1^2(r_1(t))^\frac{3}{2}} \approx f_1(r_1(t))
\]
then \(A'(t)\) can be written as
\[
A'(t) = A_0 \cdot (1 + S(t)) - \pi f_1^2(r_1(t))(1 - f_1^2(r_1(t))) \approx f_1(r_1(t), t)
\]
Substituting Eqs. (41)–(43) into the tension–area relation Eq. (37), we have
\[
\tau = \frac{\pi^2 K_0}{a^2_0} \exp \left(-\frac{8\pi K_0}{k_BT} \right) \frac{t}{R^2} \left(f_1(r_1(t), t) - f_1^2(r_1(t)) \right)
\]
Also, from Ref. \([20]\), we know the contact radius \(r_1\) propagates toward the Young–Dupre equilibrium Eq. (4) at a rate
\[
\hat{r}_1(t) = \frac{\Gamma - (1 - \cos \phi_1(t)) \tau}{\eta_0 f_1}
\]
where \(\eta_0 \approx 10^{-3} \text{ Pa s}\) denotes the viscosity of the aqueous medium \([28]\), and \(c_i\) denotes surface drag coefficient ranging from hydrodynamic limit \((c_i \approx 1)\), through the membrane friction dominated range \((c_i \approx 10^2)\), up to surface inhomogeneity governed values \((c_i \approx 10^3)\) \([20]\). In our work, we study the membrane friction dominated range \((c_i \approx 10^3)\) used in Ref. \([20]\). Dragging Eqs. (41) and (44) into Eq. (45), the contact radius rate \(\hat{r}_1(t)\) has the form
\[
\hat{r}_1(t) = \frac{\Gamma - (1 - f_1(r_1(t))) f_1(r_1(t), t)}{\eta_0 f_1}\]

where there is no analytic solution for Eq. (46), numerical results can be obtained using a fourth-order Runge–Kutta method. In Fig. 5(a) we plot the evolution of contact radius by solving the ordinary differential equation (ODE) Eq. (46) for a vesicle with initial contact radius \(r_{01} = 10 \text{ nm}\), initial radius \(R_0 = 1.68 \times 10^{-3} \text{ m}\) and bending modulus \(K_0 = 21 k_BT\) under the adhesion energy per unit area \(\Gamma = 2.53 \times 10^{-3} \text{ N m}^{-2}\). Equilibrium is reached at time \(t = 0.56 \text{ s}\). Our estimate for \(\Gamma\) agrees with a recent theoretical work \([20]\). Next, we study the effect of \(\Gamma\) on \(r_1\). We choose \(\Gamma = 2.53 \times 10^{-4} \text{ N m}^{-1}\), \(\Gamma = 2.53 \times 10^{-5} \text{ N m}^{-1}\), and \(\Gamma = 2.53 \times 10^{-6} \text{ N m}^{-1}\) corresponding to \(r_{1, t} \sim 6 \times 10^{-3} \text{ s}, r_{1, 5} \sim 10^{-4} \text{ s}, r_{1, 6} \sim 10^{-5} \text{ s}\). As expected, increasing \(\Gamma\) increases the speed at which the vesicle finishes its adhesion on the substrate and reaches equilibrium.

3.3 Ordinary Differential Equation Model of Contact Radius Increase With Irradiation. Figure 5(a) suggests that \(r_1\) is about 0.56 s, which implies that the kinetics of the vesicle adhesion on the substrate is much faster (at least for large enough \(\Gamma\)) than the kinetics of the irradiation, which is hundreds of seconds in Ref. [24] and tens of seconds in Ref. [4]. This shows that the vesicle will completely finish adhesion on the substrate and reach equilibrium as soon as the irradiation is applied. As a consequence, we can separate these two kinetics and only consider the kinetics of irradiation induced oxidation. Here, we consider the three irradiation powers used in Ref. [24]. Let \(S_1, S_2, S_3\) be the surface area increment under irradiation powers 1/4, 1/4, 1/32, respectively. Then, in order to fit the model in Eqs. (35) and (36), we need to set \(k_1 = 0.0427, 0.0066, 0.0017\) and \(A_{Oxi} = 1.1936, 1.1801, 1.1878\) under the irradiation power 1, 1/4, 1/32, respectively. The model in Sec. 3.2 can be used here except that we need to replace \(S(t) = 0\) by \(S_1(t), S_2(t), S_3(t)\). Then, the contact radius \(r_1(t)\) at time \(t\) can be determined through the Young–Dupre equilibrium Eq. (4)
\[
\Gamma = f_1(r_1(t), t) \cdot (1 - f_1(r_1(t)))
\]

