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Abstract

The efficient coding hypothesis assumes that biological sensory systems use neural
codes that are optimized to best possibly represent the stimuli that occur in their en-
vironment. Most common models utilize information theoretic measures, whereas al-
ternative formulations propose incorporating downstream decoding performance. Here
we provide a systematic evaluation of different optimality criteria using a parametric
formulation of the efficient coding problem based upon the Lp reconstruction error of
the maximum likelihood decoder. This parametric family includes both the information
maximization criterion as well as squared decoding error as special cases. We analyti-
cally derived the optimal tuning curve of a single neuron encoding a one-dimensional
stimulus with an arbitrary input distribution. We show how the result can be generalized
to a class of neural populations by introducing the concept of a meta tuning curve. The
predictions of our framework are tested against previously measured characteristics of
some early visual systems found in biology. We find solutions that correspond to low
values of p, suggesting that across different animal models, neural representations in the
early visual pathways optimize similar criteria about natural stimuli that are relatively
close to the information maximization criterion.

1 Introduction
The efficient coding hypothesis states that biological sensory systems have lim-

ited coding resources and therefore seek to employ coding strategies that are optimally



adapted to the statistical structure of their sensory environment (Attneave, 1954; Bar-
low, 1961; Maddess et al., 1985; Theunissen et al., 1991; Fitzpatrick et al., 1997; Harper
et al., 2004). Several studies have experimentally demonstrated that sensory neural
codes seem to indeed follow input distribution statistics in order to reach higher coding
efficiency (Brenner et al., 2000; Twer et al., 2001; Dean et al., 2005; Ozuysal et al.,
2012). A large fraction of previous work assumed that neural representations are tuned
to maximize the mutual information they are able to convey about the stimulus values
given some overall constraints on available metabolic costs, e.g. total number of spikes
(Laughlin, 1981; Linsker, 1989; Atick et al., 1990; van Hateren, 1993; Seung et al.,
1993; Nadal et al., 1994; Brunel et al., 1998; Zhang et al., 1999; Pouget et al., 1999;
Kang et al., 2004; Sharpee et al., 2006; McDonnell et al., 2008; Nikitin et al., 2009;
Tkacik et al., 2010; Yarrow et al., 2012; Kastner et al., 2015). This Infomax criterion
has been a preferred choice because it does not require making any further assump-
tions about potential downstream computations and tasks the encoded stimulus may be
involved in. On the other hand, a few studies have taken a downstream perspective
and have argued for optimality criteria that consider how well the stimulus informa-
tion can actually be reconstructed from the neural representations. They often use a
metric criterion in terms of the mean squared reconstruction error (Bethge et al., 2002,
2003; Berens et al., 2009; Yaeli et al., 2010; Doi et al., 2011). This reconstruction
metric has been shown to optimize performance in perceptual estimation and classifi-
cation tasks (Salinas, 2006). Recently there have been increasing interest in comparing
the information with the metric approach (Ganguli et al., 2010; Gjorgjieva et al., 2014;
Grabska-Barwinska et al., 2014). However, a unified comparison and evaluation of
these different approaches is currently lacking.

Here, we provide a unified framework to compare these optimal criteria. We intro-
duce a parametric formulation of the efficient coding problem in terms of minimizing
the overall reconstruction error according to the Lp norm, as a function of the norm
parameter p. We assume reconstruction from a maximum likelihood estimate (MLE)
decoder in the asymptotic time limit. More specifically, we consider a one-dimensional
stimulus s with distribution f(s) that is encoded with tuning curve(s) h(s) for m neu-
ron(s). While the mapping h(s) is deterministic, we assume the neural response r to
follow a distribution P (r|h(s)) according to neural noise. For both Poisson and Gaus-
sian noise, we analytically derive the optimal tuning curve h to achieve minimal Lp
mean reconstruction error for arbitrary stimulus distributions. This framework includes
both the Infomax as well as mean-squared error optimal solutions in the limit of p→ 0
and p = 2 respectively. We first focus on solutions for the optimal tuning curve h(s) of
a single (sigmoidal) neuron encoding the stimulus. We then show how the single neu-
ron tuning curve solution can be naturally extended to populations of neurons. Under
certain assumptions, the optimal single neuron tuning curve h(s) can be related to an
optimal meta-tuning curve of the neural population, from which the individual tuning
characteristics of the population of neurons can be determined.

In the context of this theoretical framework, we investigate how known tuning char-
acteristics of biological sensory systems can be explained. We compare the measured
tuning characteristics of early sensory representations in the fly, the cat, and the monkey
for known stimulus statistics with predictions from our framework. For the examples
we tested, the biological tuning characteristics are quite well predicted by our frame-

2



s r

encoding

P (r|h(s))

decoding

Lp loss |ŝ(r)− s|p

Figure 1: Efficient coding problem in terms of reconstruction error. A one-dimensional
stimulus s is encoded in a neural response pattern r. We define the optimal tuning curve
h(s) as the one that minimizes the overall Lp reconstruction error according to an MLE
decoder. We study how the optimal coding strategy is dependent on the norm parameter
p. The Infomax solution is equivalent to the optimal encoder for p→ 0.

work, and are best matched for small values of the norm parameter p. We conclude
that early sensory representations in biological systems may be optimized to convey
maximal information.

2 Optimal Neural Coding for a Single Neuron
We start with the case where a single neuron is encoding a one-dimensional stimulus

variable s. We assume that s follows a distribution density f(s). We also assume that
the neuron’s average firing rate is determined by a sigmoidal function h(s). The actual
observed firing rate r is subject to neural noise, whose variability is described by a
stochastic model P (r|h(s)).

We do not limit the noise to be defined by canonical Poisson spiking model. Rather,
we only assume that (a) the mean firing rate is equal to the output of the tuning curve
〈r〉 = h(s) and (b) the spike generating process is independent from the neuron’s spik-
ing history. With sufficient encoding time or with independent observations of identical
neurons, the accumulated noise is asymptotically normal with zero mean and fixed vari-
ance according to the Central Limit Theorem. In order to decode the input stimulus s,
we take the maximum likelihood estimator (MLE) ŝ(r), which is asymptotically unbi-
ased and efficient (Cover et al., 1991).

In order to find the Lp optimal tuning curve for a one dimensional stimulus s, we
need to minimize the mean Lp loss of the maximum likelihood estimator. The only con-
straint for the sigmoidal tuning curve is the saturation limits of the firing rates. Within
the regime of low noise limit, the maximum firing rate does not affect the optimality.
Therefore we assume 0 ≤ h(s) ≤ 1 without loss of generality, which leads to the
optimization problem

minimize 〈|ŝ(r)− s|p〉s,r (1)

subject to 0 ≤ h(s) ≤ 1. (2)
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2.1 Objective Functions in terms of Fisher Information
To get insight into the optimization problem, we analyze the Fisher Information.

