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ABSTRACT

CAUSAL INFERENCE BEYOND ESTIMATING AVERAGE TREATMENT EFFECTS

Kwonsang Lee

Dylan S. Small

Many scientific questions are to understand and reveal the causal mechanisms from obser-

vational study data or experimental data. Over the past several decades, there has been a

large number of developments to render causal inferences from observed data. Most devel-

opments are designed to estimate the mean difference between treated and control groups

that is often called the average treatment effect (ATE), and rely on identifying assumptions

to allow causal interpretation. However, more specific treatment effects beyond the ATE

can be estimated under the same assumptions. For example, instead of estimating the mean

of potential outcomes in a group, we may want to estimate the distribution of the potential

outcomes. Understanding the distribution implies understanding the mean, but not vice

versa. Therefore, more sophisticated causal inference can be made from the data. The

dissertation focuses on causal inference in observational studies, and discusses three main

achievements. First, in instrumental variable (IV) models, we propose a novel nonparamet-

ric likelihood method for estimating the distributional treatment effect that compares two

potential outcome distributions for treated and control groups. Furthermore, we provide a

nonparametric likelihood ratio test for the hypothesis that the two potential outcome dis-

tributions are identical. Second, we develop two methods for discovering effect modification

in a matched observational study data: (1) the CART method and (2) the Submax method.

Both methods are applied to real data examples for finding effect modifiers that alter the

magnitude of the treatment effect. Lastly, we provide a causal definition of the malaria

attributable fever fraction (MAFF) that has not been studied in the causal inference field,

and propose a novel maximum likelihood method to account for fever killing effect and

measurement errors.
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CHAPTER 1 : Introduction

One common fallacy is the belief that two correlated variables indicate a cause-and-effect
relationship, thus the oft-cited warning: correlation does not imply causation. This warning
is often illustrated with examples of false causation such as living near overhead power lines
causes cancer in children such as leukemia Wertheimer and Leeper (1979). An important
confounding factor that misled the researchers to infer a causal relationship was the factor
of income. Living under power lines is often a low-income housing location and there is
a strong, well-known epidemiological relationship between poverty and cancer Aber et al.
(1997); Bona et al. (2016). This research incited public panic, and countless public health
efforts and costs were spent to assuage people of their fear of power lines. Without proper
methodological arguments, nothing can be said about causality from correlated data. Causal
inference is the field of study of how and to what extent we can infer causality from data.

In causal inference, the effect of a treatment on an outcome can be identified for either ran-
domized experiments or observational study designs. The gold standard for investigating
causal treatment effects is to conduct a randomized experiment. Randomized experiments
randomly assign individuals to treatment or control, ensuring that the treated and con-
trol groups are comparable such that differences in outcomes between the groups can be
attributed to the treatment. Randomized experiments are useful, but they are not always
ethical or feasible. Alternatively, we may attempt to draw causal inferences from observa-
tional studies. Unlike randomized experiments, in observational studies, researchers have
no control of treatment assignment. This distinction brings many additional challenges. For
example, differences in outcomes between a treated group and a control group may reflect
differences of covariates between the two groups rather than the effect of a treatment. Two
popular methods for drawing causal inferences from observational data are instrumental
variable (IV) Imbens and Angrist (1994a); Angrist et al. (1996) and matching methods
Rosenbaum (2002b); both can infer the effect of a treatment by adjusting for confounding
covariates.

Most literature has focused on identifying the average treatment effect (ATE), which is the
expected benefit from treatment on average in the population. However, from the same
study design, further sophisticated inferences can be made: (1) estimating the effect of a
treatment on the distribution of outcomes, the distributional treatment effect and (2) dis-
covering which subgroup of subjects has the largest treatment effect, effect modification.
First, the distributional treatment effect goes beyond the ATE by providing a comprehen-
sive understanding of the impact of the treatment on the whole population. For instance, if
researchers want to study how a new policy designed to decrease income inequality affects
household income, they cannot use average income as a measure. Rather, the whole income
distribution must be examined to see if the new policy has an effect on the growth of the
middle class. Second, discovering effect modification provides inferences that are less sen-
sitive to unmeasured confounding, which is important when conducting sensitivity analysis
in observational studies. Besides this theoretical advantage, discovering effect modification
has practical implications. For example, if doctors recognize which patients can benefit
more from taking a treatment, then they can use this information to develop personalized
treatments Coalition PM (2014); Hamburg and Collins (2010). Inferences about distribu-
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tional treatment effects and effect modification enable researchers to evaluate the effect of
a treatment in more accurate and diverse ways .

Furthermore, causal inference can be more generally used to define other measures with
causal interpretation. Most of the time, the effect of treatment on outcome is of interest, and
the target estimand is the difference of the average potential outcome between treated and
control. However, other estimands may be of interest in many fields such as epidemiology,
medicine and public health. For example, the malaria attributable fever fraction (MAFF),
i.e., the proportion of fevers that are attributable to (caused by) malaria parasites, is an
important public health measure for assessing the effect of malaria control programs and
other purposes. The MAFF provides information about the public health burden from the
malaria, and how much resources should be devoted to combatting malaria compared to
other diseases.

The remainder of this thesis is organized as follows. We begin in Chapter 2 with estimating
the distributional treatment effect in IV models. Next in Chapter 3 and 4, we introduce
two approaches for discovering effect modification in observational studies with matching.
One proposes a novel approach based on classification and regression cart, which is one of
well-known machine learning techniques, and the other proposes a novel statistical approach
based on multiple testing correction by providing tractable statistical properties. In Chapter
5, we propose a novel maximum likelihood estimation method based on g-modeling to
estimate the MAFF in the potential outcome framework by accounting for fever killing
effects and measurement errors. Lastly, we provide discussions in Chapter 6.
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CHAPTER 2 : Nonparametric Inference for Distributional Treatment Effects in
Instrumental Variable Models

2.1. Introduction

Randomized experiments are the gold standard for assessing the effect of a treatment but
often it is not practical or ethical to randomly assign a treatment itself. However, in some
settings, an encouragement to take the treatment can be randomized Holland (1988). In
other settings, no randomization is possible but there may be a “natural experiment” such
that some people are encouraged to receive the treatment compared to others in a way that is
effectively random Angrist and Krueger (2001). For both of these settings, the instrumental
variable (IV) method can be used to estimate the causal effect of a treatment Holland (1988);
Angrist et al. (1996). The IV method is a method that controls for unmeasured confounders
to make causal inferences about the effect of a treatment. An IV is informally a variable
that affects the treatment but is independent of unmeasured confounders and only affects
the outcome through affecting the treatment (see Section 2.2 for a more precise definition).
Under a monotonicity assumption that the encouraging level of the IV never causes someone
not to take the treatment, the IV method identifies the treatment effect for compliers, those
subjects who would take the treatment if they received the encouraging level of the IV but
would not take the treatment if they did not receive the encouraging level Angrist et al.
(1996). For several discussions of the IV method, see Abadie (2003), Angrist et al. (1996),
Baiocchi et al. (2014), Brookhart and Schneeweiss (2007), Cheng et al. (2009), Hernan and
Robins (2006), Ogburn et al. (2015) and Tan (2006).