The results are plotted in Fig. 6(a), which shows that higher irradiation power leads to quicker completion of area increase. The \(f_1\) values we found above increase with increasing radiation power, as expected [4]. The curves in Fig. 6(a) qualitatively capture the experimental results in Ref. [24] as shown in the inset; a quantitative match may require that we account for the kinetics of OX2. As an alternative, we have used linear interpolation to construct continuous functions for \(S_1, S_2, S_3\) based on discrete data extracted.
from Ref. [24] and performed the exercise above to get better agreement with the experimental data (not shown here). In Fig. 6(b), we predict that the tension \(s \) decreases as irradiation progresses. Intuitively, the decrease in tension is expected because the vesicle area increases while its volume is held fixed. Also, experimental evidence [4] shows an increase in thermal fluctuations of the vesicles after irradiation, which is consistent with a reduction in tension. Such a decrease in tension could lead to functional changes in live cells [9]. For example, it has been shown that artificially decreasing membrane tension in fibroblasts increases the rate of cell spreading and lamellipodial extension and stimulates new lamellipodial extensions [29]. Although it has long been known that oxidative damage can cause cell death and diseases [1], changes in cell behavior due to irradiation-induced changes in membrane tension have not been tested in experiments. If such experiments are performed in live cells, then insights from our analysis can inform models for the evolution of cell membrane tension.

4 Kinetics of Detachment of Vesicle After Irradiation

Finally, it is important to study the kinetics of detachment of vesicles from substrates because it represents a stage in cellular processes such as endo- and exo-cytosis, immune response, and cell–tissue interaction [30]. Here, our goal is to determine how irradiation-induced area changes can change the kinetics of detachment.

4.1 Critical Force to Cause Detachment. We consider a detachment process in which the dissociation of bonded ligand–receptor pairs is considered after irradiation has occurred. Following the model in Ref. [17] and Boulbitch [30], we use \(\rho_1 \), which is a number per unit area, to denote the local concentration of free ligands in the substrate. Similarly, we use \(\rho_s \) to denote the concentration of free receptors in the vesicle wall. Let \(\rho_{u(0)} \) denote the concentration of bonded ligand-receptor pairs. Also, let \(k_+ \) be the association rate constant, \(k_- \) be the dissociation rate constant. We assume that \(\rho_{u(0)} = \rho_{u(0)}^{(0)} \) is constant everywhere. Here, \(\rho_{u(0)}^{(0)} \) is the density of bonded ligand-receptor pairs at equilibrium. Then, the following local rate equation is given by [17]:

\[
\frac{d\rho_u}{dt} = k_+ \rho_1 \rho_s - k_- \rho_u^{(0)} \tag{48}
\]

where the dissociation rate \(k_- \) is given by [31]

\[
k_-(f) = k^{(0)}_+ \exp \left(\frac{af}{k_BT} \right) \tag{49}
\]

where \(a \) is the length on the order of 0.1 nm and \(f \) is the force on a single bond. We also assume that the vesicle is in equilibrium adhesive contact with the substrate in the absence of detachment force [17]. Then the LHS of Eq. (48) should vanish, and we have

\[
k^{(0)}_+ \rho_u^{(0)} = k_+ \rho_1 \rho_s \tag{50}
\]

Substituting this into Eq. (48), we get

\[
k_-(f) = \frac{k_+ \rho_1 \rho_s}{\rho_u^{(0)}} \exp \left(\frac{af}{k_BT} \right) \tag{51}
\]

Lin and Freund [17] supposed the applied force on each stretched bond is uniform: \(f = F(t)/2 r(t) \rho_u^{(0)} \), where \(r(t) \) is the radius of the adhesion zone at time \(t \) and \(b_0 \approx 10 \text{ nm} \) is the width of the bending zone. Then they show that

\[
\frac{dr(t)}{dt} = \frac{b_0 k_+ \rho_1 \rho_s}{\rho_u^{(0)}} \left[1 - \exp \left(\frac{F(t) a}{2 \pi b_0 k_+ r(t) \rho_u^{(0)} k_BT} \right) \right] \tag{52}
\]

We first follow the model in Ref. [17] to consider the case when the pulling force is suddenly applied and remains constant during the unbinding process, i.e., \(F(t) = F, \ \tau > 0 \). Evans and Ritchie [32] have pointed out that detachment will occur under any level of pulling force if it is held for sufficient time. Therefore, we are interested in the dependence of the dimensionless detachment time \(\tau \) on the constant applied force \(F \) with and without irradiation. Let \(\beta_1 = F/a/2 \pi b_0 k_1 T \rho_u^{(0)} R_1 \), where \(R_1 \) is the initial radius of the adhesion zone under irradiation. Following [17], we use dimensionless variables \(\tau_1 = (b_0 k_+ \rho_1 \rho_s) a/(\rho_u^{(0)} R_1) \), \(\zeta_1 = r(t)/R_1 \). Then, Eq. (52) becomes

\[
\frac{d\zeta_1}{d\tau_1} = 1 - \exp \left(\frac{\beta_1}{\zeta_1} \right) \tag{53}
\]

with the initial condition \(\zeta_1(0) = 1 \). Similarly, we can define \(\beta_2, \tau_2, \zeta_2 \) and the ODE with respect to \(\tau_2 \), which is the initial radius of the adhesion zone in the absence of irradiation. It is not hard to see that at a given force \(\beta_1 = C \beta_2 \) where \(C \) is a constant.