The Fisher information I(s) describes the precision of the best possible estimator for
each specific individual stimulus s. For any s, I(s) can be calculated according to its
definition

I(s) =

〈(
∂

∂s
log p(r|s)

)2
∣∣∣∣∣ s
〉
r

(3)

where the conditional distribution p(r|s) describes the stochastic neural response for a
given stimulus and the average is taken over r but not s. It has been shown that in the
asymptotic limit of long encoding time, the total Fisher information characterizes the
precision of the estimator ŝ in reconstructing the stimulus s (see Appendix A.1)

(ŝ(r)− s) ∼ Normal(0, I(s)−1) (4)

〈|ŝ(r)− s|p| s〉r = const(p) · I(s)−p/2 (5)

It is clear from Equation 5 that larger Fisher information leads to smaller Lp error.
One example is the Cramer-Rao lower bound when p = 2. The more general Eq.(5)
establishes the connection between Lp loss in Eq.(1) and the Fisher information. This
results in an equivalent optimization in terms of Fisher information:

minimize
〈
I(s)−p/2

〉
s

(6)

In addition to the Lp-error minimization problem, we also consider the well-known
Infomax optimization which maximizes the mutual information between the response
and the stimulus. It has previously been shown that Fisher information can be related
to mutual information Brunel et al. (1998). In our framework, Infomax is equivalent to
optimizing the logarithm of Fisher information:

I(r, s) =
1

2
〈log I(s)〉s + const (7)

minimize −
〈

log
√
I(s)

〉
s

(8)

2.2 Constraints in terms of Fisher Information
Next we show how to incorporate constraints in Eq.(2) into the same framework.

For a one dimensional stimulus variable, the Fisher information of a neuron is fully
determined by the nonlinear tuning curve h(s) and the noise model. Here we show
the results for both Poisson noise (P) and constant Gaussian noise (cG), with details
provided in the Appendix A.2.

P: I(s) ∝ h′(s)2

h(s)
(9)

cG: I(s) ∝ h′(s)2 (10)
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These formulations can easily be inverted – for any given Fisher information allocation
I(s), the corresponding nonlinear tuning curve is

P: h(s) ∝
(∫ s

−∞

√
I(ξ) dξ

)2

(11)

cG: h(s) ∝
∫ s

−∞

√
I(ξ) dξ (12)

Given bound constraints on the tuning curve in Eq.(2), we have

P:
∫ ∞
−∞

√
I(s) ds ∝

∫ ∞
−∞

h′(s)√
h(s)

ds = 2
√
h(s)

∣∣∣∞
−∞
≤ const (13)

cG:
∫ ∞
−∞

√
I(s) ds ∝

∫ ∞
−∞

h′(s) ds = h(s)|∞−∞ ≤ const (14)

Ignoring irrelevant constant scalar terms which do not affect the optimal form, these
constraints can be unified:

P or cG: subject to
∫ ∞
−∞

√
I(s) ds ≤ const (15)

Since it is always better to have more Fisher information, equality in Eq.(15) must hold
for optimality. To summarize, the objective function in Eq.(6) attempts to optimally
allocate the Fisher information I(s) across the space of the stimulus variable s with
distribution f(s) under the integral constraint in Eq.(15). After determining the optimal
allocation I∗(s), the optimal nonlinearity h∗(s) can then be determined using Eq.(11)
or Eq.(12), depending upon the neural noise model.

2.3 Single Neuron Results
According to the above analysis, solving the Lp reconstruction error minimization

problem is equivalent to solving the Fisher information allocation problem. For each p
value in the Lp-minimum decoding loss criterion, the optimization problem is

minimize
〈

(I(s))−p/2
〉
s

=

∫
f(s) (I(s))−p/2 ds (16)

subject to
∫ √

I(s) ds ≤ const (17)

This variational problem can easily be solved and the optimal solution is

I∗(s) ∝ f(s)2/(1+p) (18)

P: h∗(s) =

(∫ s
−∞ f(ξ)1/(1+p) dξ∫∞
−∞ f(ξ)1/(1+p) dξ

)2

(19)

cG: h∗(s) =

∫ s
−∞ f(ξ)1/(1+p) dξ∫∞
−∞ f(ξ)1/(1+p) dξ

(20)
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A simple comparison between the two noise models reveals that the optimal tuning
curve for a neuron with Poisson noise is exactly the square of the optimal tuning curve
for a neuron with constant Gaussian noise. This relationship was first reported by
Bethge et al. (2002) and Johnson et al. (2004). The squaring transformation shows
that the optimal coding under Poisson noise tends to utilize more reliable low firing
rates rather than more unreliable higher rates. Below we focus on the constant Gaus-
sian noise solution and discuss the link between our general formula and several results
that have been previously reported in the literature:

• When p = 0, the L0-minimum solution is given by the cumulative function of the
input distribution,

h∗(s) ∝
∫ s

−∞
f(ξ) dξ. (21)

• When p = 2, the L2-minimum solution is given by the cumulative function of the
cube root of the input distribution,

h∗(s) ∝
∫ s

−∞
f(ξ)1/3 dξ (22)

• When p → ∞, the optimal tuning curve h∗(s) converges to a linear function
because its derivative approaches a constant function of s and the prior p(s) is
no longer relevant. However this usually requires the stimulus to be bounded
s ∈ [smin, smax] otherwise the integral of f(s)1/(1+p) will diverge for sufficiently
large p.

Note that optimizing the Lp-min problem Eq.(16) when p → 0 leads to the same
optimal solution as the Infomax problem in Eq.(8). This solution, first proposed in
(Laughlin, 1981; Nadal et al., 1994), is known as the output equalization rule because
the output h∗(s) is uniformly distributed within its range limit. We will informally refer
to both “L0-min” and the Infomax solution in the remainder of this paper. When p = 2,
the optimal solution in Eq.(22) minimizes the mean square error of the reconstructed
stimulus. This solutions was first proposed for optimal RGB color perception (Twer
et al., 2001) and discussed in (Wang et al., 2012).