Much of the literature on the treatment effect in instrumental variable models has focused
on estimating the average treatment effect for compliers. However, understanding the effect
of the treatment on the whole distribution of outcomes for the compliers, the distributional
treatment effect for compliers, is important for optimal individual decision-making and for
social welfare comparisons. Optimal individual decision-making requires computing the
expected utility of the treatments which requires knowing the whole distribution of the
outcomes under the treatments being compared rather than just the average outcomes
when the utility function is nonlinear Karni (2009). Social welfare comparisons require
integration of utility functions under the distribution of the outcome (say income), which
again requires knowing the effect of the treatment on the whole distribution of outcomes
Abadie (2002); Atkinson (1970).

Abadie (2002) developed a nonparametric method for estimating the effect of treatment on
the cumulative distribution function (CDF) of the outcomes based on expanding the con-
ventional IV approach described in Imbens and Angrist (1994b). The estimator is based on
a method of moments (MOM) approach. Though the MOM method identifies the CDFs of
compliers, the MOM estimate can violate the conditions of a CDF such as nondecreasingness
and nonnegativeness. In this paper, we develop a nonparametric likelihood based approach
that enforces that the CDF estimates should be nondecreasing and nonnegative. Nonpara-
metric likelihood methods have been shown to have appealing properties in many settings
such as providing nonparametric inferences that inherit some of the attractive properties
of parametric likelihood (e.g., automatic determination of the shape of confidence regions)

3



and straightforward interpretation of side information expressed through constraints Owen
(2001). However, the usual nonparametric likelihood approach does not work for the IV
model because there are infinitely many solutions that maximize the likelihood. In this
case, the usual nonparametric likelihood method fails to produce a meaningful estimator
Geman and Hwang (1982).

We propose a novel adaptation of nonparametric likelihood that overcomes the problem of
usual nonparametric likelihood for our setting. Our approach builds on the fact that MOM
method identifies the CDFs for compliers at any given point using information on whether
outcomes are less than or equal to vs. above that point, in other words based on binomially
distributed random variables. We consider the composite likelihood that multiplies together
the pieces of the likelihood contributed by these binomial random variables. This is a com-
posite or “pseudo” likelihood rather than a true likelihood because the binomial random
variables are actually dependent but are treated as independent in the composite likeli-
hood. Composite likelihood has been found useful in a range of areas including problems in
geostatistics, spatial extremes, space-time models, clustered data, longitudinal data, time
series and statistical genetics Lindsay (1988); Heagerty and Lele (1998); Varin et al. (2011);
Larribe and Fearnhead (2011). We call the composite likelihood method that we use in our
setting the maximum binomial likelihood (MBL) method because it maximizes the aver-
age of the likelihood of the binomial random variables at each point across all observation
points. We develop a computationally fast method for finding the MBL estimate by com-
bining the expectation maximization (EM) and pool adjacent violators algorithm (PAVA).
Unlike the usual nonparametric maximum likelihood, maximizing the binomial likelihood
produces a unique estimate. We show that the MBL estimator is consistent and demon-
strate in simulation studies that the MBL estimator performs better than other estimators,
particularly when the IV is weak (weakly associated with the treatment). The advantage
of the maximum binomial likelihood method over the nonparametric MOM method is that
it ties together the information used by the nonparametric MOM method to identify the
CDFs for compliers at each observation point rather than treating them separately and
enforces the constraints that CDFs are nonnegative and nondecreasing.

The MBL method can be used to construct a hypothesis test of no distributional treatment
effect by using a binomial likelihood ratio test statistic. A test of no treatment effect was
previously discussed based on the Kolmogorov-Smirnov test statistic in Abadie (2002). This
approach does not bring in the structure of the IV model. Our approach uses the structure
of the IV model and can be much more powerful.

We apply the MBL method to a study of the effect of participation in the student breakfast
program (SBP) on childhood obesity. Participation in SBP is not randomized and coun-
founders may exist in the relationship between participation in the SBP and obesity. To
control for possible unmeasured confounders, we propose to use the variable of the distance
from children’s homes to their schools as an IV. If a child lives near schools, then she is
more likely to participate the program. We assume that this IV is randomized. The validity
of this assumption is discussed in Section 2.5. Using this binary distance variable, we make
inferences about the distributional effect of SBP participation on childhood obesity from the
Early Childhood Longitudinal Program - Kindergarten Class (ECLS-K) 2010-2011 data.

4



Table 1: Compliance classes by the potential outcomes Di(0) and Di(1)
Di(0) = 0 Di(0) = 1

Di(1) = 0 Never-takers Defiers
Di(1) = 1 Compliers Always-takers

The rest of this article is organized as follows. In Section 2.2, basic notation and assump-
tions in instrumental variable models using the potential outcome framework are introduced.
Also, the existing nonparametric method, the MOM method, is reviewed. The motivation
for a new approach of constructing nonparametric likelihood is provided along with the
difficulty of applying the usual nonparametric likelihood methods to IV models. In Section
2.3, we develop the MBL method for estimating the CDFs based on the binomial likelihood
approach. Simulation studies are conducted to assess the performance of the proposed esti-
mation method. Section 2.4 describes a new test statistic based on the binomial likelihood
with simulation studies. In Section 2.5, the MBL method and the MOM method are applied
to the veterans data, and compared to one another. Section 2.6 includes summary.

2.2. Framework and Review

In this section the framework of instrumental variable (IV) model is introduced and the
existing methods are briefly reviewed. Notation and identification assumptions are discussed
in Section 2.2.1. The existing method of moments approach (Abadie, 2002) for estimating
distributional treatment effects in IV models is reviewed, and the shortcomings of this
method are addressed in Section 2.2.2. This motivates our new approach of constructing
the nonparametric binomial likelihood, introduced in Section 2.3.

2.2.1. Notation and Assumption

Let Za be a binary instrumental variable and Da be an indicator variable for whether
subject a ∈ [n] := {1, 2, . . . , n} receives the treatment or not. Using the potential outcome
framework, define Da(0) as the value that Da would be if Za were to be set to 0, and
Da(1) as the value that Da would be if Za were to be set to 1. Similarly, Ya(z, d) for
(z, d) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, is the value that the outcome Ya would be if Za were
to be set to z and Da were to be set to d. For each subject a ∈ [n], the analyst can only
observe one of the two potential values Da(0) and Da(1), and one of the four potential
values Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1). The observed treatment Da is

Da = ZaDa(1) + (1− Za)Da(0).

