AMCS Written Preliminary Exam Part II, April 27, 2018

1. Suppose that $\sum_{n=0}^{\infty} a_n (z-1)^n$ is the power series expansion of the function

$$f(z) = \frac{1}{\cos z}$$

about the point z = 1. Does the series

$$(1) \sum_{n=0}^{\infty} |a_n|$$

converge or diverge? You must justify your answer.

- 2. Suppose that f(z) is an entire function such that $|f(z)| \le e^x$, for all z = x + iy. What can be said about the function f(z)? you must prove your answer.
- 3. A real matrix A is skew symmetric if $A^t = -A$.
 - (a) Show that a $(2n+1)\times(2n+1)$ skew symmetric matrix has a non-trivial null-space.
 - (b) Show that if λ is an eigenvalue of A, then so is $-\lambda$.
 - (c) Show that the spectrum of A is purely imaginary, i.e., consists of numbers of the form $\{i\lambda_i\}$ where the $\lambda_i \in \mathbb{R}$.
 - (d) Show that $\det A \geq 0$.
- 4. Suppose that A is a real, upper triangular matrix, with strictly positive diagonal entries. Prove that there is a real, upper triangular matrix, with strictly positive diagonal entries, B, such that $B^2 = A$. Hint: Use induction.
- 5. Evaluate the following limits and justify your answers:

(a)

$$\lim_{n\to\infty}\int_0^1 ne^{-nx}(\cos x)^2 dx.$$

(b)

$$\lim_{t\to\infty} \left\lceil te^t \int_t^\infty \frac{e^{-s}}{s} ds \right\rceil.$$

6. Find a conformal map from the half disk

$$D_1^+ = \{z : |z| < 1 \text{ and } 0 < \operatorname{Im} z\}$$

to the unit disk, $D_1 = \{z : |z| < 1\}.$

7. Two random points A and B are selected independently, and uniformly from the disk $\{(x, y) : x^2 + y^2 < 1\}$. A third random point C is selected uniformly from the larger disk $\{(x, y) : x^2 + y^2 < 4\}$, independently of A and B. What is the probability that the angle $\angle ACB$ is obtuse? Hint: First consider the answer for a fixed choice of A, B.