To summarize, the solution in Eq.(20) provides a systematic understanding of the
optimal nonlinearities for the various criteria as a function of by p. In Figure 2 we
illustrate different Lp optimal tuning curves for a standard Gaussian stimulus prior.
Intuitively, the efficient coding problem can be understood as optimizing the allocation
of neural descriptive power across an inhomogeneous stimulus distribution. Depending
upon the value of p, the optimal allocation strategy balances between more frequently
appearing stimuli with less frequent ones. Strategies corresponding more with Infomax
(p near 0) emphasize stimuli with higher likelihood of appearing. On the other hand, Lp-
optimal strategies with large p are more conservative and need to spend more resources
to encode more surprising stimuli since the error penalty is larger.
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Figure 2: The Lp optimal sigmoidal tuning curves for for p = 0, 2, 8 for both Poisson or
constant Gaussian noise models. (a) the Gaussian stimulus distribution (prior). (b) for each p,
the optimal Fisher Information I∗(s) is derived based on the prior distribution (c) The optimal
tuning curve for Poisson noise (blue lines) or constant Gaussian noise (red lines).

2.4 Examples of Various Stimulus Prior Distributions
We derived optimal tuning curves for a few example stimulus distributions (priors).

In particular, we considered prior distributions that can be expressed as generalized
Gaussian distributions with scale parameter c and shape parameter β. For simplicity
we only show solutions for the constant Gaussian noise assumption. From Eq.(20), the
Lp-optimal tuning curve is related to the input stimulus distribution:

f(s) ∝ exp
(
−c|s|β

)
(23)

h′(s) ∝ f(s)1/(1+p) ∝ exp

(
−c
( |s|

(1 + p)1/β

)β)
. (24)

Therefore for a certain value of p, the nonlinearity is simply a rescaled version of the
cumulative function of f(s). The scalar (1 + p)1/β is a decreasing function of β. In
Figure 3 we illustrate three different cases: in the extreme of uniform distribution case
where β = ∞, the scalar remains a constant and there is no difference across all the
Lp-optimal tuning curves; for the Gaussian distribution case where β = 2, the scalar
grows sub-linearly as (1 + p)1/2; for the Laplacian distribution case where β = 1, the
scalar grows linearly as (1 + p).

Another important conclusion we would like to highlight is that all the Lp-optimal
solutions except L0 are not invariant under nonlinear stimulus transformations. For
example, the L2-optimal solution for a positive valued stimulus is not identical to the
L2-optimal solution for the same stimulus transformed to a logarithmic scale. The L0-
optimal solution is the only solution that is invariant under any one-to-one stimulus
transformations (Cover et al., 1991). This fact again demonstrates the intuition that
Lp-min strategies are highly task-driven – the solution changes if the stimulus variable
undergoes some nonlinear transformation before being processed.
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Figure 3: The Lp optimal sigmoidal tuning curve of a single neuron with constant Gaussian
noise model. Here we compare the results for various form of prior distributions: uniform distri-
bution (a)-(b), Gaussian distribution (c)-(d) and Laplacian (or double exponential) distribution
(e)-(f).

3 Generalization to Neural Populations
The tuning characteristics of optimal neural population codes have been studied

(Zhang et al., 1999; Pouget et al., 1999; Kang et al., 2004; McDonnell et al., 2008;
Nikitin et al., 2009; Ganguli et al., 2010; Yaeli et al., 2010). The conclusions from
these studies is that the solutions largely depend on the individual assumptions made in
the corresponding derivations.

3.1 Neural Population Assumptions
Certain assumptions are necessary to derive a well-constrained optimization prob-

lem. Rather than allowing all neurons in the population to independently exhibit arbi-
trary nonlinear tuning curves, we assumed the tuning curve of the k-th neuron to have
the following form

hk(s) = h0(ψ(s)− ψ(sk)) (25)

We refer to ψ(s) as the meta-tuning curve that transforms the stimulus s to neural space.
For each neuron, sk is the characteristic stimulus associated with that neuron. For ex-
ample, sk can be the preferred stimulus (at which the neuron elicits maximum neural
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response) for neurons with unimodal tuning curves or the semi-saturation stimulus (at
which the neuron elicits half of maximum neural response) for neurons with sigmoidal
tuning curves.

Below we denote s̃ = ψ(s) and s̃k = ψ(sk) resulting from the output of the meta-
tuning curve. Further assumptions are:

(a) All neurons in the population share the same given nonlinearity h0(s̃− s̃k).

(b) The characteristic stimuli s̃k are uniformly distributed, in other words the spacing
∆s̃ = s̃k − s̃k−1 between adjacent neurons is a constant.

(c) h0 and h′0 are slowly varying when measured at the scale of ∆s̃, i.e. h0(s̃k) ≈
h0(s̃k + ∆s̃) and h′0(s̃k) ≈ h′0(s̃k + ∆s̃). When ∆s̃ is small, this constraint is
equivalent to h0 and h′0 being continuous.

(d) The neurons have independent output noise so the total Fisher information of the
population is the linear sum of each individual ones Itotal(s) =

∑
k Ik(s) (see

Appendix A.3 for proof).

These assumptions are sometimes referred to as the “uniform tiling” properties of a neu-
ral population (Ganguli et al., 2010; Grabska-Barwinska et al., 2014). It is important to
note that the assumptions (a) and (b) limit the solutions to a sub-space of all possible
population codes for which the mapped stimulus s̃ is encoded by a homogeneous pop-
ulation (see Figure 4). In our model, the total Fisher information of the population with
either the Poisson noise or constant Gaussian noise (see Eq.(9) or Eq.(10)) becomes:

I0 ≈ Itotal(s̃) =
∑
k

Ik(s̃) =
∑
k

h′0(s̃− s̃k)2
h0(s̃− s̃k)

or
∑
k

h′0(s̃− s̃k)2 (26)

The form of h0(·) is fixed and often assumed but not limited to be either unimodal or
sigmoidal. In Figure 4 we illustrate how to determine the individual tuning curves of
the inhomogeneous neural population.