Similarly, the observed outcome Ya can be expressed as Ya = ZaDa · Ya(1, 1) +Za(1−Da) ·
Ya(1, 0) + (1−Za)Da · Ya(0, 1) + (1−Za)(1−Da) · Ya(0, 0). A subject’s compliance class is
determined by the combination of the potential treatment values Da(0) and Da(1), which
is denoted by Sa: Sa = always-taker (at) if Da(0) = 1, Da(1) = 1; Sa = never-taker (nt) if
Da(0) = 0, Da(1) = 0; Sa = complier (co) if Da(0) = 0, Da(1) = 1; and Sa = defier (de) if
Da(0) = 1, Da(1) = 0. This is summarized in Table 1.

For the rest of this article, the following standard identifying conditions are assumed. The
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implications of these conditions are briefly explained in the paragraph below (refer to Angrist
et al. (1996) for more details on these assumptions).
Assumption 1. Hereafter, the following identification conditions will be imposed on the
IV model:

(1) Stable Unit Treatment Value Assumption (SUTVA) Rubin (1986): The outcome (treat-
ment) for individual i ∈ [n] is not affected by the values of the treatment or instrument
(instrument) for other individuals and that the outcome (treatment) does not depend
on the way the treatment or instrument (instrument) is administered.

(2) The instrumental variable Za is independent of the potential outcomes Ya(z, d) and
potential treatment Da(z).

Za ⊥⊥ (Ya(0, 0), Ya(0, 1), Ya(1, 0), Ya(1, 1), Da(0), Da(1))

(3) Nonzero average causal effect of Z on D: P(Da(1) = 1) > P(Da(0) = 1).

(4) Monotonicity: Da(1) ≥ Da(0).

(5) Exclusion restriction: Ya(0, d) = Ya(1, d), for d = 0 or 1.

Assumption 1 enables the causal effect of the treatment for the subpopulation of the com-
pliers to be identified. The SUTVA allows us to use the notation Ya(z, d) (or Da(z)), which
means that the outcome (treatment) for individual i is not affected by the values of the
treatment and instrument (instrument) for other individuals. Condition (2) will be satisfied
if Za is randomized. Condition (3) requires Z to have some effect on the average probability
of treatment. Condition (4), the monotonicity assumption, means that the possibility of
Da(0) = 1, Da(1) = 0 is excluded, that is, there are no defiers (see Table 1). Condition
(5) assures that any effect of Z on Y must be through an effect of Z on D. Under this
assumption, the potential outcome can be written as Ya(d), instead of Ya(z, d).

Distribution Functions of the Compliance Classes

Define the distribution functions of compliers without treatment, never-takers, compliers
with treatment, and always-takers respectively:

F (0)
co (t) = E[1{Y1(0) ≤ t}|D1(1) = 1, D1(0) = 0],

Fnt(t) = E[1{Y1(0) ≤ t}|D1(1) = 0, D1(0) = 0],

F (1)
co (t) = E[1{Y1(1) ≤ t}|D1(1) = 1, D1(0) = 0],

Fat(t) = E[1{Y1(1) ≤ t}|D1(1) = 1, D1(0) = 1]. (2.2.1)
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Under Assumption 1, the distributions are identified such as

F (0)
co (t) =P(Y1 ≤ t|Z1 = 0, S1 = co),

Fnt(t) =P(Y1 ≤ t|Z1 = 0, S1 = nt),

F (1)
co (t) =P(Y1 ≤ t|Z1 = 1, S1 = co),

Fat(t) =P(Y1 ≤ t|Z1 = 1, S1 = at). (2.2.2)

Moreover, for u, v ∈ {0, 1}, define

Fuv(t) = P(Y1 ≤ t|Z1 = u,D1 = v). (2.2.3)

Note that

F00(t) = P(Y1 ≤ t|Z1 = 0, D1 = 0)

=
P(Y1 ≤ t, Z1 = 0, D1 = 0, S1 = co) + P(Y1 ≤ t, Z1 = 0, D1 = 0, S1 = nt)

P(Z1 = 0, D1 = 0)

= λ0P(Y1 ≤ t|Z1 = 0, S1 = co) + (1− λ0)P(Y1 ≤ t|Z1 = 0, S1 = nt)

= λ0F
(0)
co (t) + (1− λ0)Fnt(t). (2.2.4)

where λ0 = P(S1 = co|Z1 = 0, D1 = 0). Similarly, it follows that F01(t) = Fat(t), F10(t) =
Fnt(t), and

F11(t) = λ1F
(1)
co (t) + (1− λ1)Fat(t). (2.2.5)

where λ1 = P(S1 = co|Z1 = 1, D1 = 1).

Next, consider the unknown population proportions of compliance classes φco = P(S1 =
co), φat = P(S1 = at), φnt = P(S1 = nt), with φco + φat + φnt = 1. Then

λ0 =
φco

φco + φnt
, λ1 =

φco
φco + φat

. (2.2.6)

For u, v ∈ {0, 1}, define nuv :=
∑n

a=1 1{Za = u,Da = v}. Assume that there exists ηuv > 0
such that limn→∞ nuv/n→ ηuv > 0, for all u, v ∈ {0, 1}. Then, from Assumption 1,

η00 = φ0(φco + φnt), η01 = φ0φat, η10 = φ1φnt, η11 = φ1(φco + φat) (2.2.7)

where φ0 = P(Z = 0) and φ1 = 1 − φ0 = P(Z = 1). Note that φ0, φ1 and η00, η01, η10, η11

(hence λ0 and λ1) can be estimated directly from the sample proportions as follows:

φ̆0 =
n00 + n01

n
, φ̆n =

n10

n10 + n11
, φ̆a =

n01

n00 + n01
, φ̆c = 1− φ̆n − φ̆a (2.2.8)

These estimates will be referred to as the plug-in estimates.
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Finally, for u, v ∈ {0, 1}, denote the empirical analogues of (2.2.3) as follows:

Fuv(t) =
1

nuv

n∑
a=1

1{Za = u,Da = v, Ya ≤ t}. (2.2.9)

Observe that the empirical distribution function H of the overall data as

H(t) :=
1

n

n∑
a=1

1{Ya ≤ t} =
∑

u,v∈{0,1}

(nuv
n

)
Fuv. (2.2.10)

Note that H converges uniformly to the limiting distribution H = η00F00 +η01F01 +η10F10 +
η11F11, as n→∞.

