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Summary. Many clinical studies on non-mortality outcomes such as quality of

life suffer from the problem that the non-mortality outcome can be censored by

death, i.e. the non-mortality outcome cannot be measured if the subject dies

before the time of measurement. To address the problem that this censoring by

death is informative, it is of interest to consider the average effect of the treat-

ment on the non-mortality outcome among subjects whose measurement would

not be censored under either treatment or control, called the survivor average

causal effect (SACE). The SACE is not point identified under usual assumptions

but informative bounds can be constructed. The previous literature on bounding

the SACE use only the survival information before the measurement of the non-

mortality outcome. However, survival information after the measurement of the

non-mortality outcome could also be informative in many studies. For random-

ized trials, we propose a set of ranked average score assumptions that make use

of survival information before and after the measurement of the non-mortality

outcome which are plausibly satisfied in many studies and develop a two-step

linear programming approach to obtain the closed form for bounds on the SACE

under our assumptions. We also extend our method to randomized trials with

noncompliance or observational studies with a valid IV to obtain bounds on the

complier survivor average causal effect. We apply our method to a randomized

trial study of the effect of mechanical ventilation with lower tidal volume vs. tra-

ditional tidal volume for acute lung injury patients. Our bounds on the SACE are

much shorter than the bounds obtained using only the survival information before
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the measurement of the non-mortality outcome.

Keywords: Censoring by death; Causal inference; Instrumental variable;

Quality of life.

1. Introduction

In many clinical studies, researchers are interested in the effect of a treatment on a

non-mortality outcome such as complications or quality of life in addition to mor-

tality. However, the assessment of the causal effect on non-mortality outcomes of

interest is often complicated by censoring by death. This censoring by death occurs

because, by the time the non-mortality outcome is measured, some patients have

died and thus the non-mortality outcome cannot be measured or is not well defined

for these dead patients. For example, suppose we want to study the effect on intra-

ventricular hemorrhage (IVH) of premature babies being delivered in a high-level

neonatal intensive care unit (NICU) vs. a lower-level NICU. IVH is rarely present

at birth but usually occurs in the first several days of life ( See Lee, 2013). If the

baby died before being born (a fetal death) or shortly after birth, then whether the

baby had IVH is not well-defined. Another example is that in cancer studies, quality

of life outcomes that might be measured six months or a year after treatment like

incidence of fatigue, myelosuppression and treatment side-effects (e.g., Motzer et

al., 2013) are important outcomes considered to assess the efficacy of a treatment.

However, patients may die before the measurement of the quality of life outcomes;

for those patients, the quality of life outcomes are not well-defined. Censoring by

death is typically informative – patients who die usually would have had worse qual-

ity of life than those who did not die even if the dead patients could have somehow

been kept alive (Cox et al., 1992). Furthermore, those patients who are saved by a

treatment are often sicker patients on average than those patients who would live

under both treatment and control. Consequently, a direct comparison of the non-
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mortality outcomes among the survivors in treatment vs. control would be biased.

To address the fundamental problems that the non-mortality outcomes are not well

defined for those who die before measurement and that the censoring of the mea-

surement is informative, Rubin (2000), and Frangakis and Rubin (2002) proposed a

well defined causal estimand – the survivor average causal effect (SACE) – which is

the effect of treatment on the non-mortality outcome among patients who would

survive under both treatment and control to the time point when the non-mortality

outcome is measured.

Without strong untestable assumptions, the SACE is not point identified; how-

ever, with reasonable assumptions, we can obtain an interval in which SACE will lie.

Zhang and Rubin (2003) discussed various assumptions (ranked average score as-

sumptions) that can be made to bound the SACE, and derive large sample bounds

in a randomized trial. Imai (2008) provided an alternative proof that the bounds

obtained in Zhang and Rubin (2003) are sharp and generalized the proof to obtain

sharp bounds on the quantile treatment effect. Chiba (2012) proposed a number of

assumptions that are different from the ranked average score assumptions in Zhang

and Rubin (2003) and derived the corresponding bounds. Another stream of work

on drawing inference about the SACE is through sensitivity analysis procedures, for

instance, Hayden et al. (2005), Egleston et al. (2007), and Chiba and VanderWeele

(2011). A problem similar to censoring by death arises in evaluating the effect of

vaccine vs. placebo on post-infection outcomes. Hudgens, Hoering and Self (2003)

developed tests for the causal effect on viral load among the individuals who would

be infected no matter whether they received the vaccine regimen or a placebo regi-

men. Gilbert, Bosch and Hudgens (2003) proposed a class of models indexed by an

interpretable sensitivity parameter, where the SACE is identified given the sensitiv-

ity parameter.

In the previous literature on bounding the SACE, only the survival information

before the measurement on the non-mortality outcome has been used. However,
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survival information after measurement may be informative. In this paper, we de-

velop a method to use both the survival information before and after the measure-

ment of non-mortality to sharpen inferences on the SACE in the setup of random-

ized experiments. We will also present an extension of our method to bound the

complier survivor average causal effect (CSACE) in a randomized trial with noncom-

pliance or an observational study where an instrumental variable (IV) is available.

We will apply our method to the ARDSNet study, a randomized clinical trial on

the effect of mechanical ventilation with lower tidal volumes vs. traditional tidal vol-

umes for patients suffering from acute lung injury (The Acute Respiratory Distress

Syndrome Network, 2000). The trial found evidence that lower tidal volumes reduce

mortality. The investigators were also interested in assessing the effect of lower tidal

volumes on a quality of life (QOL) outcome, whether the patient was able to breathe

without assistance by day 28. In the data, both survival at day 28, when the QOL

is measured, and whether the patient was ultimately discharged home alive, post-

QOL measurement survival information, are recorded. Utilizing the post QOL mea-

surement survival information in addition to the pre-QOL measurement survival

information, we are able to substantially sharpen the bounds on the SACE for the

effect of lower tidal volume on being able to breathe without assistance by day 28.

The rest of the paper is organized as follows. In section 2, we introduce nota-

tions and assumptions to set up the causal framework. In section 3, we present the

derivations of the bounds of SACE and provide some numerical examples to com-

pare the bounds derived with the bound using one set of assumptions in Zhang and

Rubin (2003). We extend our method to IV settings in section 4. In section 5, we dis-

cuss how to check the plausibility of our assumptions for the "large sample" data as

well as the sample data. We discuss the confidence intervals for bounds in section

6, and we apply our approach to the tidal volume study in section 7. Conclusions

and discussions are presented in section 8.
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2. Notations and Assumptions: Randomized Experiment with Perfect

Compliance

In this section and the following, we focus on two arm randomized experiments

where the subjects are randomly assigned to either treatment or control. The method

is extended to IV settings in section 4.

2.1. Notations

We use the potential outcomes approach to define causal effects. Let Di represent

the binary treatment for the i th subject; we call level 1 "the treatment" and level 0

"the control". Let D denote the vector of treatment assignment indicators for all

subjects. Let S1i (d ) be the potential survival indicator of subject i that would be

observed at the first time point after which the measurement of non-mortality out-

come is taken, with 0 indicating death, 1 if alive. Let Yi (d ) represent the potential

non-mortality binary outcome (for instance, complication of babies, QOL of partic-

ipants ) that would be observed under treatment assignment d . The non-mortality

outcome is measured after the first time point, thus if the subject would die before

that time point (S1i (d ) = 0), Yi (d ) is not defined. For convenience, we assume that

level 1 of the non-mortality outcome is worse than level 0 of the outcome, e.g., in

the ARDSNet study, level 1 indicates that the patient was not able to breathe with-

out assistance by day 28 and level 0 indicates the patient was able to breathe without

assistance by day 28. We further define S2i (d ) to be the potential indicator of sur-

vival at the second time point for subject i that would be observed if under treatment

assignment d . If S1i (d ) = 0, then S2i (d ) = 0 by definition. We use Di ,S1i ,Yi and S2i

to denote respectively the observed treatment received, observed survival indica-

tor at the first time point, observed non-mortality outcome and observed survival

indicator at the second time point for subject i.
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2.2. Assumptions

We assume that the following assumptions hold for randomized experiments.

