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Introduction
The stochastic block model has recently been employed as a generative graph model for real-world
networks in a variety of fields including neuroscience [2]. In addition, persistent homology is gaining
traction as a tool to study the higher order topology of networks, by providing topological signatures
such as Betti curves [6]. Recent results in random topology provide the expected topological be-
haviour of the clique complex generated by common graph models such as the Erdös-Renyi graph
[5]. We aim to study asymptotic homological properties of the clique complex generated by the
stochastic block model via spectral methods first introduced by Hoffman, Kahle and Paquette [4].

Stochastic Block Model
The Stochastic Block Model (SBM) is a generative random graph model in which the vertices are
partitioned into blocks (or communities) that share a similar connectivity profile. It is defined by the
following parameters:

• n ∈ N: the number of vertices

• k ∈ N: the number of blocks

• {qi}ni=1, qi ∈ {1, 2, . . . , k}: a partition of the vertices into blocks

• P ∈ [0, 1]k×k: a symmetric matrix of edge probabilities

Normalized Laplacian and Spectral Gap
Graph-theoretic properties such as connectedness can often be described in terms of the spectra of
matrices derived from the graph. Common matrices to study are the adjacency matrix A and Lapla-
cian matrix L. Here we study the normalized Laplacian L, defined as follows. Let G be a graph and
let dv denote the degree of vertex v. Then

L(u, v) =


1 if u = v and dv 6= 0
−1√
dudv

if u and v are adjacent

0 otherwise.

Alternatively, we can define L in terms of other matrices as L = I − T−1/2AT−1/2 where T is the
diagonal matrix of degrees. The eigenvalues of L are denoted in ascending order as

0 = λ1 ≤ λ2 ≤ . . . ≤ λn.

Then, the spectral gap is defined to be λ2.

Previous Work and Approach
Sharp threshold functions for vanishing and non-vanishing homology for the Erdös-Renyi graph have
been shown by Kahle [5], and is summarized by the following theorem.

Theorem (Clique Complex Topology of Erdös-Renyi Graphs) Let k ≥ 1 and ε > 0 be fixed, and
let X(n, p) be the clique complex generated by the Erdös-Renyi graph G(n, p).

1. If

p ≥
((

k

2
+ 1 + ε

)
log n

n

)1/(k+1)

then w.h.p. Hk(X,Q) = 0.

2. If (
k + 1 + ε

n

)1/k

≤ p ≤
((

k

2
+ 1− ε

)
log n

n

)1/(k+1)

then w.h.p. Hk(X,Q) 6= 0.

The following theorem connects the cohomology of a simplicial complex with the spectral gap of the
underlying graph [1].

Theorem (Cohomology Vanishing Theorem) Let ∆ be a pure D-dimensional finite simplicial com-
plex such that for every (D − 2)-dimensional face σ, the link lk∆(σ) and has spectral gap

λ2[lk∆(σ)] > 1− 1

D
.

Then HD−1(∆,Q) = 0.

With this theorem, the first step is to understand and bound the spectral gap of the SBM. Several au-
thors have studied the spectral gap of the Erdös-Renyi graph. We note that T 1/21 is an eigenvector of
L with eigenvalue 0. Suppose S = {v ∈ Rn : v ⊥ T 1/21 : ‖v‖ ≤ 1}, then λ2(L) = minv∈S〈v,Lv〉.

To bound this, one approach is to first bound the contribution from the adjacency matrixA. The result
for the Erdös-Renyi graphs is max(v,w)∈S×S |〈v, Aw〉| ≤ c

√
np, with probability at least 1−O(n−α),

where c is a constant. A common technique is due to Kahn and Szemeredi [3] in which the summands
of 〈v, Aw〉 =

∑
i,j viAi,jwj are considered in two cases.

• Light couples (|viwj| ≤
√
p/n) whose contribution can be bounded using a concentration in-

equality

•Heavy couples (|viwj| >
√
p/n) whose contribution is bounded using properties of the random

graph such as bounded degree and discrepancy

Numerical Results

Model A: P ∝
(

1 γ
γ 1

)
γ ≤ 1 γ ≥ 1
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Model B: P ∝
(

1 1
1 γ

)
γ ≤ 1 γ ≥ 1

Betti 1

0 1000 2000 3000 4000 5000 6000
Edges Added

0

50

100

150

200

250

300

350

Be
tti
 1

γ=1.00
γ=0.50
γ=0.25
γ=0.13
γ=0.06
γ=0.03

0 1000 2000 3000 4000 5000 6000
Edges Added

0

50

100

150

200

250

300

350

Be
tti
 1

γ=1.00
γ=2.00
γ=3.98
γ=7.94
γ=15.85
γ=31.62

Betti 2

0 1000 2000 3000 4000 5000 6000
Edges Added

0

200

400

600

800

1000

Be
tti
 2

γ=1.00
γ=0.50
γ=0.25
γ=0.13
γ=0.06
γ=0.03

0 1000 2000 3000 4000 5000 6000
Edges Added

0

200

400

600

800

1000

Be
tti
 2

γ=1.00
γ=2.00
γ=3.98
γ=7.94
γ=15.85
γ=31.62

Questions
• Can we adapt the spectral methods of Hoffman, Kahle and Paquette to derive threshold functions

for vanishing homology for the SBM?
• For certain cases, the clique complex has nonvanishing homology at its saturation point (when one

part of the graph becomes fully connected). For which values of γ is there non-vanishing homology
with high probability at its saturation point?
• There exist more than two transitions (see the Betti 2 curves) in some cases; how can we detect

these intermediate regions with vanishing homology?
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