Parameter Space

Denote the set of all functions from R→ R by RR, the set of all functions from R→ [0, 1]
by [0, 1]R and the set of distribution functions from R → [0, 1] by P([0, 1]R). Define the
unrestricted parameter space

ϑ =
{

(θ(0)
co , θnt, θ

(1)
co , θat) : θ(0)

co , θnt, θ
(1)
co , θat ∈ RR

}
. (2.2.11)

The restricted parameter space is the subset of ϑ where each θ
(0)
co , θnt, θ

(1)
co , θat is a distribution

function. Formally,

ϑ+ =
{

(θ(0)
co , θnt, θ

(1)
co , θat) : θ(0)

co , θnt, θ
(1)
co , θat ∈ P([0, 1]R)

}
. (2.2.12)

We note that the MOM estimator lies in ϑ, but it might not be in ϑ+.

Under the null hypothesis of F
(0)
co = F

(1)
co the restricted null parameter space is

ϑ+,0 =
{

(θco, θnt, θat) : θco, θnt, θat ∈ P([0, 1]R)
}
. (2.2.13)

The unrestricted null parameter space ϑ0 can be defined similarly.

2.2.2. Review of The Existing Nonparametric Method (MOM)

Abadie (2002) proved that if h(·) is a measurable function on the real line such that
E|h(Y1)| <∞ and Assumptions 1 holds, then

E[h(Y1)D1|Z1=1]−E[h(Y1)D1|Z1=0]
E[D1|Z1=1]−E[D1|Z1=0] = E[h(Y1(1))|D1(0) = 0, D1(1) = 1],

E[h(Y1)(1−D1)|Z1=1]−E[h(Y1)(1−D1)|Z1=0]
E[(1−D1)|Z1=1]−E[(1−D1)|Z1=0] = E[h(Y1(0))|D1(0) = 0, D1(1) = 1].

This gives formulas for the CDFs of the potential outcome for compliers under treatment
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and control when h(Y1) is replaced by 1{Y1 ≤ t}. This gives

F (1)
co (t) =

E[1{Y1 ≤ t}D1|Z1 = 1]− E[1{Y1 ≤ t}D1|Z1 = 0]

E[D1|Z1 = 1]− E[D1|Z1 = 0]
, (2.2.14)

and

F (0)
co (t) =

E[1{Y1 ≤ t}(1−D1)|Z1 = 1]− E[1{Y1 ≤ t}(1−D1)|Z1 = 0]

E[(1−D1)|Z1 = 1]− E[(1−D1)|Z1 = 0]
. (2.2.15)

Abadie (2002) proposed substituting the sample means for the expectation in (2.2.14) and
(2.2.15) to estimate the CDFs for the compliers nonparametrically. These are the well-

known nonparametric method of moments (MOM) estimates, and will be denote by F̆
(1)
co (t)

and F̆
(0)
co (t), respectively.

There are three problems with the nonparametric MOM method which this paper seeks to
improve:

(1) The nonparametric MOM estimates F̆
(1)
co (t) and F̆

(0)
co (t) might violate the non-decreasing

condition of distribution functions.

(2) The MOM estimates might produce estimates which are outside of the interval [0,1].
This is called the violation of non-negativeness.

(3) Finally, MOM estimates could be highly unstable in the weak instrument setting
(meaning that the IV is only weakly associated with the treatment so that there are
a small proportion of compliers) because the denominators of both equations (2.2.14)
and (2.2.15) depend on the proportion of compliers in the entire population.

The three problems arise at the same time when the IV is weak or the sample size is
relatively small. The maximum binomial likelihood (MBL) method proposed in Section 2.3
satisfies the non-decreasing and non-negative constraints and performs better in the weak
instrument setting, as well as has the appealing properties of likelihood methods.

2.3. The Maximum Binomial Likelihood Method

The nonparametric MOM uses equations (2.2.14) and (2.2.15) to estimate the CDFs for
compliers. Equations (2.2.14) and (2.2.15) identify the CDFs for the compliers at any given
point using information on whether outcomes are less than or equal to that point or not.
The overall binomial likelihood averages the likelihoods of theses binomial random vari-
ables at each point across all observed data points. The advantage of the overall binomial
likelihood over the nonparametric MOM is that it ties together the information from equa-
tions (2.2.14) and (2.2.15) at each observation point and enforces the constraint that CDFs
are nonnegative and nondecreasing. The overall binomial likelihood uses pieces of the true
likelihood, but is not equal to the true likelihood because it treats the binomial random
variables at each observation point as independent whereas they are actually dependent.
In other words, the overall binomial likelihood multiplies together dependent pieces of the
true likelihood and is a composite likelihood Lindsay (1988); Varin et al. (2011).
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2.3.1. Binomial Likelihood in IV Models

Define θ : R→ [0, 1]4 such that θ(t) = (θ
(0)
co (t), θnt(t), θ

(1)
co (t), θat(t)), where θ

(0)
co , θnt, θ

(1)
co , θat :

R → [0, 1] are the distribution functions of compliers without treatment, never-takers,
compliers with treatment, and always-takers, respectively. In this section, we temporarily
assume that the proportions of compliance classes, φ = (φco, φnt, φat), are known, and we
construct the binomial likelihood of Y |Z,D given the known proportions. In practice, we
estimate the proportions from data using Z and D, and use the plug-in estimators obtained
in Section 2.2. Given the data, each component of the binomial likelihood is obtained at
each data point of Y .

For u, v ∈ {0, 1} denote by Ka
uv the event {Za = u,Da = v}. For each pair of outcomes

(Ya, Yb), define the corresponding component of the binomial likelihood as

La,b(θ)

:=
∏

u,v∈{0,1}

P(Ya ≤ Yb|Za = u,Da = v)1{Ya≤Yb,Za=u,Da=v}P(Ya > Yb|Za = u,Da = v)1{Ya>Yb,Za=u,Da=v}

=
∏

u,v∈{0,1}

θuv(Yb)
1{Ya≤Yb,Za=u,Da=v}(1− θuv(Yb))1{Ya>Yb,Za=u,Da=v}

where the last step uses (2.2.2). We note that this component La,b(θ) is not symmetric,
i.e., La,b(θ) 6= Lb,a(θ). Then, the binomial likelihood is constructed as the product of all
components and is defined as

L(θ|Y ,D,Z) =
n∏
a=1

n∏
b=1

La,b(θ) (2.3.1)

Hereafter, for notational brevity, the dependence of the data Y ,D,Z will be omitted,
and the binomial likelihood will be denote by L(θ). Using the identities F01(t) = Fat(t),
F10(t) = Fnt(t), and (2.2.4), (2.2.5), the binomial log-likelihood `(θ) can be easily derived
as