Assumption 1. Stable unit treatment value assumption (SUVTA).

• If di = d ′
i , then S1i (d ) = S1i (d ′), S2i (d ) = S2i (d ′), and Yi (d ) = Yi (d ′)

SUVTA means that there is no interference between subjects so that a subject’s out-

come only depends on the subject’s own treatment. Under SUVTA, each subject has

two potential first time point survival outcomes (S1i (1),S1i (0)), based on values of

which we can classify subjects into four groups:

• 11 = {i |S1i (1) = 1,S1i (0) = 1}, always survivors: the subjects that would survive

at least to the first time point under both treatment arms,

• 10 = {i |S1i (1) = 1,S1i (0) = 0}, protected: the subjects that would survive at least

to the first time point under treatment, but would die before then under con-

trol;

• 01 = {i |S1i (1) = 0,S1i (0) = 1}, harmed: the subjects that would die before the

first time point under treatment, but would survive at least to the first time

point under control;

• 00 = {i |S1i (1) = 0,S1i (0) = 0}, never survivors: the subjects that would die be-

fore the first time point under both treatment arms;

Assumption 2. The assignment Di of each subject is independent of his/her po-

tential outcomes.

Assumption 3. Monotonicity: S1i (1) ≥ S1i (0),S2i (1) ≥ S2i (0). There is no 01 (harmed)

group.

The monotonicity assumption says that the treatment does not cause death,

which is often plausible in practice. Under this assumption, subjects could either

be "always survivors", "protected" or "never survivors". The most meaningful infer-

ence of causal effect of treatment on Y can be drawn only for the "always survivors",



Two-stage Censoring by Death 7

Table 1. Fine Strata

Probability S1i (1) S1i (0) S2i (1) S2i (0) Principal Strata at Time Point 1

π1111 1 1 1 1 Always survivors

π1110 1 1 1 0 Always survivors

π1100 1 1 0 0 Always survivors

π1010 1 0 1 0 Protected

π1000 1 0 0 0 Protected

π0000 0 0 0 0 Never survivors

because it is the only group for which both Yi (1) and Yi (0) are well defined, see Ru-

bin (2000), Frangakis and Rubin (2002). Define the survivor average causal effect

(SACE) as E(Yi (1)−Yi (0) | 11), which is our quantity of interest.

We further create finer strata based on the possible combinations of potential

survival at both the first (QOL measurement point) and second (post-QOL mea-

surement point) time points, which is described in Table 1.

The always survivors at time point 1 are divided into the following three sub-

groups: 1111, always survivors who would live at least to the second time point un-

der both treatment arms; 1110, always survivors who would survive at least to the

second time point under treatment, but would die before then under control; 1100,

always survivors who although they can live at least to the first time point, would

die before the second time point under both treatment arms. The protected at time

point 1 are combinations of the following two subgroups: 1010, subjects who would

live at least to the second time point under treatment, but would die before the first

time point under control; 1000, subjects who if they receive treatment would live at

least to the first time point but would die before the second time point, but if they re-

ceive control, would die even before the first time point. Never survivors comprise

a single subgroup which we denote as 0000 because the second time point death

indicator provides no additional information for them.
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In terms of our fine strata, the SACE is expressed as:

S AC E = E(Yi (1)−Yi (0) | S1i = S1i (0) = 1)

= P (Yi (1) = 1 | S1i (1) = S1i (0) = 1)−P (Yi (0) = 1 | S1i (1) = S1i (0) = 1)

= (π1111E(Yi (1) | 1111)+π1110E(Yi (1) | 1110)+π1100E(Yi (1) | 1100))

π1111 +π1110 +π1100

− (π1111E(Yi (0) | 1111)+π1110E(Yi (0) | 1110)+π1100E(Yi (0) | 1100))

π1111 +π1110 +π1100
(1)

Plausible assumptions can be made on data to tighten the bounds of SACE. Zhang

and Rubin (2003) proposed the assumption that when assigned treatment, on aver-

age, the outcome for "always survivors" is better than "protected", in our case, that

is to say P (Yi (1) = 1 | 11) ≤ P (Yi (1) = 1 | 10), recalling that we use 1 to denote worse

outcome for Y. This uses only the information on death before the measurement of

the non-mortality outcome. In the rest of this paper, we will refer to this assump-

tion as the ranked average score with one stage survival information assumption.

Survival information after measurement of the non-mortality outcome may deliver

finer information, making use of which can help us make more reasonable assump-

tions and sharpen inferences. We will refer to the following set of assumptions as

ranked average score with two stage survival information assumptions.

Assumption 4. Among always survivors at time point 1, the probability of worse

outcome for group 1111 is the lowest, whereas the probability of worse outcome for

group 1100 is the highest under both treatment arms:

P (Yi (1) = 1 | 1111) ≤ P (Yi (1) = 1 | 1110) ≤ P (Yi (1) = 1 | 1100) (2)

P (Yi (0) = 1 | 1111) ≤ P (Yi (0) = 1 | 1110) ≤ P (Yi (0) = 1 | 1100) (3)

Assumption 5. Among protected at time point 1, the probability of worse out-

come for group 1010 is no higher than that for group 1000 under treatment:

P (Yi (1) = 1 | 1010) ≤ P (Yi (1) = 1 | 1000) (4)

Assumption 6. Under treatment, the probability of worse outcome for group

1100 is not lower than that for group 1010, but not higher than that for group 1000,
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and the probability of worse outcome for group 1110 is not higher than that for

group 1010:

P (Yi (1) = 1 | 1110) ≤ P (Yi (1) = 1 | 1010) ≤ P (Yi (1) = 1 | 1100) ≤ P (Yi (1) = 1 | 1000)

(5)

Assumptions 4, 5 and 6 are plausibly satisfied in many QOL studies. Consider

the ARDSNet study of the effect of lower tidal volumes (treatment) vs. traditional

tidal volumes (control) on being able to breathe without assistance by day 28 in

the ICU described in the introduction, where the post-QOL measurement survival

time point is being discharged home alive. Assumption 4 says, among patients

who would survive to day 28 under both treatment and control, those patients who

would be discharged home alive under both treatment and control are healthiest at

day 28 on average, and those who would be discharged home alive under treatment

but not control are healthier at day 28, than those who would die in the hospital

under both treatment and control. Assumption 5 says, among patients who would

survive to day 28 only under treatment, those patients who would ultimately be dis-

charged home alive under treatment are healthier on average than patients who

would ultimately die in the hospital. Assumptions 4 and 5 are plausible because

being discharged home alive is a proxy for health at day 28. Assumption 6 is a com-

parison of the 1010 patients who would die before day 28 under control but survive

to day 28 and be discharged home alive under treatment, to the 1100 patients who

would survive to day 28 under both treatment and control but die in the hospital

after day 28 under both treatment and control. Assumption 6 says that under the

treatment, the 1010 patients tend to be healthier than the 1100 patients at day 28.