3.2 Optimal Meta-tuning Curve
For any meta-tuning curve s̃ = ψ(s), we can calculate the Fisher Information of

the k-th neuron and the total Fisher information for the population, with respect to the
original stimulus s as

P: Ik(s) ∝
h′0(ψ(s)− s̃k)2
h0(ψ(s)− s̃k)

· ψ′(s)2 (27)

cG: Ik(s) ∝ h′0(ψ(s)− s̃k)2 · ψ′(s)2 (28)

P or cG: Itotal(s) =
∑
k

Ik(s) ≈ I0 · ψ′(s)2 (29)

In the population coding case, the mean Lp reconstruction error of s is related to the
total Fisher information and we need to minimize the following term〈

(Itotal(s))
−p/2

〉
s

=

∫
f(s) (Itotal(s))

−p/2 ds (30)
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Figure 4: Under our assumptions, the inhomogeneous neural population tuning is derived by
warping a homogenous tuning description through the meta-tuning curve, i.e. the stimulus space
is nonlinearly transformed according to the meta-tuning curve. via the sigmoidal meta-tuning
curve ψ(s). Two representative choices of h0 are (a) unimodal and (b) sigmoidal.

where f(s) is the prior distribution of the stimulus s. We can limit the output of a
non-decreasing meta-tuning curve to the range 0 ≤ ψ(s) ≤ const. Then minimizing
the Lp reconstruction error is equivalent to the following optimization in terms of the
meta-tuning curve ψ(s):

minimize
〈

(Itotal(s))
−p/2

〉
s
≈ I−p/20 ·

∫
f(s)ψ′(s)−p ds (31)

subject to
∫
ψ′(s) ds ≤ const. (32)

This optimization problem is the same as the constant Gaussian noise case we previ-
ously discussed in Section 2.3. This leads to a solution for the optimal meta-tuning
curve ψ∗(s) with corresponding total Fisher information:

ψ∗′(s) ∝ f(s)1/(1+p), I∗total(s) ∝ f(s)2/(1+p) (33)

ψ∗(s) =

∫ s
−∞ f(ξ)1/(1+p) dξ∫∞
−∞ f(ξ)1/(1+p) dξ

(34)

This result illustrates that under our model, the Fisher Information allocation for the
population is entirely determined by the meta-tuning curve ψ(s), in the same way as
the Fisher information allocation is determined by the sigmoidal tuning curve h(s) of a
single neuron with constant Gaussian noise. In Figure 5 we show the L0, L2 and L8 op-
timal neural populations for encoding a stimulus variable with a Gaussian distribution.
Compared to previous work by Ganguli et al. (2010), our framework considers a more
constrained class of neural populations because it assumes a fixed gain across neurons.
Our formulation, however, allows us to specify an entire family of Lp-optimal solutions
that smoothly incorporate the special cases of the Infomax and the MSE solutions.
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Figure 5: The Lp optimal neural populations for p = 0, 2, 8 and a Gaussian stimulus distri-
bution. Panels (a), (b) are replicated from Figure 2 and the optimal meta-tuning curve for the
population is identical to the optimal tuning curve of a single neuron with constant Gaussian
noise. Here we show two different kinds of optimal neural population, where each neuron has
(c) unimodal tuning curves or (d) sigmoidal tuning curves.

4 Relaxing the Asymptotic Assumptions
For both the single neuron case and the neural population case, our results so far

have relied on several key assumptions. The most restrictive one is the assumption
that neurons are operating in the asymptotic long time limit. In this limit, the optimal
decoder naturally converges to the maximum likelihood estimator. In contrast, in a more
realistic scenario where encoding time is short, it is generally the case that a Bayesian
(and usually biased) decoder will perform better. Unfortunately it is difficult to derive
analytic solutions in this case yet numerical efforts have been made (Bethge et al., 2003;
Nikitin et al., 2009). Furthermore, the derivation of the optimal Bayesian decoder can
be intractable for arbitrary prior distributions.

In order to provide a sense of how well our derived analytic solutions hold for
shorter encoding times, we compared their predicted performance to the actual mea-
sured performance obtained by numerical simulations. The decoding performance of
our Lp optimized coding solutions can be easily simulated for arbitrary encoding times.
For reasons of simplicity, we considered a standard Gaussian stimulus distribution p(s)
in our simulations. The encoding process is straightforward: stimuli are sampled and
encoded by the Lp optimal code with additional Poisson spiking noise. For the decod-
ing process, we examined both the assumed unbiased, maximum-likelihood estimator

11



(MLE) and the maximum a posteriori estimator (MAPE). In both cases, iterative gra-
dient descent method (Newton’s method) was used to find the stimulus with maximal
likelihood (for MLE) or maximal posterior likelihood (for MAPE). The mean Lp de-
coding error was then calculated over a large set of generated stimuli and compared to
the theoretical prediction.

For a neuron with maximum firing rate rmax and a fixed length of the time window
T , the key variable is the maximum allowed spike-count Nmax = rmaxT . For each value
of Nmax we run a total of 100 independent trials and in each trial, 100,000 stimuli were
randomly generated. This experiment was done for both a single neuron with sigmoidal
tuning curve and for a population of neurons with unimodal tuning curves. Results are
shown in Figure 6. As expected, the theoretical predictions were more accurate when
Nmax was large, with the critical value forNmax increasing as a function of p. For shorter
encoding time, our result shows that the MAPE is a better estimator despite the similar
performance for larger Nmax. The performance of the MLE seems to be lower bounded
by our theoretical prediction (see the solid line) but the MAPE benefits from the prior
information and is upper bounded by a constant related to that prior.

In the single neuron case, the critical spike-count Nmax ranges from approximately
102 (for p = 0.01) to approximately 104 spikes (for p = 2). For some sensory neurons,
such as the H1 neuron of a blowfly (see Section 5.1), the maximal firing rate rmax can be
as high as 100Hz which means that the critical time for the long encoding assumption
to be valid is around T ≥ 1 sec (for p = 0.01) to T ≥ 100 sec (for p = 2). In the
neural population case, we run simulations with K = 11 neurons with unimodal tuning
curves. As expected, the performance in terms of the Lp error is one order of magnitude
better than for the single neuron case. Correspondingly, the critical spike-count Nmax is
much smaller: from approximately 100.5 (for p = 0.01) to approximately 101.5 spikes
(for p = 2). For small p values, the performance matches the theoretical prediction for
populations containing as few as 11 neurons with Nmax ≥ 3 spikes per neuron. For
larger p value such as p = 2, this number may increase to Nmax ≥ 30 spikes per neuron.

In sum, we found that depending on the value of p the long time-limit assumptions
can be reasonably relaxed for short encoding times. In particular, we find that the crit-
ical spike-count can be as low as Nmax = 3 ∼ 30 spikes per neuron which justifies
the biological relevance of our result. Generally, the predictions of our framework are
much less constrained for smaller p values. We have also found that the performance
of a Bayesian decoder (the MAPE) tends to be better than the MLE decoder, which
shows that the optimality of our solution (MLE) strongly rely on the unbiased assump-
tion. Fortunately, this limitation is subordinated to the short encoding time limitation.
The MAPE itself is asymptotically unbiased and has similar performance as the MLE
decoder once the critical Nmax is reached.