`(θ) := logL(θ) =

n∑
a=1

n∑
b=1

logLa,b(θ), (2.3.2)

From the definition of the component La,b(θ), we have

n∑
a=1

logLa,b(θ) =
∑

u,v∈{0,1}

nuv {Fuv(Yb) log θuv(Yb) + (1− Fuv(Yb)) log(1− θuv(Yb))}

=
∑

u,v∈{0,1}

nuv · J(Fuv(Yb), θuv(Yb)),

where Fuv is defined in equation (2.2.9) and J(x, y) := x log y+(1−x) log(1−y). Therefore,
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the binomial log-likelihood can be further simplified as

`(θ) =
n∑
b=1

∑
u,v∈{0,1}

nuv · J(Fuv(Yb), θuv(Yb)). (2.3.3)

To this end, for θ ∈ ϑ, the functional Mn(θ) is defined as

Mn(θ) :=
1

n2
`(θ). (2.3.4)

and the maximum binomial likelihood (MBL) estimator of θ is defined as

θ̂ = arg max
θ+∈ϑ

Mn(θ). (2.3.5)

The MBL estimator is not easily obtained because of the parameter space ϑ+, especially the
non-decreasing condition. We consider an algorithm by combining the EM algorithm and
the pool-adjacent-violator algorithm in order to achieve this maximization. We illustrate
the details on this algorithm in Appendix A.3.

Now, using (2.3.3), the functional Mn(θ) can be written as,

Mn(θ) =
∑

u,v∈{0,1}

T (n)
uv (θuv), (2.3.6)

where

T (n)
uv (θuv) =

1

n

n∑
b=1

nuv
n
· J(Fuv(Yb), θuv(Yb)).

Similarly, the limiting functional M(θ) is defined as follows:

M(θ) =
∑

u,v∈{0,1}

Tuv(θuv), (2.3.7)

where

Tuv(θuv) =
1

n

n∑
b=1

η00 · J(Fuv(Yb), θuv(Yb)).

where ηuv is the limit of nuv/n as n→∞ (see (2.2.7)) and Fuv is the population distribution
function for the partition Z = u,D = v (see (2.2.4) and (2.2.5)).

2.3.2. Theoretical Results

Fix 0 < κ < 1, and let Iκ be an index set between dnκe and dn(1 − κ)e. That is, b ∈ Iκ
implies that b should lie between dnκe and dn(1− κ)e.
Theorem 2.3.1. (Consistency) Let θ̂ = arg maxθ∈ϑ+ Mn(θ,φ) be the BL estimate, F (t) =
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(F
(0)
co (t), Fnt(t), F

(1)
co (t), Fat(t))

′ be the population distribution functions. Then

1

n

∑
b∈Iκ

||θ̂(Y(b))− F (Y(b))||22 = oP (1). (2.3.8)

Theorem 2.3.2. Under general alternatives, the BL estimate θ̂ satisfies

1

n

∑
b∈Iκ

||
√
n{θ̂(Y(b))− F̂ (Y(b))}||22 = OP (n−1/2), (2.3.9)

where

F̂ (t) =


(φco+φnt)F00(t)−φntF10(t)

φco

F10(t)
(φco+φat)F11(t)−φatF01(t)

φco

F01(t)

 . (2.3.10)

Moreover,

1

n

∑
b∈Iκ

∣∣∣∣∣∣√n{θ̂(Y(b))− F (Y(b))} −G(Y(b))
∣∣∣∣∣∣2

2
= OP (n−1/2), (2.3.11)

where 
1
φc

{√φc+φn
φ0

B00(F00)−
√

φn
φ1
B10(F10)

}
B10(F10)

1
φc

{√φc+φa
φ1

B11(F11)−
√

φa
φ0
B01(F01)

}
B01(F01)

 (2.3.12)

for B00, B01, B10, B11 independent Brownian bridges.

Theorem 2.3.1 shows that the MBL estimator θ̂ converges to the population distributions
F . Theorem 2.3.2 shows that the MBL estimator is asymptotically equivalent to the MOM
estimator discussed in Section 2.2.2. This is intuitively reasonable because as n goes to
infinity, the MOM estimator that is typically not in the parameter space ϑ+ gradually
approaches to the population distribution that already lies in ϑ+. Since the MBL estimator
and the MOM estimator have the same limit distributions, both estimators behave the same
way when n is large enough.

However, we emphasize that when n is not large or when an IV is weak (i.e., the proportion
of compliers φco is small), the MBL method and the MOM method produce significantly
different estimates in finite sample cases. Using simulations, we illustrate this distinction
in Appendix A.1 and show that the MBL method produces estimates much close to the
population distribution. Figure 1 shows the comparison between the MOM estimate and the
MBL estimate when the IV is weak obtained from a simulated dataset. The estimated CDF
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Figure 1: Comparison between estimated CDFs by the MBL method and the MOM method
in weak IV setting

from the MBL method, the staircase-like solid curve, is much smoother than the estimated
CDF from the MOM method, the dashed curve. It is clear that the MBL estimate is much
closer to the population distribution. Also, we can see that the MOM estimate violates the
non-decreasing condition for distribution functions.

2.4. Hypothesis Test

2.4.1. Binomial likelihood ratio test

A central question in many studies is, does the treatment have any effect on the distribution
of outcomes? Under the IV assumptions, this corresponds to asking, does the treatment
have any effect on the distribution of outcomes for compliers? The null hypothesis can be
formulated by

F (0)
co (y) = F (1)

co (y) ∀y ∈ R. (2.4.1)

Since our proposed MBL method can incorporate the constraint F
(0)
co (y) = F

(1)
co (y), a new

hypothesis test can be created to test (2.4.1). We first review the existing hypothesis test
approach and then illustrate our proposed approach.

The test of equality between two distributions is often tested using the Kolmogorov-Smirnov
test statistic, which measures the discrepancy between two distributions, i.e.

TKS = sup
y
|θ(0)
co (y)− θ(1)

co (y)| (2.4.2)

The Kolmogorov-Smirnov (KS) test approach in IV models using the MOM estimates is
discussed in Abadie (2002). This test does not bring in the structure of the IV model for
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the following reasons. In Section 2.2.2, we obtained the estimates F̆
(0)
co and F̆

(1)
co . Since

F̆ (0)
co (y)− F̆ (1)

co (y) =
1
n1

∑n
a=1 1(Za = 1, Ya ≤ y)− 1

n0

∑n
a=1 1(Za = 0, Ya ≤ y)

φ̆c
,

the KS test statistic Tn,KS of these estimates is

Tn,KS =
1

φ̆c
· sup

y

∣∣∣∣∣ 1

n1

n∑
a=1

1(Za = 1, Ya ≤ y)− 1

n0

n∑
a=1

1(Za = 0, Ya ≤ y)

∣∣∣∣∣ . (2.4.3)

This means that there is no use of the estimates F̆
(0)
co and F̆

(1)
co to conduct the hypothesis

test. In other words, the test (2.4.2) proposed by Abadie (2002) is the KS test of whether
the distribution of the Z = 0 group is the same as the distribution of the Z = 1 group. This
test is conducted by comparing the empirical distribution function given Z = 0 with the
empirical distribution function given Z = 1, which does not make any use of the structure
of the IV model.