This is plausible for the ARDSNet study for the following reasons. The 1100 patients

are likely to be fairly sick by day 28 under the treatment since these patients will die

in the ICU. In contrast, the 1010 patients are likely to be less sick on day 28 under

the treatment because they will be (or already have) discharged home alive. An ex-

ample of a 1010 patient would be a patient who was healthy but suffered a gunshot
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wound that caused an acute lung injury. When the patient arrives at the ICU, the

patient is in critical condition and only the treatment will save the patient, but if the

patient receives the treatment, the patient’s health before the gunshot wound will

enable the patient to recover well and be regaining his or her health by day 28. In

summary, assumptions 4, 5 and 6 are plausible for the ARDSNet study.

The ranked average score with one stage survival information assumption is dif-

ferent from our ranked average score with two stage survival information assump-

tions. The major difference is that the one-stage survival assumption assumes that

always survivors, on average, have better QOL outcome than the protected, whereas

our two-stage survival assumptions assume that one particular always survivors

group, 1100, has worse QOL outcome than a particular protected group, 1010, on

average under treatment, which is a more reasonable assumption for the ARDSNet

study. The differences in the bounds obtained under the ranked average score with

one stage survival information assumption and our two stage survival information

assumptions are presented in numerical examples and the analysis of ARDSNet

study in section 3.3 and 7 respectively.

3. Derivations of Bounds

Under assumptions 1-6, the SACE is not point identified based on the knowledge of

the observable joint distribution of (Di ,S1i ,S2i ,Yi ). However, we can use that joint

distribution to obtain an interval in which the SACE must lie. We first derive the

bounds for the proportions in each stratum, then for fixed proportions we derive

the bounds for the SACE. In this section, we assume that the joint distribution of

(Di ,S1i ,S2i ,Yi ) is known; in section 6, we will discuss forming confidence intervals

for the bounds that acknowledge sample uncertainty. .
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3.1. Bounds for proportions of each stratum

Notice that the observable strata of (Di ,S1i ,S2i ) are mixtures of fine strata (Table 1).

Thus we can express the proportions of strata of (Di ,S1i ,S2i ) by proportions of fine

strata. Combining this with the fact that all the proportions in the fine strata must

lie between 0 and 1, we can obtain the bounds for each fine stratum’s proportion.

We use ps1s2|d to denote P (S1i = s1,S2i = s2 | Di = d). The following equations hold:

p11|1 =π1111 +π1110 +π1010 (6)

p10|1 =π1100 +π1000 (7)

p00|1 =π0000 (8)

p11|0 =π1111 (9)

p10|0 =π1110 +π1100 (10)

p00|0 =π1010 +π1000 +π0000 (11)

Further we have,

0 ≤π1111,π1110,π1100,π1010,π1100,π1000,π0000 ≤ 1 (12)

Given (6)-(11), we can express each π by functions of pss|d and π1100:

π1111 = p11|0

π1110 = p10|0 −π1100

π1010 = p11|1 −p11|0 −p10|0 +π1100

π1000 = p10|1 −π1100

π0000 = p00|1

and subject to the constraint of (12), we have,

max{0, p11|0 +p10|0 −p11|1} ≤π1100 ≤ mi n{p10|0, p10|1} (13)
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3.2. Bounds for the SACE

In this step, we first derive the bounds for the SACE with known proportions of each

fine stratum, then will combine the result with the bounds obtained in section 3.1

to construct the final bounds for the SACE.

The observable strata of (Yi ,S1i ,S2i | Di ) are mixtures of potential outcomes

from the fine strata. Letting qy s1s1|d denote P (Yi = y,S1i = s1,S2i = s2 | Di = d),

we have the following identities:

q111|1 =π1111E(Yi (1) | 1111)+π1110E(Yi (1) | 1110)+π1010E(Yi (1) | 1010) (14)

q110|1 =π1100E(Yi (1) | 1100)+π1000E(Yi (1) | 1000) (15)

q111|0 =π1111E(Yi (0) | 1111) (16)

q110|0 =π1110E(Yi (0) | 1110)+π1100E(Yi (0) | 1100) (17)

Recall that

S AC E = (π1111E(Yi (1) | 1111)+π1110E(Yi (1) | 1110)+π1100E(Yi (1) | 1100))

π1111 +π1110 +π1100

− (π1111E(Yi (0) | 1111)+π1110E(Yi (0) | 1110)+π1100E(Yi (0) | 1100))

π1111 +π1110 +π1100
(18)

Givenπ′s, (π1111E(Yi (0)|1111)+π1110E(Yi (0)|1110)+π1100E(Yi (0)|1100))
π1111+π1110+π1100

= q111|0+q110|0
π1111+π1110+π1100

which is

point identified. Thus to bound the SACE, we only need to bound π1111E(Yi (1) |
1111)+π1110E(Yi (1) | 1110)+π1100E(Yi (1) | 1100), which defines a linear program-

ming problem:

min/max (π1111E(Yi (1) | 1111)+π1110E(Yi (1) | 1110)+π1100E(Yi (1) | 1100)) |π1100

(19)

Subject to:

q111|1 =π1111E(Yi (1) | 1111)+π1110E(Yi (1) | 1110)+π1010E(Yi (1) | 1010) (20)

q110|1 =π1100E(Yi (1) | 1100)+π1000E(Yi (1) | 1000) (21)
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E(Yi (1) | 1111) ≤ E(Yi (1) | 1110) ≤ E(Yi (1) | 1100) (22)

E(Yi (1) | 1010) ≤ E(Yi (1) | 1000) (23)

E(Yi (1) | 1110) ≤ E(Yi (1) | 1010) ≤ E(Yi (1) | 1100) ≤ E(Yi (1) | 1000) (24)

0 ≤ E(Yi (1) | 1111),E(Yi (1) | 1110),E(Yi (1) | 1100),E(Yi (1) | 1010),E(Yi (1) | 1000) ≤ 1

(25)

where constraints (22)-(24) are imposed by assumptions 4-6.

The above linear programming problem has a solution if and only if
q110|1
p10|1 ≥ q111|1

p11|1 ,

which is an inequality that must be satisfied based on assumptions 4-6. For each

possible value ofπ1100, we solve the above linear programming problem; then, com-

bining this result with the bound forπ1100 derived in section 3.1 thatπ1100 ∈ I , where

I = [max{0, p11|0 +p10|0 −p10|1}, mi n{p10|0, p10|1}], we have,

minS AC E = min
π1100∈I

[
min((π1111E(Yi (1) | 1111)+π1110E(Yi (1) | 1110)+π1100E(Yi (1) | 1100)) |π1100)− (q111|0 +q110|0)

π1111 +π1110 +π1100
]

=


max{

q111|1+q110|1−p11|1−p10|1+p11|0+p10|0
p11|0+p10|0 ,

q111|1
p11|1 }− q111|0+q110|0

p11|0+p10|0 , if p11|0 +p10|0 −p11|1 ≥ 0

max{0,
q111|1 p10|1+q110|1(p11|0+p10|0−p11|1)

p10|1(p11|0+p10|0) }− q111|0+q110|0
p11|0+p10|0 , if p11|0 +p10|0 −p11|1 < 0

(26)

maxS AC E = max
π1100∈I

[
max((π1111E(Yi (1) | 1111)+π1110E(Yi (1) | 1110)+π1100E(Yi (1) | 1100)) |π1100)− (q111|0 +q110|0)

π1111 +π1110 +π1100
]

= q111|1
p11|1

− q111|0 +q110|0
p11|0 +p10|0

+ q110|1p11|1 −q111|1p10|1
p10|1p11|1(p11|0 +p10|0)

·mi n{p10|0 , p10|1} (27)

The details of the calculation for the bounds of SACE are provided in the Appendix.