5 Efficient Codes in Visual Perception
Our theoretical analysis raises the question of which efficiency criterion the brain

actually uses to encode information. In this section, we considered several different
modalities in early visual perception: motion encoding, orientation encoding and con-
trast encoding. In each case, we attempted to estimate the prior distribution of the input
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Figure 6: The simulated Lp encoding error (MLE: red dot, MAPE: blue cross) vs. theoretical
prediction assuming unbiased estimator (solid lines) or using only prior information (dashed
lines). The markers indicates the median over 100 trials. (a) The performance of a single
neuron with sigmoidal tuning curve (see e.g. Figure 3d). (b) The performance of a population
with K = 11 neurons with unimodal tuning curves (see e.g. Figure 5c). The vertical axis is the
mean Lp loss 〈|ŝ − s|p〉1/p and the horizontal axis is Nmax, both in logarithm space with base
10.

stimulus and compared the tuning characteristics of the predicted efficient coding model
with published physiological data.

5.1 Speed Encoding by a Single Blowfly H1 Neuron
We first analyzed data from the H1 neuron of blowfly, which encodes the speed s

of a horizontally moving bar. The analyzed dataset (van Steveninck et al., 1997) was
collected from a fly H1 neuron responding to a stochastically generated visual motion
stimulus. The data was taken for 20 minutes at a sampling rate of 500Hz. We binned
the neural data into 1200 bins with duration ∆t = 1 second and calculated the average
stimulus si and the number of spikes Ni for i = 1, . . . , 1200 in each bin. This stimulus-
response relation is plotted in Figure 7a.

The natural speed prior for the blowfly is unknown. However, based on the investi-
gation of natural movie clips, previous research has proposed that the prior distribution
for visual speed should follow a power-law function of the form f(s) ∝ (1 + |s|/v0)−2,
where v0 > 0 is a scale parameter (van Hateren, 1993; Dong et al., 1995). For this par-
ticular form of the prior, the optimal Lp tuning curve h∗p(s) for a neuron with Poisson
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noise can be analytically computed.

h∗p
′(s) ∝ f(s)

1
1+p ⇒ h∗p(s) ∝

(
1 + sign(s)

(
1− 1

(1 + |s|/v0)
1−p
1+p

))2

(35)
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Figure 7: (a) the stimulus-response data collected from a fly H1 neuron (van Steveninck et al.,
1997) and we plot the best tuning curve using the parametric model in Eq.(35). (b) the predicted
prior distribution to which the fly H1 neuron is most likely adapted. (c) the optimal parameter v0
and p is chosen to maximize the data likelihood. Dash line shows the optimal parameter v0(p)
as a function p. (d) The maximum data likelihood for each pair (p, v0(p)) as a function of p.

It can be seen that for this parametric form of the prior distribution, the Lp optimal
solution exists only for 0 ≤ p ≤ 1. In order to infer the prior distribution and the
optimal norm parameter, we optimized for the parameters v0 and p that maximized the
data likelihood. The result is shown in Figure 7b and represents the predicted speed
prior distribution to which the H1 neuron is optimally adapted to. In Figure 7c-d we
can see that parameter values v0 = 21.3 deg/sec and p = 0 lead to the highest data
likelihood. However other pairs of (p, v0) for p < 0.8 also yield good likelihood scores.

5.2 Orientation Encoding with Neural Populations
We also applied our proposed framework to analyze biological neural populations

that encode local visual orientation. We first estimated the prior distribution f(θ) of
local visual orientation θ from a natural image dataset (van Hateren et al., 1998) using a
filter analysis at a single spatial scale (detailed description in Appendix B). The result-
ing prior distribution is shown in Figure 8c and is very similar to previously estimated
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distributions (see e.g. Girshick et al. (2011)). Based on the estimated prior density, we
derived the optimal meta-tuning curves ψ(θ) for various values of the norm parameter
p (see Figure 8b). The unimodal tuning curves of the population (see Figure 8d) were
then determined as described in Section 3.2 assuming an homogeneous population of
certain tuning width w̃ (see Figure 8a). Below we compare predictions of the model
population with measured biophysical characteristics of orientation tuned neurons.

The first prediction is with regard to neural density. De Valois and colleagues re-
ported that the ratio between neurons tuned for oblique vs. cardinal orientations is about
0.66 in area V1 of the macaque (De Valois et al., 1982). In our framework the neural
density as a function of θ is directly related to the derivative of the meta-tuning curves
(Figure 8f). In order to compute the ratio between the number of neurons tuned for
the oblique vs. the cardinal orientations, we binned the neural population into two sub-
populations shown as blue/red regions in Figure 8f. The predicted ratio is a function
of the norm parameter p (Figure 8e); for p ≈ 0.37 the ratio of the model population
matches the ratio found for neurons in V1.

We can also predict how the tuning width depends on the preferred stimulus of the
neurons. Following the definition of Ringach et al. (2002), we defined the tuning width
w as the length of the orientation interval over which a neuron’s mean response is at
least 1/

√
2 of its peak firing rate. Figure 8h shows the predicted tuning width w(θ) as a

function of the preferred orientation θ of a neuron in the model population. Each curve
shows the tuning width w(θ) for a different assumed constant tuning width w̃ in the
homogeneous population (Figure 8a). From these continuous functions we calculated
the first and third quartiles w1Q, w3Q of the tuning widths across the inhomogeneous
population. For each p value, the possible values of w1Q(w̃) and w3Q(w̃) form a curve
with parameter w̃ as shown in Figure 8g. A comparison of the quartile predictions
with physiological data from neurons in area V1 of the macaque (Ringach et al., 2002)
suggests that the model best matches the data for a norm parameter of value p = 0.08.

Finally, we can make predictions about tuning curve asymmetries. Specifically, we
compared the predicted asymmetry index (Henry et al., 1974) of our model population
with the values found for biological neurons. Similar to the tuning width, the predicted
asymmetry index is also a function of the assumed tuning width w̃ of the neurons in
the homogeneous population (see Figure 8j). We computed the predicted relationship
between the mean asymmetry index and the median tuning width for different p value
and compared it with measurements from simple cells in striate cortex of the cat (Henry
et al., 1974). The reported median tuning width (measured at 1/2 peak amplitude; we
have rectified our predictions accordingly) of 34◦ and asymmetry index 1.26 matches
our predictions for p ≈ 0.85 (see Figure 8i).

In summary, we found that the measured orientation tuning characteristics of neu-
rons in primary visual cortex of the macaque and the cat match those model predictions
that correspond to fairly low values of p.