In Section 2.3, we estimated all distribution functions, θ̂
(0)
co , θ̂nt, θ̂

(1)
co , θ̂at. We extend this

approach to estimating the distributions under the null hypothesis F
(0)
co = F

(1)
co . By enforcing

restriction of θ
(0)
co = θ

(1)
co , we can estimate the common distribution of compliers and the

distributions of never-takers and always-takers. To be specific, the estimation is achieved

by replacing θ
(0)
co and θ

(1)
co by the common parameter θco in the binomial likelihood function.

Then, the test of equality (2.4.1) can be conducted by a binomial likelihood ratio test which
is two times the difference between the overall binomial log-likelihood under the alternative
hypothesis and the overall binomial log-likelihood under the null. The binomial likelihood
ratio test (BLRT) statistic is formulated by

TBLRT = 2 ·
(

max
θ∈ϑ+

`(θ)− max
θ∈ϑ+,0

`(θ)

)
. (2.4.4)

where `(θ) is the binomial log-likelihood in IV models defined in Section 2.3.
Theorem 2.4.1. Let B00, B01, B10, B11 be independent Brownian bridges, and

G(t) =

(√
φc + φn
φ0

B00(F00)−

√
φn
φ1
B10(F10)

)
−

(√
φc + φa
φ1

B11(F11)−

√
φa
φ0
B01(F01)

)

Then, for 0 < κ < 1 fixed, under the null hypothesis H0 : F
(0)
co = F

(1)
co ,

TBLRT →
ˆ H−1(1−κ)

H−1(κ)

G(t)2

V ar(G(t))
dH(t), (2.4.5)

where H = η00F00 + η01F01 + η10F10 + η11F11.
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Table 2: Size and power of test with a significance level α = 0.05.

N(−µ, 1) vs. N(µ, 1) N(0, 1) vs. N(0, σ)

n µ BLRT KS σ BLRT KS

300 0 0.057 0.054 1 0.048 0.050

300 0.1 0.088 0.067 0.2 0.683 0.604
300 0.2 0.212 0.166 0.4 0.334 0.261
300 0.3 0.340 0.279 0.6 0.135 0.113
300 0.4 0.558 0.479 0.8 0.071 0.076
300 0.5 0.691 0.600 1 0.048 0.050
300 0.6 0.849 0.785 1.2 0.061 0.061
300 0.7 0.911 0.859 1.4 0.117 0.083
300 0.8 0.965 0.926 1.6 0.163 0.093
300 0.9 0.987 0.964 1.8 0.245 0.122
300 1 0.994 0.989 2 0.366 0.140

1000 0.2 0.445 0.383 1.5 0.337 0.169
1000 0.5 0.992 0.976 2 0.932 0.525
2000 0.2 0.719 0.699 2 1.000 0.899

2.4.2. Simulation

To assess the performance of the proposed likelihood ratio test, we compare it to the KS test
in Abadie (2002) in a simulation study. The distributions of never-takers and always-takers
were fixed as Fnt ∼ N(−1, 1) and Fat ∼ N(1, 1) with the proportions φ = (φco, φnt, φat) =
(1/3, 1/3, 1/3). A sample of size n was drawn and for each sample, the corresponding p-
value was (approximately) calculated by using Theorem 2.4.1. To obtain the distribution
of the test statistic TBLRT under the null, we replaced the distribution H by the empirical
distribution H (see (2.2.10)) from data. Then, we obtained 10,000 bootstrapped test statis-
tics under the null that provide an approximated p-value for each test statistic obtained
from data. We repeated the process of computing a p-value for a simulated dataset 1000
times in order to estimate the power.

Two simulation settings were considered. First, F
(0)
co and F

(1)
co have normal distributions

with different means, but the same variance. Second, the two distributions of compliers
have normal distributions with the same mean, but different variances. Table 2 shows size
and power of the BLRT. The first row of the table represents that the true size of the
test is approximately equal to the nominal significance level α = 0.05. Other rows show
that the power of the BLRT is much greater than that of the KS test. The KS test is most
sensitive when the distributions differ in a global fashion near the center of the distributions
Stephens (1974), which implies that the KS test has good power in the case of an additive
treatment effect for a normal distribution. However, even in the favorable case for the KS
test, the BLRT is more powerful than the KS test. In the unequal variance case, the BLRT
significantly outperforms the KS test.
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Figure 2: Power of the BLRT test and the KS test. Power is calculated given a significance
level α = 0.05. Left-panel: the two distributions have different means but the same standard

deviation, F
(0)
co : N(−µ, 1) versus F

(1)
co : N(µ, 1). Right-panel: the two distributions have

the same mean but different standard deviations, F
(0)
co : N(0, 1) versus F

(1)
co : N(0, σ).

Figure 2 visually represents the results of the two simulation settings. The left panel
represents the plot of the power versus the size of additive effect of treatment. The BLRT
detects the additive treatment effect better than the KS test can. If the treatment effect is
large enough, then the powers of the two tests are both close to 1. In the unequal variance
case, the gain of the BLRT test over the KS test is even greater as shown in the right-hand
panel. In summary, in the simulation setting considered, the BLRT test dominates the KS
test.

2.5. ECLS-K 2010-2011: The Effect of SBP Participation on Childhood Obesity

We consider the sample of 2,568 children from the Early Childhood Longitudinal Study,
Kindergarten Class of 2010-2011 (ECLS-K:2011). The children in the ECLS-K:2011 com-
prise a nationally representative sample selected from both public and private schools at-
tending both full-day and part-day kindergarten in 2010-2011. Using this data, we investi-
gate the effect of participation in the school breakfast program (SBP) on childhood obesity.
The treatment is an indicator of SBP participation in Spring 2011 and the outcome is the
body mass index (BMI) measured in Fall 2011. There is growing concern that SBP partici-
pation contributes to childhood obesity (Ralston et al., 2008; Story et al., 2008). The SBP
was initially offered to combat the problem of widespread nutritional deficiencies, but the
program more recently has been under the suspicion that it may lead to obesity.