3.3. Numerical Examples

3.3.1. Example 1

Assume that the underlying truth about the population is described by Table 2. The

SACE = 0.05, meaning that the treatment will increase the probability of the worse

non-mortality outcome by 0.05 among always survivors who will survive at least to

the first time point under both treatment and control.

Suppose that we have an infinite sample, then we would observe that

p11|1 = 0.65 p10|1 = 0.2 p00|1 = 0.15 p11|0 = 0.5 p10|0 = 0.15 p00|0 = 0.35 (28)
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Table 2. Setup 1

% of population Fine Strata % of Yi (1) = 1 % of Yi (0) = 1

50 1111 10 5

10 1110 20 15

5 1100 40 35

5 1010 30 -

15 1000 50 -

15 0000 - -

q111|1 = 0.085 q110|1 = 0.095 q111|0 = 0.025 q110|0 = 0.0325 (29)

Given the constraints imposed by the observed data (28)-(29) and assumptions 4-6,

we obtain the bound for SACE: [0.042, 0.122], showing that the treatment increases

the probability of the worse non-mortality outcome.

However, if we don’t use the second time point survival information, the ob-

served data would be:

P (S1i = 1|Di = 1) = 0.85 P (S1i = 1|Di = 0) = 0.65 (30)

P (Yi = 1,S1i = 1|Di = 1) = 0.18 P (Yi = 1,S1i = 1|Di = 0) = 0.0575 (31)

Then, given the constraints imposed by the observed data (30)-(31) and the ranked

average score with one stage survival assumption, the bound we would obtain for

the SACE is [-0.088, 0.123], according to which we wouldn’t know whether or not

the treatment increases the probability of the worse non-mortality outcome even

though the true SACE is positive. From this example, we see that making use of the

survival information after measurement may provide us with more information and

narrow the bounds on the SACE.

3.3.2. Example 2

Through elementary calculation, one can easily prove that the lower bound for the

SACE under our assumptions (4)-(6) will be at least equal to or larger than the lower
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Table 3. Setup 2

% of population Fine Strata % of Yi (1) = 1 % of Yi (0) = 1

50 1111 10 5

15 1110 20 15

5 1100 40 35

5 1010 30 -

10 1000 50 -

15 0000 - -

bound for SACE under the ranked average score with one stage survival information

assumption. However, the upper bound under our two stage survival information

assumption is not comparable with the upper bound under one-stage survival as-

sumption. Our upper bound can be smaller as shown in Example 1, but it can also

be larger as we show below. Assume that the underlying truth about the population

is described by the following Table 3.

The true SACE is 0.05. If we have an infinite sample, then we would have the

following observed data:

p11|1 = 0.7 p10|1 = 0.15 p00|1 = 0.15 p11|0 = 0.5 p10|0 = 0.2 p00|0 = 0.3 (32)

q111|1 = 0.095 q110|1 = 0.07 q111|0 = 0.025 q110|0 = 0.04 (33)

Given the constraints imposed by the observed data (32)-(33) and assumptions

4-6, we obtain the bounds for the SACE: [0.043, 0.114]. If we don’t utilize the second

time survival information, we would observe the following data:

P (S1i = 1|Di = 1) = 0.85 P (S1i = 1|Di = 0) = 0.7 (34)

P (Yi = 1,S1i = 1|Di = 1) = 0.165 P (Yi = 1,S1i = 1|Di = 0) = 0.065 (35)

Then, given the constraints imposed by the observed data (34)-(35) and the ranked

average score with one stage survival information assumption, the bound we would
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obtain for the SACE is [-0.071, 0.101]. In this setup, the upper bound under the

ranked average score with two stage survival information assumption (Assumption

4-6) is larger than that of the ranked average score with one stage survival informa-

tion assumption. The reason is that the ranked average score with two stage survival

information assumptions allow for the possibility that the always survivors’ (1111,

1110, 1100) probability of bad outcome exceed the protecteds’ (1010, 1000) prob-

ability of bad outcome which contradicts the ranked average score with one stage

survival information assumption.

4. Extension to IV settings

The idea of using second time point survival information to sharpen the inference of

SACE under randomized trials with perfect compliance can be naturally extended

to randomized trials with noncompliance or observational studies with a valid IV

to obtain inference about the complier survivor average causal effect (CSACE). In

a randomized trial with noncompliance, the assignment of treatment can be used

as an IV to assess the effects of receiving the treatment on the outcome. In ob-

servational studies, natural experiments such as a person’s draft lottery number,

randomly assigned federal judges or quarter of birth have been used as IVs. (An-

grist, 1990; Angrist and Krueger, 1991; Kling, 1999). For more literatures on IV, see

Angrist, Imbens, and Rubin (1996), Abadie (2002), Hernan and Robins (2006), Tan

(2006), Brookhart and Schneeweiss (2007), Cheng (2009), and Clarke and Windmei-

jer (2012).

Let Zi represent the binary IV; 1 encourages the treatment for the i th subject

and 0 does not provide encouragement of the treatment. We use Z to denote the

vector of IV for all subjects. Let Di (z) be the potential binary treatment variable

that would be observed under IV assignment z for subject i; 1 being the treatment

and 0 denotes the control. Let S1i (z) be the potential survival indicator of subject i

that would be observed at the first time point after which the measurement of non-
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mortality outcome is taken; with 0 indicating death, 1 if alive. Let Yi (z) represent

the potential non-mortality binary outcome that would be observed under IV as-

signment z . Again, the non-mortality outcome would be measured after the first

time point, thus if the subject would die before that time point (S1i (z) = 0), Yi (z) is

not defined; otherwise S1i (z) = 1 and Yi (z) = 1 or 0, 1 indicating a worse outcome.

We further define S2i (z) to be the potential indicator of survival at the second time

point for subject i that would be observed if under IV assignment z . As in section

2, if S1i (z) = 0, then S2i (z) = 0 by definition. We use Zi ,Di ,S1i ,Yi and S2i to denote

respectively the observed IV, treatment received, observed survival indicator at the

first time point, observed non-mortality outcome and observed survival indicator

at the second time point for subject i.

4.1. Assumptions

We assume the following assumptions hold for the IV setup. These assumptions

combine those of Angrist, Imbens and Rubin (1996) for the IV setup and the ranked

average score with two stage survival information assumptions of section 2.

Assumption IV-1. Stable unit treatment value assumption (SUVTA).

• If zi = z ′
i , then Di (z) = Di (z ′), S1i (z) = S1i (z ′), S2i (z) = S2i (z ′), and Yi (z) =

Yi (z ′)

SUVTA means that a subject’s potential treatments and outcomes are not affected

by other individuals’ IV status and means that we can write Di (z) as Di (zi ), S1i (z)

as S1i (zi ), S2i (z) as S2i (zi ) and Yi (z) as Yi (zi )

Assumption IV-2. Nonzero average causal effect of Z on D. The average causal

effect of Z on D, E[Di (1)−Di (0)], is not equal to zero.