15



response

h
o

m
o

g
e

n
e

o
u

s
 s

p
a

c
e

width w̃ = 10%

stimulus (deg)
0 45 90 135 180

m
e

ta
-t

u
n

in
g

 c
u

rv
e

p=0.0

stimulus (deg)
0 45 90 135 180

p=0.5

stimulus (deg)
0 45 90 135 180

p=1.0

stimulus (deg)
0 45 90 135 180

p
ri
o

r 
d

is
tr

ib
u

ti
o

n image data
smooth fit

stimulus (deg)
0 45 90 135 180

re
s
p

o
n

s
e

stimulus (deg)
0 45 90 135 180

stimulus (deg)
0 45 90 135 180

p
0 0.25 0.5 0.75 1

o
b

liq
u

e
/c

a
rd

in
a

l 
ra

ti
o

0.5

0.6

0.7

0.8

0.9

1
prediction
de Valois et al.

stimulus (deg)
0 45 90 135 180

n
e

u
ra

l 
d

e
n

s
it
y

stimulus (deg)
0 45 90 135 180

stimulus (deg)
0 45 90 135 180

predicted density
cardinal
oblique

1Q tuning width (deg)
0 20 40 60

3
Q

 t
u

n
in

g
 w

id
th

 (
d

e
g

)

0

20

40

60

p=0.0
p=0.5
p=1.0
Ringach et al.

stimulus (deg)
0 45 90 135 180

tu
n

in
g

 w
id

th
 (

d
e

g
)

0

20

40

60

stimulus (deg)
0 45 90 135 180

stimulus (deg)
0 45 90 135 180

w̃ = 5%

w̃ = 10%

w̃ = 15%

w̃ = 20%

w̃ = 25%

median tuning width* (deg)
0 20 40 60m

e
a

n
 a

s
y
m

m
e

tr
y
 i
n

d
e

x

1

1.5

2

p=0.0
p=0.5
p=1.0
Henry et al.

stimulus (deg)
0 45 90 135 180

a
s
y
m

m
e

tr
y
 i
n

d
e

x

1

1.5

2

stimulus (deg)
0 45 90 135 180

stimulus (deg)
0 45 90 135 180

w̃ = 25%

w̃ = 20%

w̃ = 15%

w̃ = 10%

w̃ = 5%

i j

g h

e f

c d

a b

16



Figure 8: Comparison between theoretically predicted and physiologically measured tuning
characteristics of orientation tuned neural populations. (a)-(d) cartoon examples of Lp-optimal
neural population derived based on a homogeneous neural population and the optimal meta-
tuning curve, which is determined by the prior distribution extracted from natural images. The
p values are 0, 0.5 and 1. (e)-(f) the oblique versus cardinal ratio prediction is compared with
previous results (De Valois et al., 1982) on macaque V1 foveal neurons, which suggests p ≈
0.37. (g)-(h) the 1st and 3rd quartile tuning width prediction is compared with previous results
(Ringach et al., 2002) on macaque V1, which suggests p ≈ 0.08. (i)-(j) the asymmetry index
and median tuning width(*) prediction is compared with previous results (Henry et al., 1974)
on cat’s striate cortex, which suggests p ≈ 0.85. (* the tuning width here is measured at half
amplitude to be consistent with previous study.)

5.3 Contrast Encoding with Neural Populations
We also applied our framework to make predictions for the contrast gain characteris-
tics of neurons in early visual cortex. The contrast of natural images has been defined
in multiple ways in the literature. Two standard definitions of local contrast are the
root-weighted-mean-square contrast (Najemnik et al., 2005; Mante et al., 2005) and
the equivalent-Michelson contrast (Brady et al., 2000; Tadmor et al., 2000; Clatworthy
et al., 2003). We use the equivalent-Michelson contrast in order to match our predic-
tions with recorded physiological data (Clatworthy et al., 2003). We gathered a total of
200,000 patches of size 32x32, randomly sampled from natural images from the dataset
(van Hateren et al., 1998). The histogram of their equivalent-Michelson contrast is
regarded as the prior distribution of the environment (see Figure 9c). The detailed de-
scription of this process is discussed in Appendix C.
In early visual perception systems, contrast information is encoded by a population of
neurons with contrast selectivity in a soft-thresholding manner. One traditional model
characterizes the neuron’s response as a function of the contrast c via the Naka-Rushton
equation (Naka et al., 1966),

h(c) = hmax ·
cq

cq50 + cq
(36)

where hmax is the maximum possible firing rate, c50 is the semi-saturation contrast
so that h(c50) = 0.5 · hmax and q is an exponent parameter characterizing the steep-
ness of the curve near c50. Using our framework, we can predict the distribution of
semi-saturation constant c50 within a population and compare that to physiology data
(Clatworthy et al., 2003) (see Figure 9e). Our prediction suggests that the monkey V1
neurons are roughly performing Infomax (p ≈ 0.15) strategy while the cat striate cortex
neurons are using a larger value of p (p ≈ 0.75). As we can see from Figure 9e, the
fit for c50 distribution of cat striate cortex is worse than the fit for c50 distribution of
monkey’s V1. The neural population in cat V1 seems to be adapted to smaller contrast
values. This may be due to the mismatch between the natural image dataset and the true
visual environment of the animal.
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Figure 9: The analysis of optimal Lp optimal neural population to encode contrast value in
natural images. (a)-(d) cartoon examples of Lp-optimal neural population are derived based
on a homogeneous neural population and the optimal meta-tuning curve, which is determined
by the prior distribution of equivalent-Michelson contrast extracted from natural images. The
p values are 0, 0.5 and 1. (e)-(f) the predicted of c50 distribution for the entire population is
compared with physiology data reproduced from (Clatworthy et al., 2003) on cat’s striate cortex
and monkey’s V1, which suggests p ≈ 0.15 for the monkey and p ≈ 0.75 for the cat.