There are two main problems to discuss in order to estimate the effect of participation in
the SBP on childhood obesity. First, we need to find a valid IV because participation in the
SBP is a non-randomized treatment variable. We follow the suggestion from Jacobson et al.
(2001) and consider a binary indicator of living close to school based on the distance from
home to school (coded as 1: less than 1/2 miles and 0: 1/2 miles to 5 miles) as an IV. To
make plausible causal inference using this IV, we need to verify the validity of the IV. We
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Figure 3: The estimated outcome distributions for compliers given treatment (participants)
and no treatment (nonparticipants) obtained from the MBL and MOM methods.

assume that children living close to their schools are more likely to participate in the SBP
than children living further away; 48.8% of children who live near their schools participate
in the SBP while 41.5% of children who live far from their schools do. This supports the
non-zero effect of the IV on the treatment, which satisfies Assumption 1 (3). Also, average
BMI measured in Fall 2010, which is before SBP participation, does not significantly differ
across children who live far or near their schools (average BMI 16.7 (far) vs. 16.6 (near)).
This empirically supports Assumption 1 (5), exclusion restriction assumption because there
is no effect of living close to schools on BMI before participating in the SBP. Second, the
childhood obesity is not a definite term. The definition of childhood obesity is defined as
a BMI at or above the 95th percentile for children of the same age and sex (Barlow and
Dietz, 1998). Therefore, the estimation of the average treatment effect on the outcome
cannot answer our research question. Instead, we estimate the distributions of the BMI for
compliers with treatment and without treatment by using our proposed MBL method.

Figure 3 shows the estimated CDFs of SBP participants and nonparticipants for compliers.
We see that the nonparticipants’ estimated CDF is almost always above the participants’
estimated CDF. The gap between the two CDFs is quite wide. The MBL method improves
two features of the MOM method in this example. The MBL estimates for compliers
do not violate the nondecreasing and nonnegative conditions. This improvement leads to
much smoother CDFs. From satisfying the nondecreasing condition, an additional useful
feature of the MBL method is obtained. There is a unique value of estimated earnings
corresponding to a specific quantile level. This feature can be useful for those who want
to estimate the treatment effect at a certain quantile level using the estimated CDFs. A
unique estimate cannot be obtained in the MOM method because of the fluctuation of

17



Table 3: Tests on distributional effect of the SBP participation on the distribution of the
BMI.

BLRT KS

p-value 0.013 0.038

the CDF - if there are multiple values that correspond to the same quantile level, then
we cannot acquire the corresponding quantile to estimate the causal treatment effect for
compliers of that quantile level. For instance, the 95th percentile of the population BMI
for children attending kindergarten is estimated as 19.2 (Ogden and Flegal, 2010); this is
the cutoff value that defines obesity for these children. The value of the nonparticipants’
BMI distribution for compliers at 19.2 is estimated as 0.998 and the corresponding value
for the participants is estimated as 0.654. This means that 0.2% of the participants (among
compliers) in the SBP have obesity and 34.6% of the nonparticipants (among compliers)
have obesity. We emphasize that this inference cannot be made if only the average treatment
effect is estimated or the MOM method is used.

Using the hypothesis test approach described in Section 2.4, we can further investigate
the distributional treatment effect. We conduct the hypothesis test of no distributional

treatment effect, F
(0)
co = F

(1)
co . Both the new proposed BLRT statistic TBLRT and the KS

statistic TKS are considered. Table 3 reports p-values for the two tests of equality. From
the p-value approximation scheme described in Section 2.4.2, the p-value of the BLRT is
computed by bootstrapping the null distribution of the test statistic. Although the p-
values are somewhat different, for both tests, we can reject the null hypothesis that the
distributions are equal at a significance level α = 0.05. This implies that there is significant
evidence that there is an effect of participation in the SBP on the distribution of BMI.

2.6. Summary

We propose the concept of the binomial likelihood to construct nonparametric likelihood
by integrating individual likelihoods at all observations. The MBL method produces the
estimate that overcomes the limitations of the existing methods. The estimate of the dis-
tribution of each compliance classes is used to make genuine nonparametric inference in
IV models. Also, our proposed method ensures the properties of non-decreasingness and
non-negativeness of distribution functions which have not been achieved for nonparametric
IV estimation before. We find that the strength of the MBL method over existing non-
parametric methods is particularly pronounced in the weak IV setting. Furthermore, we
propose a more powerful test statistic based on the binomial likelihood ratio to test the

equality of distributions between treatment and control F
(0)
co = F

(1)
co .
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CHAPTER 3 : Discovering Effect Modification in an Observational Study of
Surgical Mortality at Hospitals with Superior Nursing

3.1. Superior Nurse Staffing, Surgical Mortality and Resource Utilization in Medicare

Hospitals vary in the extent and quality of their staffing, technical capabilities and nursing
work environments. Does superiority in these areas confer benefits to patients undergoing
forms of general surgery that might be performed at most hospitals? To what extent and
in what way do these factors affect the cost of surgical care? Are they a life-saving benefit
or a pointless and unneeded expense in the case of relatively routine forms of surgery?

A recent study by Silber et al. (2016) sought to answer these questions using Medicare data
for Illinois, New York and Texas in 2004-2006. A useful marker for superior staffing is
superior nurse staffing, because there is a national voluntary accreditation program to rec-
ognize excellent nursing environments, so-called “magnet hospitals”; see Aiken et al. (2000).
Additionally, it is relatively easy to use Medicare files to determine the quantity of nurse
staffing in the form of the nurse-to-bed ratio. The study compared patient outcomes at
35 magnet hospitals with nurse-to-bed ratios of 1 or more to outcomes for patients at 293
hospitals without magnet designation and with nurse-to-bed ratios less than 1. For brevity,
hospitals in the first group are called magnet hospitals and those in the second group are
called controls. The question being asked is: How does a patient’s choice of hospital,
magnet or control, affect the patient’s outcomes and medical resource utilization? How
consequential is this choice among hospitals and what are its consequences? There is no
suggestion, implicit or otherwise, in this question that the nurses are the active ingredient
distinguishing magnet and control hospitals, no suggestion that hiring nurses or changing
the nurse environment would make control hospitals perform equivalently to magnet hospi-
tals. Magnet designation marks a type of hospital, but does not identify what components
are critical in distinguishing that type of hospital. Indeed, the 35 magnet hospitals had
many advantages in staffing or technology: 21.5% of magnet hospitals were major teaching
hospitals, as opposed to 5.7% of control hospitals; magnet hospitals had more nurses with
advanced training, more medical residents per bed, and were somewhat more likely to have
a burn unit, and to perform difficult forms of specialist surgery such as coronary bypass
surgery and organ transplantation; see Silber et al. (2016), Table 1. Does a patient under-
going perhaps comparatively routine general surgery benefit from all of these capabilities
or are they wasted on such a patient?