Assumption IV-3. Independence of the instrument from unmeasured confounders:

the random vector (D(1),D(0),S1(1),S1(0),S2(1),S2(0),Y (1),Y (0)) is independent of

Z.
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Based on subjects’ compliance behavior, we can first partition the population

into four groups:

Ui =



00, if Di (1) = Di (0) = 0

10, if Di (1) = 1, Di (0) = 0

11, if Di (1) = Di (0) = 1

01, if Di (1) = 0, Di (0) = 1

(36)

where 00, 10, 11, and 01 represent never taker, complier, always taker and defier,

respectively. Because Di (1) and Di (0) are never observed jointly, the compliance

behavior of a subject is unknown.

Assumption IV-4. Monotonicity of effect of IV on treatment: D(1) ≥ D(0). There

is no U=01 group.

Assumption IV-5. Monotonicity of effect of IV on survival: S1i (1) ≥ S1i (0),S2i (1) ≥
S2i (0).

The monotonicity of the effect of the IV on the survival will hold if the treatment

never causes death and assumption IV-4 holds if the IV has a monotone effect on

treatment.

Assumption IV-6. Exclusion restrictions among never-takers and always-takers:

S1i (1) = S1i (0),S2i (1) = S2i (0),Yi (1) = Yi (0), for Ui = 00 or 11.

This means that the IV only affects the outcomes through treatment and has no

direct effect on outcomes.

Based on the possible joint combinations of (Di (1),Di (0),S1i (1),S1i (0)) under

the above assumptions, we can define principal strata as shown in Table 4.

Different from the case of randomized experiments with perfect compliance, the

principal strata in the IV setup are defined with respect to IV levels, for example, the

"complier, always survivors" are compliers(comply with their IV encouragement of

treatment) who would survive under both IV levels. Among all the principal strata,

the "complier, always survivors" (1011) group is the only group that we can observe
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Table 4. Principal Strata

Di (1) Di (0) S1i (1) S1i (0) Principal Strata

1 0 1 1 Complier, always survivors

1 0 1 0 Complier, protected

1 0 0 0 Complier, never survivors

1 1 1 1 Never taker, always survivors

1 1 0 0 Never taker, never survivors

0 0 1 1 Always taker, always survivors

0 0 0 0 Always taker, never survivors

the outcome under treatment if IV is 1, as well as the outcome under control if IV is 0,

and that would survive under both treatment such that the non-mortality outcome

Y is well defined in both cases. Thus, it is the only group for which variation in

the IV can identify the causal effect of the treatment on the non-mortality outcome:

C S AC E = E(Yi (1)−Yi (0) | 1011).

Similarly to the case of randomized experiments with perfect compliance (Sec-

tion 2), we can further incorporate the information of second time survival indicator

to create finer strata as shown in Table 5.

In terms of the fine strata in Table 5, the CSACE is expressed as:

C S AC E = E(Yi (1)−Yi (0) | 1011)

= P (Yi (1) = 1 | 1011)−P (Yi (0) = 1 | 1011)

= (π101111E(Yi (1) | 101111)+π101110E(Yi (1) | 101110)+π101100E(Yi (1) | 101100))

π101111 +π101110 +π101100

− (π101111E(Yi (0) | 101111)+π101110E(Yi (0) | 101110)+π101100E(Yi (0) | 101100))

π101111 +π101110 +π101100

(37)

The same assumptions are made for compliers as we made for subjects under

randomized trials with perfect compliance (Assumptions 4-6 in Section 2).
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Table 5. Fine Strata

Probability Di (1) Di (0) S1i (1) S1i (0) S2i (1) S2i (0) Principal Strata at Time Point 1

π101111 1 0 1 1 1 1 Complier, always survivors

π101110 1 0 1 1 1 0 Complier, always survivors

π101100 1 0 1 1 0 0 Complier, always survivors

π101010 1 0 1 0 1 0 Complier, protected

π101000 1 0 1 0 0 0 Complier, protected

π100000 1 0 0 0 0 0 Complier, never survivors

π111111 1 1 1 1 1 1 Always takers, always survivors

π111100 1 1 1 1 0 0 Always takers, always survivors

π110000 1 1 0 0 0 0 Always takers, never survivors

π001111 0 0 1 1 1 1 Never takers, always survivors

π001100 0 0 1 1 0 0 Never takers, always survivors

π000000 0 0 0 0 0 0 Never takers, never survivors

Assumption IV-7. Among "complier, always survivors", the probability of worse

outcome for group 101111 is the lowest, whereas the probability of worse outcome

for group 101100 is the highest under both treatment arms:

P (Yi (1) = 1 | 101111) ≤ P (Yi (1) = 1 | 101110) ≤ P (Yi (1) = 1 | 101100) (38)

P (Yi (0) = 1 | 101111) ≤ P (Yi (0) = 1 | 101110) ≤ P (Yi (0) = 1 | 101100) (39)

Assumption IV-8. Among "complier, protected", the probability of worse out-

come for group 101010 is no higher than that for group 101000 under treatment:

P (Yi (1) = 1 | 101010) ≤ P (Yi (1) = 1 | 101000) (40)
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Assumption IV-9. Under treatment, the probability of worse outcome for group

101100 is not lower than that for group 101010, but not higher than that for group

101000, and the probability of worse outcome for group 101110 is not higher than

that for group 101010:

P (Yi (1) = 1 | 101110) ≤ P (Yi (1) = 1 | 101010) ≤ P (Yi (1) = 1 | 101100) ≤ P (Yi (1) = 1 | 101000)

(41)

4.2. Derivations of Bounds

As for the SACE in randomized experiments setup, the CSACE is not point iden-

tified without further assumptions based on the observable joint distribution of

(Zi ,Di ,S1i ,S2i ,Yi ), but can be bounded. We will again adopt the two step method

we used in section 3 to obtain the bound.

4.2.1. Bounds for proportions of each stratum

The observable strata of (Zi ,Di ,S1i ,S2i ) are mixtures of fine strata, if we use ps1s2d |z

to denote P (S1i = s1,S2i = s2,Di = d | Zi = z), we have the following identities:

p111|1 =π101111 +π101110 +π101010 +π111111 (42)

p101|1 =π101100 +π101000 +π111100 (43)

p001|1 =π100000 +π110000 (44)

p110|1 =π001111 (45)

p100|1 =π001100 (46)

p000|1 =π000000 (47)

p110|0 =π101111 +π001111 (48)

p100|0 =π101100 +π001100 +π101110 (49)
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p000|0 =π100000 +π000000 +π101010 +π101000 (50)

p111|0 =π111111 (51)

p101|0 =π111100 (52)

p001|0 =π110000 (53)

and the constraint

0 ≤π101111,π101110,π101100,π101010,π101000,π100000,π111111,π111100,π110000,π001111,π001100,π000000 ≤ 1

(54)

Given (42)-(53), we can express each π in terms of ps1s2d |z and π101100:

π000000 = p000|1

π001111 = p110|1

π001100 = p100|1

π111111 = p111|0

π110000 = p001|0

π111100 = p101|0

π100000 = p001|1 −p001|0

π101111 = p110|0 −p110|1

π101000 = p101|1 −p101|0 −π101100

π101110 = p100|0 −p100|1 −π101100

π101010 = p111|1 +p110|1 +p100|1 −p110|0 −p100|0 −p111|0 +π101100

and subject to the constraint of (54), we have,

max{0, p110|0+p100|0+p111|0−p111|1−p110|1−p100|1} ≤π101100 ≤ min{p101|1−p101|0, p100|0−p100|1}

