AMCS Written Preliminary Exam Part II, August 27, 2014

1. Define a sequence of functions on \mathbb{R} by setting:

$$
f_{n}(x)=\frac{x}{1+n x^{2}}
$$

Prove that $<f_{n}(x)>$ converges uniformly on \mathbb{R} to a function $f(x)$. For which x is it true that

$$
\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)=f^{\prime}(x) ?
$$

2. Suppose that $f(z)$ is analytic in the disk of radius 2 . What is the value of the contour integral

$$
\int_{|z|=1} f\left(\frac{1}{z}\right) d z ?
$$

3. Consider the following game of chance: A circular target of radius 1 is divided into n concentric circles of radius $1 / n, 2 / n, \ldots, n / n=1$. A dart is tossed at random onto the circle; if it lands in the annular zone between the circles with radii k / n and $(k+1) / n$, then $n-k$ dollars are won, with $k=$ $0, \ldots, n-1$. Let X_{n} be a random variable denoting the amount of money won in one round of the game, and $E\left(X_{n}\right)$ its expected value. Compute the limit

$$
\lim _{n \rightarrow \infty} \frac{E\left(X_{n}\right)}{n} .
$$

4. Suppose that A is an $n \times n$ skew-symmetric matrix $\left(A^{t}=-A\right)$. Prove that if n is an odd number, then there is a non-zero vector v_{0} such that $A v_{0}=0$. Show that e^{A} is an orthogonal matrix, that is

$$
\left\langle e^{A} x, e^{A} y\right\rangle=\langle x, y\rangle,
$$

for any pair of vectors $x, y \in \mathbb{R}^{n}$. What is $e^{A} v_{0}$?
5. Suppose A is a symmetric, positive definite $n \times n$ matrix. Compute the integral

$$
\int_{\mathbb{R}^{n}} e^{-\frac{1}{2}\langle A x, x\rangle} d x .
$$

Note that

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi} \tag{1}
\end{equation*}
$$

Hint: First diagonalize A.
6. A Markov process with 2 states $\{A, B\}$ is defined by the following transition probabilities:

$$
\begin{array}{ll}
\operatorname{Prob}(A \mid A)=\frac{1}{3} & \operatorname{Prob}(B \mid A)=\frac{2}{3} \\
\operatorname{Prob}(A \mid B)=\frac{1}{2} & \operatorname{Prob}(B \mid B)=\frac{1}{2}
\end{array}
$$

After many, many transitions what is the probability that the system will be found in state B ?