6 Discussion
We have proposed a family of efficiency criteria for neural coding. Each efficiency
criterion uniquely determines an optimal way of encoding a scalar stimulus with an
arbitrary prior distribution. The efficiency criteria are parameterized by a parameter p ≥
0 associated with the underlying goal of minimizing the Lp reconstruction error when
using a maximum likelihood decoder. These efficiency criteria naturally generalize
several special cases that have received much attention in the literature, e.g. the Infomax
case (p→ 0) or the minimal mean squared error (MMSE) case (p = 2).
For each optimality criterion and a stimulus with known prior, we analytically derived
the optimal tuning curve for a single neuron. To extend this result to determine optimal
neural populations, we proposed to use the meta-tuning curve and showed that the opti-
mal meta-tuning curve is identical to the optimal tuning curve for a single neuron with
Gaussian noise. These predictions based upon different optimality criteria are tested
against previously measured characteristics of several early visual systems for different
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animals. Predictions corresponding to low values of p provides the best match, which
suggests that the optimality criterion is near Infomax for the neural representations be-
ing considered.
In our model and analysis, we have made the key assumption that the decoder is asymp-
totically unbiased. This implies that the results are strictly valid only in the low noise
regime, e.g. when there is sufficient encoding time and/or a sufficient number of neu-
rons. However, based on numerical simulations we found that it is reasonably safe to
relax the long encoding time assumption in particular if the neural population size is
large and/or the optimal criterion parameter p is small.
Many behavioral studies also suggest that human and other animals make decisions
that are often biased due to the effects of prior beliefs (Knill et al., 1996; Wei et al.,
2015). With numerical simulations we showed that at short encoding times, the
Bayesian MAPE decoder is indeed performing better than the unbiased MLE decoder,
and slightly better than our analytic predictions. In fact, the performance of the MLE is
lower bounded by our theoretical predictions (solid lines in Figure 6) while the perfor-
mance of the MAPE benefits from the prior information. Thus our results are strictly
valid only when assuming an MLE decoder.
In section 2.2, we analyzed the Poisson noise model and the constant Gaussian noise
model. Similar analysis can be applied to other noise models where the output variance
depends upon the output mean. For neural populations, we assumed that the output
noise of an individual neuron is independent from the others, thus simplifying the com-
putation of the total Fisher information of the population. If the output noise has a
correlated structure, then the total Fisher information is no longer the sum of the Fisher
information of individual neurons. Analysis of neural populations described by a meta-
tuning curve with correlated noise is a subject for further investigation.
In conclusion, we believe that our model shows the utility of exploring different re-
construction error criteria for analyzing neural responses in perceptual systems. The
parameter p describes whether the neural system is adapted to more or less robust error
statistics, and we have obtained some estimates of this parameter from data on early
visual processing neurons in a number of different animals. It will be interesting to
explore how the parameter p changes as information propagates through various stages
of the perceptual system. We are also currently investigating how this analysis can be
extended to higher-dimensional stimuli and to more complex noise models.
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A Fisher Information
The concept of Fisher Information provides a statistical characterization of how well a
random variable r can be used to estimate an underlying parameter s under a stochastic
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model p(r|s).
If a family of distributions p(r|s) is characterized by a one dimensional parameter s,
then the Fisher information is defined as (see (Cover et al., 1991)),

I(s) =

〈(
d

ds
log p(r|s)

)2
∣∣∣∣∣ s
〉
p(r|s)

(37)

A.1 Links to Popular Loss Functions
Mutual Information Limit
One possible measurement of neural coding quality is the mutual information. Measur-
ing mutual information does not require an explicit estimator ŝ(r). Instead, it directly
measures the level of dependency between the neural response r and the input stimulus
s. The link between mutual information Imutual(r, s) and the Fisher information matrix
was established in (Brunel et al., 1998).

Imutual(r, s) =
1

2
〈log I(s)〉s + const. (38)

Here we will not repeat the careful and delicate derivation but the main idea is based
on the fact that an efficient and unbiased estimator ŝ is approximately distributed as a
Gaussian with mean s and variance I(s)−1. The conditional entropy of such Gaussian
random variable is locally 1/2 · log(I(s)−1) + const and by averaging the local con-
ditional entropy, we can get the mutual information. In terms of Fisher information
matrix, we want to maximize the right side of Eq.(38).
Cramer-Rao Lower Bound
Another possible way to measure coding quality is to use the L2 norm to measure the
error vector ŝ − s. Such L2 norm is related to the Fisher information matrix via the
Cramer-Rao lower bound (Cover et al., 1991). For any unbiased estimator ŝ(r), e.g. the
maximum likelihood estimator (MLE),

Var[ŝ(r)− s | s] ≥ I(s)−1 (39)

As a lower bound, the Cramer-Rao bound can be attained by the MLE ŝ(r) due to is
asymptotic efficiency (Cover et al., 1991).
In order to calculate the mean L2 error, one can find the attainable lower bound both
locally at a given point s or globally averaged over all s,

〈|ŝ− s|2 | s〉r = Var[ŝ(r)− s | s] ≥ I(s)−1. (40)〈
|ŝ− s|2

〉
r,s
≥
〈
I(s)−1

〉
s

(41)

Compare this with Eq.(38), we now derive another way of evaluating the Fisher infor-
mation matrix. In order to minimize the mean L2 error, one should minimize the right
side of Eq.(41). For a more complete work regarding the relationship between Fisher
information and the Cramer-Rao lower bound, the reader is referred to (Pilarski et al.,
1999)
Asymptotic Lp Limit
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A natural generalization of L2 metric to evaluate the difference ŝ − s is the Lp metric
for other values of p. In order to obtain the optimal Lp population code, one can instead
solve the optimization problem to minimize the mean Lp norm of the difference ŝ − s
by evaluating the p-th absolute moment of a Gaussian random variable with zero mean
and variance I(s)−1. Such family of optimization problems parameterized by p can
provide a natural connection between two traditional optimal criteria – the Infomax and
MMSE (L2-min)

〈|ŝ(r)− s|p〉r,s ≈ const(p) ·
〈
I(s)−p/2

〉
s

(42)

When p = 2, it is clear that the right side of Eq.(42) is the same as the Cramer-Rao lower
bound in Eq.(41) up to some constant. In the limit of p → 0, we can use the replica
trick to show that minimizing the right side of Eq.(42) is equivalent to maximizing the
mutual information term in Eq.(38).

lim
p→0

I(s)−p/2 − 1

p
= −1

2
log I(s) (43)

These characterizations of loss functions in Eq.(38), Eq.(41) and Eq.(42) by using
Fisher Information simplifies the process of finding the optimal neural codes.

A.2 Fisher Information Examples
In order to apply the concept of Fisher Information to analyze the performance of neural
codes, here we calculate the Fisher Information for a single neuron with Poisson noise
model or constant Gaussian noise model.
Poisson Spiking Model
The first model is the Poisson spiking model. If the neuron elicits a random number
of spikes r during a given time window ∆T is a Poisson random variable with rate
∆T · h(s)

P (r = N |s) =
1

N !
(∆T · h(s))N exp(−∆T · h(s)) (44)

logP (r = N |s) = − log(N !) +N log (∆T · h(s))−∆T · h(s) (45)
d

dx
logP (r = N |s) = h′(s)

(
N

h(s)
−∆T

)
(46)

For Poisson random variable N with rate ∆T · h(s) we know that,

〈N〉 = ∆T · h(s),
〈
N2
〉

= ∆T · h(s) + (∆T · h(s))2 (47)

Using this result we know

I(s) =

〈(
d

ds
logP (r = N |s)

)2
∣∣∣∣∣ s
〉

= h′(s)2

〈(
N

h(s)
−∆T

)2
〉

= ∆T · h
′(s)2

h(s)