(55)
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4.2.2. Bounds for the CSACE
For fixed π′s, let qy s1s2d |z denote P (Yi = y,S1i = s1,S2i = s2,Di = d | Zi = z). We have
the following identities based upon the observable strata of (Yi ,S1i ,S2i ,Di , Zi ):

q1111|1 =π101111E(Yi (1) | 101111)+π101110E(Yi (1) | 101110)+π101010E(Yi (1) | 101010)+π111111E(Yi (1) | 111111) (56)

q1101|1 =π101100E(Yi (1) | 101100)+π101000E(Yi (1) | 101000)+π111100E(Yi (1) | 111100) (57)

q1110|1 =π001111E(Yi (1) | 001111) (58)

q1100|1 =π001100E(Yi (1) | 001100) (59)

q1111|0 =π111111E(Yi (0) | 111111) (60)

q1101|0 =π111100E(Yi (0) | 111100) (61)

q1110|0 =π101111E(Yi (0) | 101111)+π001111E(Yi (0) | 001111) (62)

q1100|0 =π101110E(Yi (0) | 101110)+π101100E(Yi (0) | 101100)+π001100E(Yi (0) | 001100) (63)

Recall that

C S AC E = (π101111E(Yi (1) | 101111)+π101110E(Yi (1) | 101110)+π101100E(Yi (1) | 101100))

π101111 +π101110 +π101100

− (π101111E(Yi (0) | 101111)+π101110E(Yi (0) | 101110)+π101100E(Yi (0) | 101100))

π101111 +π101110 +π101100

(64)

Givenπ′s, (π101111E(Yi (0)|101111)+π101110E(Yi (0)|101110)+π101100E(Yi (0)|101100))
π101111+π101110+π101100

= q1110|0+q1100|0−q1110|1−q1100|1
π101111+π101110+π101100

which is point identified. Thus to bound the CSACE, we only need to boundπ101111E(Yi (1) |
101111)+π101110E(Yi (1) | 101110)+π101100E(Yi (1) | 101100), which defines a linear

programming problem:

min/max (π101111E(Yi (1) | 101111)+π101110E(Yi (1) | 101110)+π101100E(Yi (1) | 101100)) |π101100

(65)

Subject to:

q1111|1−q1111|0 =π101111E(Yi (1) | 101111)+π101110E(Yi (1) | 101110)+π101010E(Yi (1) | 101010)

(66)

q1101|1 −q1101|0 =π101100E(Yi (1) | 101100)+π101000E(Yi (1) | 101000) (67)

E(Yi (1) | 101111) ≤ E(Yi (1) | 101110) ≤ E(Yi (1) | 101100) (68)

E(Yi (1) | 101010) ≤ E(Yi (1) | 101000) (69)
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E(Yi (1) | 101110) ≤ E(Yi (1) | 101010) ≤ E(Yi (1) | 101100) ≤ E(Yi (1) | 101000) (70)

0 ≤ E(Yi (1) | 101111),E(Yi (1) | 101110),E(Yi (1) | 101100),E(Yi (1) | 101010),E(Yi (1) | 101000) ≤ 1

(71)

where constraints (68)-(70) are imposed by assumptions (IV-7) - (IV-9).

The above linear programming problem has a solution if and only if
q1101|1−q1101|0
p101|1−p101|0 ≥

q1111|1−q1111|0
p111|1−p111|0 .

For each possible value of π101100, we can solve the above linear programming

problem; then, combining this result with the bound for π101100 derived in sec-

tion 4.2.1, let L = p110|0 + p100|0 + p111|0 − p111|1 − p110|1 − p100|1, U = min{p101|1 −
p101|0, p100|0 −p100|1}, then π101100 ∈ I , where I = [max{0,L}, U ], we obtain,

minC S AC E =



max{
q1111|1−q1111|0+q1101|1−q1101|0−p111|1+p111|0−p101|1+p101|0+p110|0−p110|1+p100|0−p100|1

p110|0−p110|1+p100|0−p100|1 ,

q1111|1−q1111|0
p111|1−p111|0 }− q1110|0−q1110|1+q1100|0−q1100|1

p110|0−p110|1+p100|0−p100|1 , if L ≥ 0

max{0,
(q1111|1−q1111|0)(p101|1−p101|0)+(q1101|1−q1101|0)(p110|0−p110|1+p100|0−p100|1−p111|1+p111|0)

(p101|1−p101|0)(p110|0−p110|1+p100|0−p100|1) }

− q1110|0−q1110|1+q1100|0−q1100|1
p110|0−p110|1+p100|0−p100|1 , if L < 0

(72)

maxC S AC E = q1111|1 −q1111|0
p111|1 −p111|0

− q1110|0 −q1110|1 +q1100|0 −q1100|1
p110|0 −p110|1 +p100|0 −p100|1

+ (q1101|1 −q1101|0)(p111|1 −p111|0)− (q1111|1 −q1111|0)(p101|1 −p101|0)

(p101|1 −p101|0)(p110|0 −p110|1 +p100|0 −p100|1)(p111|1 −p111|0)
·U (73)

5. Checking the plausibility of ranked average score with two stage sur-

vival assumptions and exclusion restriction assumptions

From the observable data, it cannot be determined whether our ranked average

score with two stage survival information assumptions for randomized experiments

setup or IV settings hold, also it cannot be determined whether the exclusion restric-

tion assumed in the IV settings hold. However, there are some necessary conditions

that the probability distribution of the observable data must satisfy when these as-

sumptions are valid. If these conditions are violated, then we know our assumptions
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do not hold.

For randomized experiments with perfect compliance, from the derivation of

the bound for SACE in section 3, we know that the linear programming problem

(19)-(25) under the ranked average score with two stage survival information as-

sumptions as well as the constraints imposed by the observable"infinite sample"

probability distribution has a solution if and only if

q110|1
p10|1

≥ q111|1
p11|1

(74)

This constraint says that the probability of the worse non-mortality outcome

among the patients that are randomly assigned to treatment and that survive to

the first time point but die before the second time point is equal to or larger than

the probability of the worse non-mortality outcome among the patients that are

randomly assigned to treatment and that survive at least to the second time point.

This is a direct result from our ranked average score with two stage survival assump-

tions (Assumptions 4-6) which say that E(Yi (1) | 1111) ≤ E(Yi (1) | 1110) ≤ E(Yi (1) |
1010) ≤ E(Yi (1) | 1100) ≤ E(Yi (1) | 1000). The first three expectations are for subjects

who can survive at least to the second time point under treatment and the last two

expectations are for subjects who die before the second time point.