In Boulbitch [30], \(k_+ r_1 \) is estimated to be \(0.18 \times 10^5 \) s and in Ref. [17] the receptor density on the substrate surface is about \(\rho_1 = 1/\mu\text{m}^2 \). In Ref. [33], \(k_0^{(0)} \) is estimated to be \(0.95 \text{ s}^{-1} \). From Fig. 1, in Sec. 2.3, we know \(R_1 = 2.38 \times 10^{-6} \) m and \(R_2 = 1.34 \times 10^{-6} \) m. Then, \(\beta_1 \) and \(\beta_2 \) should be in the range \(4.30 \times 10^{-9} < \beta_1 < 4.30 \times 10^{-9} \) and \(7.64 \times 10^{-9} < \beta_2 < 7.64 \times 10^{-9} \), which corresponds to 0.5 pN < \(F_0 < 500 \) pN used by Lin and Freund [17]. In particular, for a given force, \(\beta_2 / \beta_1 \approx 1.78 \). We numerically integrate Eq. (52) using these numbers and plot the result in Fig. 7(a) in which \(\beta = \beta_1 \) is a “reference dimensionless variable.” Within the force range mentioned above, the dependence of the dimensionless detachment time \(\tau_1, \tau_2 \) (corresponding to dimensionless detachment time with and without irradiation), respectively, on \(\beta_1, \beta_2 \) is

\[
\tau_1 \propto \beta_1^{-1.00}, \tau_2 \propto \beta_2^{-1.00} \tag{54}
\]

Since \(\beta_1 \) and \(\beta_2 \) are proportional to \(F \), we have

\[
\tau \propto F^{-1.00}, \quad (F \text{ between } 0.5 \text{ pN and } 500 \text{ pN}) \tag{55}
\]

Note that Eq. (55) holds for both cases (with and without irradiation). The time to detachment will be higher after irradiation because a larger area is adhered.

Now, we consider a time-dependent force at constant rate \(F_0 \) as proposed by Lin and Freund [17]. Let \(F(t) = F_0 t \), then Eq. (55) can be rewritten as

\[
\frac{d\zeta_1}{d\tau_1} = 1 - \exp \left(\frac{\eta \tau_1}{\zeta_1} \right) \tag{56}
\]
where \(\eta = \frac{Fa}{(2nhk_1\rho_1 \rho_3 k_3 T)} \). Using the values of these parameters mentioned above, we have \(\eta = 2.15 \times 10^3 F \). As pointed out by Prechtel et al. [25], the force rate \(F \) in experiments is estimated to be between 20 pN/s and 4 nN/s, which corresponds to \(\eta \) between 0.043 and 8.6. Equation (56) can be integrated numerically and the result is plotted in Fig. 7(b) as symbols. The fitted line reveals that \(\tau^* \propto \eta^{-0.59} \). Let the real detachment time be \(\mu^* \). We want to study the dependence of the dimensionless detachment time \(\tau^* \) on \(\eta \) and, accordingly, the dependence of the real detachment time \(\mu^* \) on the force rate \(F \) with and without irradiation. Recall that \(\mu^* \) is proportional to \(\tau^* \) and \(F \) is proportional to \(\eta \). It follows from Fig. 7(b) that within the range 0.043 < \(\eta \) < 8.6, the dependence of the real detachment time \(\mu^* \) on the force rate \(F \) can be approximated by a power law as \(\mu^* \propto (F)^{0.59} \). Since the detachment force \(F^* = F \mu^* \), this implies

\[
F^* \propto (F)^{0.41} \quad (57)
\]

We note that Fig. 7(b) and Eq. (57) works for both cases (with and without irradiation). The only difference comes from the real detachment time \(\mu^* \). If we use \(\mu_2^* \) to denote the detachment time under irradiation and \(\mu_1^* \) without irradiation, then we should have, as expected, \(\mu_2^*/\mu_1^* = R_1/R_2 = 1.78 \).

5 Conclusion

In this paper, we investigated the mechanics of a vesicle subject to adhesion, micropipette aspiration, and irradiation simultaneously. We computed the shapes of the vesicles at equilibrium and also studied the kinetics of competing processes such as adhesion and irradiation-induced oxidation. An important aspect of our computations is that thermal undulations of the lipid membrane are taken into consideration so that they can be realistically compared to adhesion and irradiation experiments. The time variation of the mechanical moduli of irradiated vesicles is also taken into account in our computations. As such, our results are in agreement with several experimental papers on oxidation induced structural changes in vesicles. For example, we predicted the kinetics of the area increment of a lipid membrane sucked into a micropipette under different irradiation powers and the dynamics of the contact radius during adhesion, which are in agreement with experiments. We have also made falsifiable predictions that can be tested in future experiments. Our model may be extended to account for pore formation in oxidized membranes, but we leave this to the future.

Funding Data

- United States National Science Foundation (CMMI 1662101, Funder ID: 10.13039/1000000001).

References