(48)
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If the optimal Fisher Information I(s) is known, the optimal nonlinearity h(s) can be
derived by solving the above ordinary differential equation

h(s) ∝
(∫ s

−∞

√
I(ξ) dξ

)2

. (49)

Constant Gaussian Noise Model
In the second model, we assume the random number of spikes can be any real number.
The additive noise in each unit time window is σ2

0 therefore the total number of spikes rk
that has been observed over a time window of length ∆T is a Gaussian random variable
with mean ∆T · h(s) and variance σ2

0∆T

p(r|s) =
1√

2πσ2
0∆T

exp

(
− 1

2σ2
0∆T

(r −∆T · h(s))2
)

(50)

log p(r|s) = −1

2
log(2πσ2

0∆T )− 1

2σ2
0∆T

(r −∆T · h(s))2 (51)

d

ds
log p(r|s) =

h′(s)

σ2
0

(r −∆T · h(s)) (52)

Using this result we know that the Fisher information for a neuron with constant Gaus-
sian noise is

I(s) =

〈(
d

ds
log p(r|s)

)2
∣∣∣∣∣ s
〉

=
h′(s)2

σ4
0

〈
(r −∆T · h(s))2

〉
=

∆T

σ2
0

· h′(s)2 (53)

If the optimal Fisher Information I(s) is known, the optimal nonlinearity h(s) can be
derived by solving the above ordinary differential equation

h(s) ∝
∫ s

−∞

√
I(ξ) dξ. (54)

In Eq.(48) and Eq.(53) we have derived the Fisher Information of a single neuron with
Poisson or constant Gaussian noise model. In order to generalize from a single neuron
to a population of neurons, we need the following result to measure the overall goodness
of a population code.

A.3 Fisher Information for Neurons with Independent Noise
When each neuron in the population has independent noise, here we prove that the
total Fisher information of the population is the linear sum of the Fisher information
contributed by each individual neuron

p(r|s) =
m∏
k=1

p(rk|s) ⇒ Itotal(s) =
m∑
k=1

Ik(s) (55)
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Using the definition of Fisher Information, we know

Itotal(s) =

〈(
d

ds
log p(r|s)

)2
∣∣∣∣∣ s
〉

(56)

=

〈(
m∑
k=1

d

ds
log p(rk|s)

)2
∣∣∣∣∣∣ s
〉

(57)

When k 6= l, we know the neural response rk, rl are independent conditioned on s.
Therefore〈

d

ds
log p(rk|s) ·

d

ds
log p(rl|s)

∣∣∣∣ s〉 =

〈
d

ds
log p(rk|s)

∣∣∣∣ s〉 ·〈 d

ds
log p(rl|s)

∣∣∣∣ s〉 = 0

(58)

which is because〈
d

ds
log p(rk|s)

∣∣∣∣ s〉 =

∫ d
ds
p(rk|s)
p(rk|s)

· p(rk|s)drk =
d

ds

(∫
p(rk|s) drk

)
= 0. (59)

As a conclusion, the total Fisher Information for a population of neurons with indepen-
dent Poisson/constant Gaussian noise is equal to the linear sum of the Fisher informa-
tion of each neuron.

B Estimating the Distribution over Local Orientation
We extracted orientation statistics for natural images from a standard image database
(van Hateren et al., 1998). First we randomly sampled 200,000 square patches (16pix-
by-16pix) across the entire database. We then created a set of sinewave grating filters
with a fixed spatial frequency that was close to the human peak sensitivity (approxi-
mately 4 cycle per visual degree or 8 pixels/cycle) but various phase and 360 different
orientations (0◦ to 179.5◦ with 0.5◦ spacing). The dominant orientation of each patch
was determined by the maximum response across all these filters. To mitigate the effect
of pixel-wise noise or quantization effects, we only used those patches with high filter
response levels (top 50%). The resulting prior distribution is very similar to previously
measured distributions (e.g. Girshick et al. (2011)) and is shown in Figure 8c. We used
a spline function to fit the cumulative of the empirical histogram in order to obtain a
smooth version of the density f(θ).

C Equivalent-Michelson Contrast
Originally, the Michelson contrast is defined for sinusoid gratings based on its max/min
luminance

c =
Lmax − Lmin

Lmax + Lmin

(60)
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It is clear the the Michelson contrast has a value between 0 and 1. For any patches of
non-sinusoid gratings, we determine its equivalent-Michelson contrast in the following
way.
For each image patch, we use a set of 64 odd-Gabor filters ggabor(x, y) of different
orientation θ and wavelength λ to convolute with natural image patches to obtain local
responses. Specifically, the Gabor filters are

ggabor(x, y) = gnormal(x, y) · gsinusoid(x, y) (61)

gnormal(x, y) = exp

(
−x

′2 + y′2

2σ2

)
, gsinusoid(x, y) = sin

(
2π
x′

λ

)
(62)

x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ, σ =
1

π

√
ln 2

2

2b + 1

2b − 1
λ (63)

where the orientation θ takes 8 values uniformly sampled from the range [0, π], the
wavelength λ takes 8 values uniformly sampled in the logarithm space from 4 to 85.3
pixels per cycle. The size of Gaussian filter σ is automatically determined by the wave-
length λ and a fixed octave value b = 1.5 in order to best match the properties of simple
cells in the primary visual cortex.
With such a filter bank of 64 Gabor filters, we calculate the equivalent-Michelson con-
trast for each image patches. For each Gabor filters, we use the corresponding Gaussian
filters gnormal(x, y) to compute the local mean luminance to model luminance adapta-
tion. We also use the corresponding sinusoid filter gsinusoid(x, y) to construct a testing
sinusoid grating Lave + Lamp · gsinusoid(x, y). By properly choosing the parameters Lave

and Lamp, we can match both the Gabor-filter response and the Gaussian-filter response.
The equivalent-Michelson contrast is then determined by the Michelson contrast of this
testing grating:

Lmax = Lave + |Lamp|, Lmin = Lave − |Lamp| ⇒ c =
|Lamp|
Lave

(64)

The above process is summarized in Figure 10. The local contrast value of each image
patches is then determined by taking the maximum among the 64 equivalent-Michelson
contrast values calculated using the Gabor filter bank. This max operation is taken
in order to match the normalization computation taken place in the visual perception
pathway (Carandini et al., 2012). Neurons that are responding to a low contrast value
often appear to be silent (normalized out) when there is a neighbor neuron responding
to a significantly larger contrast.
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Figure 10: The process to determine equivalent-Michelson contrast for an image patch with
respect to certain Gabor filter.
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