For the IV setting of Section 4, based on the calculations in section 4.2, the cor-

responding necessary conditions that the probability distribution of the data must

satisfy under Assumptions (IV-1)-(IV-9) are as follows: ,

q1101|1 −q1101|0 ≥ 0, p101|1 −p101|0 ≥ 0, q1111|1 −q1111|0 ≥ 0, p111|1 −p111|0 ≥ 0 (75)

q1101|1 −q1101|0
p101|1 −p101|0

≥ q1111|1 −q1111|0
p111|1 −p111|0

(76)

Pearl (1995) provides a necessary condition on the joint probability distribution

of the outcome, treatment and IV when the exclusion restriction holds. Extending
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Pearl’s result to our case where exclusion restrictions are assumed on both survival

at the first time point and the second time point as well as a non-mortality out-

come which may be censored, a necessary condition is that the following inequali-

ties hold:

p00d |z1 +q010d |z2 +q110d |z3 +q011d |z4 +q111d |z5 ≤ 1 (77)

where d ∈ {0,1}, zi ∈ {0,1} for i = 1,2,3,4,5

The above constraints to check the plausibility of our assumptions are for "infi-

nite sample" data. In practice, we can estimate the confidence with which the true

observable population distribution satisfies the above constraints using a simple

bootstrap procedure (Efron and Tibshirani, 1998). We bootstrap from the empirical

distribution of the observed data and then count the percentage of the bootstrapped

data sets for which the empirical distribution satisfies the constraints as an estimate

of the confidence. Efron and Tibshirani (1998) provide some refinements on this

simple bootstrap procedure that improve the accuracy of the estimated confidence.

6. Confidence Intervals for Bounds

In section 3 and 4, the bounds we obtained are "infinite sample" bounds where we

assume that the joint distributions of (Di ,S1i ,S2i ,Yi ) or (Zi ,Di ,S1i ,S2i ,Yi ) is known.

However, in practice, all these probabilities need to be estimated from the observed

data. To account for the sampling uncertainty, we would like to construct confi-

dence intervals for the bounds. The simplest way to construct confidence interval

is through the Bonferroni method, where if we want an overall level of 1−α, we can

obtain first the individual 1− α
2 confidence interval for the upper bound and lower

bound (e.g., via the bootstrap), then combine the results to derive the simultaneous

confidence interval. The disadvantage of the Bonferroni method is it’s conserva-

tive; the way to form it ignores the joint distribution of the upper bound and lower
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bound. Horowitz and Manski (2000) proposed a method to obtain the confidence

interval taking into account the joint distribution of the lower and upper bound.

The Horowitz and Manski confidence interval adds the same length to the upper

and lower bounds in the confidence interval. Beran (1988) proposed the B method

which also takes into account the joint distribution of upper and lower bounds with-

out the restriction on the form of the confidence interval of the Horowitz and Man-

ski confidence interval. A description of the above confidence interval approaches

for bounds can be found in Cheng and Small (2006). Because of the nice proper-

ties of B method, we will use it to construct the confidence interval for the ARDSNet

study.

We did a simulation study to examine the finite sample coverage of the B method

95% confidence interval for data like the ARDSNet study (See Section 7). We simu-

lated 2000 samples based on the observed empirical distribution of the ARDSNet

data (Table 6). Then for each simulated data set, we bootstrapped 2000 data sets

to obtain the 95% B method confidence interval. We counted the proportion of the

two thousand bootstrap CIs that cover the bound of the empirical distribution of the

ARDSNet data and did the analysis using both the two stage and one stage assump-

tions. For the ranked average score with two stage survival information assump-

tions, the coverage probability of the B method is estimated to be 95.65%, and for

the ranked average score with one stage survival information assumptions, the cov-

erage probability of the B method is estimated to be 95.75%. Thus the finite sample

coverage of the B method for studies like the ARDSNet study seems to be good.

7. Application to ARDSNet Study

The ARDSNet study described in the introduction involved 861 patients with lung

injury and acute respiratory distress syndrome who were randomized to receive me-

chanical ventilation with either lower tidal volumes or traditional tidal volumes. The

non-mortality outcome variable we are interested in is whether patients were able
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Table 6. Observed data for ARDSNet Study

Number of Patients Di S1i S2i Yi

258 1 1 1 0

29 1 1 1 1

10 1 1 0 0

26 1 1 0 1

109 1 0 0 –

211 0 1 1 0

34 0 1 1 1

7 0 1 0 0

25 0 1 0 1

152 0 0 0 –

to breathe without assistance by day 28 which is a measurement that reflects the

quality of life for patients after treatment. We use Yi to represent this binary quality

of life measurement, with Yi being 1 indicating that the i th patient were not able

to breathe without assistance by day 28. Naturally, the first survival time point is

day 28 after the treatment. If the patient died before day 28, then the non-mortality

outcome could not be measured, thus will be undefined. The second time point

survival indicator is whether the patient was eventually discharged home with unas-

sisted breathing or not. We view the patients who received mechanical ventilation

with lower tidal volume as the treatment group, and the patients who received me-

chanical ventilation with traditional tidal volume as the control group. Let Di equal

1 if the i th patient is randomized to treatment group, 0 if randomized to control

group. Further details on the data are described in appendix.

Table 6 presents the observed strata of (Di ,S1i ,S2i ,Yi ). Among the survivors in

the lower tidal volume group, the proportion of patients that cannot breathe with-

out assistance by day 28 is 17.03% (which is 55/323); among the survivors in the tra-

ditional tidal volume group, the proportion of patients that cannot breathe without
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Table 7. The estimated bounds and 95% B method CIs of the SACE for ARDSNet study

using ranked average score with two stage survival assumptions and one stage survival

assumptions.

SACE Two-stage survival assumptions One-stage survival assumptions

Estimated bounds [−12.99%, −4.02%] [−17.38%, −4.27%]

95% confidence interval [−20.11%, 1.99%] [−27.57%, 2.18%]

assistance by day 28 is 21.30% (which is 59/277). The difference of those two pro-

portions −4.27% which is a direct comparison of the QOL among survivors in the

lower tidal volume and survivors in the traditional tidal volume is likely an upward

biased estimate for the SACE due to the informativeness of censoring by death.

The empirical distribution of (Di ,S1i ,S2i ,Yi ) satisfies the constraint (74). Using

the bootstrap procedure, all of the 2000 bootstrapped datasets satisfy the constraint

(74), thus we are very confident that our set of two stage assumptions is plausible in

the sense that it does not violate the constraint (74).

Table 7 compares the estimated bounds of the SACE as well as the 95% confi-

dence intervals obtained through our proposed ranked average score with two stage

survival information assumptions to the ranked average score with one stage sur-

vival information assumptions. According to the result of our two stage analysis,

among the patients with lung injury and the acute respiratory distress syndrome

who would survive under both ventilation tidal volumes, the lower tidal volume

would help reduce the probability of breathing with assistance by day 28 by an

amount between 4.02% to 12.99%. This bound for the SACE is substantially shorter,

thus more informative, than the bound obtained through the one stage analysis

which estimates the reduction to be between [4.27%,17.38%]. The 95% B method

confidence intervals under both sets of assumptions cover 0, meaning that there is

not strong evidence that ventilation with lower tidal benefits patients in terms of the

quality of life outcome of breathing without assistance by day 28.
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8. Conclusions and Discussions

The effect of treatment on a non-mortality outcome among always survivors is of in-

terest in many clinical studies. The previous literature on bounding the SACE uses

only the survival information before the measurement of the non-mortality out-

come; however, in many cases, the survival information after the measurement of

non-mortality outcome is informative. We proposed a set of ranked average score

with two stage survival information assumptions which are plausibly satisfied in

many quality of life studies and developed a two-step linear programming approach

to obtain the closed form of the bounds of the SACE under our assumptions. Our

method works not only for randomized trials with perfect compliance, but also can

be extended to randomized trials with noncompliance or observational studies with

a valid IV to obtain bounds on the complier survivor average causal effect.

We applied our method to the ARDSNet study. Making use of the post QOL mea-

surement survival information (patients’ status when discharged home) in addition

to the pre-QOL survival information (survival status at day 28) helps substantially

shorten the bound on the SACE – the effect of lower tidal volume on being able to

breathe without assistance by day 28.

