AMCS Written Preliminary Exam, I August 30, 2011

All work should go in the exam booklet, with your final answer clearly marked.

1. Choose a number $x_0 \in [1, 4]$ and define $x_{n+1} = \frac{2+2x_n^3}{3x_n^2}$ for $n \in [0, 1, 2, ...]$ Find the limit

$$L=\lim_{n\to\infty}x_n,$$

and prove that $\langle x_n \rangle$ converges to L.

2. Suppose that $\{F_j\}$ are closed bounded subsets of \mathbb{R}^n , and G is an open subset. Show that if

$$\bigcap_{j=1}^{\infty} F_j \subset G,$$

then there is a finite subset $\{j_1, \ldots, j_k\}$ so that

$$F_{j_1}\cap\cdots\cap F_{j_k}\subset G.$$

3. A real valued function defined on (a, b) is said to be convex if for $x, y \in (a, b)$ and $\lambda \in (0, 1)$ we have the estimate:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

- (a) Prove that a convex function is continuous.
- (b) Prove that a bounded convex, differentiable function defined on \mathbb{R} is constant.
- 4. Suppose that $0 < \alpha < 1$. Show that there is a constant C_{α} so that for $x, y \in (0, \infty)$ we have the estimate

$$\frac{1}{C_{\alpha}}(x^{\alpha} + y^{\alpha}) \le (x + y)^{\alpha} \le C_{\alpha}(x^{\alpha} + y^{\alpha}).$$

5. If v and w are vectors in \mathbb{R}^n , then the linear transformation $v \otimes w^t$ is defined by

$$v \otimes w^t \cdot x = \langle x, w \rangle v,$$

where $\langle \cdot, \cdot \rangle$ in an inner product on \mathbb{R}^n . Show that if A is an $n \times n$ matrix of rank m, then there are m pairs $\{(v_i, w_i) : i = 1, ..., m\}$ so that

$$A = \sum_{i=1}^{m} v_i \otimes w_i^t.$$

- 6. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation such that $T(x_1, x_2) = (x_2, x_1)$.
 - (a) Show that T is self adjoint with respect to the standard inner product, $\langle x, y \rangle = x_1 y_1 + x_2 y_2$, on \mathbb{R}^2 .
 - (b) Define a new inner product $\langle x, y \rangle'$ so that

$$\langle \boldsymbol{x}, \boldsymbol{x} \rangle' = x_1^2 + x_1 x_2 + \frac{1}{3} x_2^2.$$

Write the matrix for this inner product, i.e. the symmetric 2×2 matrix so that

$$\langle x, y \rangle' = \langle Ax, y \rangle.$$

- (c) Find T^* with respect to the new inner product.
- 7. Suppose that f is a real, continuously differentiable function on [0, 1].

Prove that for $0 \le a < b \le 1$, we have the estimate

$$|f(b) - f(a)| \le \sqrt{|b - a|} \left[\int_{0}^{1} |f'(x)|^{2} dx \right]^{\frac{1}{2}}.$$

Let $< f_n >$ be a sequence of continuously differentiable functions on [0, 1] for which $< f_n(0) >$ is a bounded sequence, and there exists an M such that

$$\int\limits_{0}^{1}|f_{n}'(x)|^{2}dx < M.$$

Show that $< f_n >$ has a uniformly convergent subsequence. Is the limit necessarily differentiable?