The SACE and CSACE are principal strata effects, causal effects on a subgroup

of patients defined by the values that post-randomization variables would take un-

der both treatment and control (Frangakis and Rubin, 2002). We have shown that

bounds on these principal strata effects can be sharpened by using the further out-

come information of survival after the non-mortality outcome is measured. In a

different context, Mealli and Pacini (2013) showed that using further outcomes can

narrow bounds on principal strata effects. Mealli and Pacini consider an outcome

that is not affected by censoring by death in a randomized trial with noncompliance,

and study bounds on the intention to treat effects for the compliers, always takers

and never takers. Mealli and Pacini consider settings in which the exclusion restric-

tion may not be satisfied and they show that a secondary outcome for which the
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exclusion restriction is satisfied can be used to narrow the bounds. For randomized

trials with noncompliance in which there is censoring by death and the exclusion

restriction may not be satisfied, it would be of future research interest to consider

combining the post-quality of life measurement survival information we have stud-

ied with the secondary outcomes Mealli and Pacini studied to narrow the bounds

on the CSACE.

So far, we have assumed that we are in the context of a randomized trial or an

observational study with a valid IV. Our method can also be naturally extended to

the cases in which conditional on some discrete covariates there is ignorability such

that the subjects are randomized or the IV is valid conditional on the covariates.

We can stratify the subjects into subsets defined by each level of covariates, and

apply our method to obtain the bound of SACE within each subgroup. Then we can

obtain the overall bound of SACE combining the proportions of each subgroup. See

(Freiman and Small, 2013) for more details on this topic. How to deal with the case

in which the covariates are continuous requires further research.

In this study, we focus on studies where the non-mortality outcome is measured

at a fixed time for all subject. However, there are cases where the non-mortality out-

come might be measured at different time for different subjects which complicates

the analysis. For instance, IVH may happen at any time in the first several days of life

of babies. How to handle the situation in which the non-mortality outcome could

be measured at continuous time period is a topic we are working on.
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Appendix:

A. Bounds of the SACE

Given the value of π1100, the linear programming problem (19)-(25) has a solution if

and only if the setΦ= [max{q110|1 −π1000,
q111|1π1100

π1111+π1110+π1010
},

q110|1π1100
π1100+π1000

] is not empty,

which is essentially
q110|1
p10|1 ≥ q111|1

p11|1 , an inequality that must be satisfied based on as-

sumptions 4-6. If Φ is not empty, let T = max{q110|1 −π1000,
q111|1π1100

π1111+π1110+π1010
}, T =

q110|1π1100
π1100+π1000

, the solution to the linear programming problem is,

max((π1111E(Yi (1) | 1111)+π1110E(Yi (1) | 1110)+π1100E(Yi (1) | 1100)) |π1100)

= q111|1(π1111 +π1110)

π1111 +π1110 +π1010
+T (78)

min((π1111E(Yi (1) | 1111)+π1110E(Yi (1) | 1110)+π1100E(Yi (1) | 1100)) |π1100)

=


T if

q111|1π1100
π1010

≤ T

q111|1 + (1− π1010
π1100

)Ṫ if
q111|1π1100

π1010
≥ T

q111|1 + (1− π1010
π1100

)T̈ if T < q111|1π1100
π1010

< T

(79)

where

Ṫ =


T ifπ1010 ≤π1100

T ifπ1010 >π1100

T̈ =


T ifπ1010 ≤π1100

q111|1π1100
π1010

ifπ1010 >π1100

Thus, given a fixed value of π1100, the bounds for the SACE are given by:

min(S AC E |π1100) = min((π1111E(Yi (1) | 1111)+π1110E(Yi (1) | 1110)+π1100E(Yi (1) | 1100)) |π1100)− (q111|0 +q110|0)

π1111 +π1110 +π1100

max(S AC E |π1100) = max((π1111E(Yi (1) | 1111)+π1110E(Yi (1) | 1110)+π1100E(Yi (1) | 1100)) |π1100)− (q111|0 +q110|0)

π1111 +π1110 +π1100
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From section 3.1, we know thatπ1100 is not point identified, but bounded: π1100 ∈
I , I = [max{0, p11|0 +p10|0 −p10|1}, min{p10|0, p10|1}], we have,

minS AC E = min
π1100∈I

[
min((π1111E(Yi (1) | 1111)+π1110E(Yi (1) | 1110)+π1100E(Yi (1) | 1100)) |π1100)− (q111|0 +q110|0)

π1111 +π1110 +π1100
]

maxS AC E = max
π1100∈I

[
max((π1111E(Yi (1) | 1111)+π1110E(Yi (1) | 1110)+π1100E(Yi (1) | 1100)) |π1100)− (q111|0 +q110|0)

π1111 +π1110 +π1100
]

One can prove that the expression on the left side of equation (79) is continu-

ous as a function of π1100 and both the functions on the left side of equations (78)

and (79) are non-decreasing as functions of π1100. Thus, the maxS AC E could be

achieved when π1100 is min{p10|0, p10|1} which is the right end point of the range for

π1100, and the minS AC E could be achieved when π1100 is max{0, p11|0+p10|0−p10|1}

which is the left end point of the range for π1100. Based on this observation, we can

obtain the formula for the bound of SACE which is given in (26) and (27).

B. The ARDSNet data

861 patients were randomized to receive mechanical ventilation with either lower

tidal volume or traditional tidal volume. The lower tidal volume group contained

432 patients and the traditional tidal volume group contained 429 patients. We cre-

ated our variables based on the recorded answers for the study termination form

and weaning form.

The first time point (day 28) survival information is obtained through the "ST2DT"

variable in the study termination sub-dataset which recorded the date of death. If

the date of death for subject i is below day 28, then S1i is 0 and the QOL is not de-

fined; otherwise, S1i is 1.

For the patients who survive to day 28, the QOL that whether patient was able to

breathe without assistance by day 28 was well defined. The variable "UNASSIST" in

the study termination sub-dataset recorded whether the patient was able to sustain

unassisted breathing for ≥ 48 hours during the first 28 days after initiation of study



34 Yang and Small

procedures. However, even if the patient sustained unassisted breathing for at least

48 hours, the patient could return to assisted breathing before day 28. The variable

"ASSIST" recorded this information. If the patient returned to assisted breathing

from unassisted breathing for at least 48 hours, the "ASSIST" was recorded as "Yes".

Thus, for patients whose "UNASSIST" was recorded as "No", we view them as the

ones who were not able to breathe without assistance by day 28. For patients whose

"UNASSIST" was recorded as "Yes", and "ASSIST" was recorded as "No", we view

them as the ones who were able to breathe without assistance by day 28; for patients

whose "UNASSIST" was recorded as "Yes" and "ASSIST" was recorded as "Yes", each

patient could either (a) have had unassisted breathing at some point and then re-

turned to assisted breathing and still be on assisted breathing at day 28 or (b) have

had unassisted breathing before day 28, returned to assisted breathing before day

28 and then returned to unassisted breathing before day 28. For these patients, we

further use the weaning sub-dataset which recorded in detail about each patients’

breathing status to figure out whether the patient was able to breathe without assis-

tance by day 28.

Our second time point survival indicator is whether the patient was eventually

discharged home with unassisted breathing. This information was recorded in the

variable "STATUS" which described patient status at study termination.
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