The distinction in the previous paragraph may be restated as follows. The counter-factual
under study is: What would happen to a specific patient if that patient were treated at
a hospital having the superior staffing of magnet hospitals when compared to what would
happen to this same patient if treated at a control hospital? The counter-factual refers
to sending the patient to one hospital or another. What would happen if patients were
allocated to existing hospitals in a different way? The counter-factual does not contemplate
changing the staffing at any hospital. Beds in hospitals with superior staffing are in limited
supply, and it is a matter of considerable public importance that this limited resource be
allocated to the patients most likely to benefit from it.

Some patients are in relatively good health and require relatively routine care; perhaps these
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patients receive little added benefit from magnet hospitals. Some patients are gravely ill
and have poor prospects no matter what care is provided; perhaps these patients also receive
little added benefit from magnet hospitals. In contrast, some patients would have poor
outcomes with inferior care and would have better outcomes with superior care; perhaps
these patients benefit most from treatment in a magnet hospital. Are magnet hospitals
more effective for some types of patients than for others? This is the question of effect
modification in our title.

Silber et al. (2016) created 25,752 matched pairs of two patients, one undergoing general
surgery at a magnet hospital, the other at a control hospital. The two patients in a pair
underwent the same surgical procedure as recorded in the 4-digit ICD-9 classification of
surgical procedures, a total of 130 types of surgical procedure. Additionally, the matching
balanced a total of 172 pretreatment covariates describing the patient’s health prior to
surgery; see Silber et al. (2016) Table 2. Overall, Silber et al. found significantly lower
mortality at magnet hospitals than at control hospitals (4.8% versus 5.8%, McNemar P -
value < 0.001), substantially lower use of the intensive care unit or ICU (32.9% versus
42.9%) and slightly shorter length of stay; see Silber et al. (2016), Table 3 where costs and
Medicare payments are also evaluated. Magnet hospitals had lower mortality rates while
making less use of an expensive resource, the ICU.

In one analysis, Silber et al. (2016) grouped matched pairs based on an estimated probability
of death that was controlled by the matching algorithm. The lowest risk patients appeared
to benefit least from magnet hospitals. In contrast, the fourth quintile of risk — a high,
but not the highest quintile of risk — had both lower mortality and lower cost in magnet
hospitals, whereas the highest risk quintile had lower mortality but higher cost at magnet
hospitals. In brief, Silber et al. (2016) found evidence of effect modification.

Patients with very different medical problems may have similar probabilities of death. It
is interesting that the effect of magnet hospitals appears to vary with patient risk, but it
would be more interesting still to unpack patient risk into its clinical constituents, and to
understand how the effect varies with these constituents. Clinicians do not think of patients
in terms of their probability of death, but rather in terms of their specific health problems
that are aggregated by the probability of death. In that sense, the examination of effect
modification in Silber et al. (2016) is too limited to guide practice.

The current paper uses a recently proposed exploratory technique to unpack effect mod-
ification, combined with a confirmatory technique that examines the sensitivity of these
conclusions to unmeasured biases. Is the ostensible effect larger, more stable or more in-
sensitive to unmeasured bias for certain surgical procedure clusters or certain categories of
patients defined by other health problems?

3.2. Review of Effect Modification in Observational Studies

3.2.1. Notation for causal effects, nonrandom treatment assignment, sensitivity analysis

In observational studies, it is known that certain patterns of treatment effects are more
resistant than others to being explained away as the consequence of unmeasured biases
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in treatment assignment; see, for instance, Rosenbaum (2004), Zubizarreta et al. (2013),
Stuart and Hanna (2013).

Effect modification occurs when the size of a treatment effect or its stability varies with
the level of a pretreatment covariate, the effect modifier. Effect modification affects the
sensitivity of ostensible treatment effects to unmeasured biases. Other things being equal,
larger or more stable treatment effects are insensitive to larger unmeasured biases; see
Rosenbaum (2004), Rosenbaum (2005). As a consequence, discovering effect modification
when it is present is an important aspect of appraising the evidence that distinguishes
treatment effects from potential unmeasured biases, a concern in every observational study.
In particular, Hsu et al. (2013, 2015) discuss sensitivity analysis in observational studies
with potential effect modification, and §3.2 is a concise summary. Chesher (1984), Crump
et al. (2008), Lehrer et al. (2016), Lu and White (2015), Wager and Athey (2015), Athey and
Imbens (2016), Ding et al. (2015), discuss effect modification from a different perspective,
placing less emphasis on its role in confirmatory analyses that distinguish treatment effects
from unmeasured biases in observational studies.

There are I matched pairs, i = 1, . . . , I, of two subjects, j = 1, 2, one treated with Zij = 1,
the other control with Zij = 0, so Zi1 +Zi2 = 1 for each i. Subjects are matched for an ob-
served covariate xij , so xi1 = xi2 = xi, say, for each i, but may differ in terms of a covariate
uij that was not measured. Each subject has two potential responses, rT ij if treated, rCij if
control, exhibiting response Rij = Zij rT ij+(1− Zij) rCij , so the effect caused by the treat-
ment, rT ij − rCij is not seen from any subject; see Neyman (1923, 1990) and Rubin (1974).
Fisher (1935) null hypothesis H0 of no treatment effect asserts rT ij = rCij for all i, j.
Simple algebra shows that the treated-minus-control pair difference in observed responses
is Yi = (Zi1 − Zi2) (Ri1 −Ri2) which equals (Zi1 − Zi2) (rCi1 − rCi2) = ± (rCi1 − rCi2) if
Fisher’s hypothesis H0 is true. Write F = {(rT ij , rCij , xij , uij) , i = 1, . . . , I, j = 1, 2} for
the potential responses and covariates, and write Z for the event that Zi1 + Zi2 = 1 for
each i.

In a randomized experiment, Zi1 = 1−Zi2 is determined by I independent flips of a fair coin,
so πi = Pr (Zi1 = 1 | F ,Z) = 1

2 for each i, and this becomes the basis for randomization
inferences, for instance for tests of Fisher’s null hypothesis or for confidence intervals or
point estimates formed by inverting hypothesis tests. A randomization inference derives
the null distribution given (F ,Z) of a test statistic as its permutation distribution using
the fact that the 2I possible values of Z = (Zi1, Zi2, . . . , ZI2) each have probability 2−I

in a randomized paired experiment; see Fisher (1935), Lehmann and Romano (2005), or
Rosenbaum (2002b). A simple model for sensitivity analysis in observational studies says
that treatment assignments in distinct pairs are independent but bias due to nonrandom
treatment assignment may result in πi that deviate from 1

2 to the extent that 1/ (1 + Γ) ≤
πi ≤ Γ/ (1 + Γ) for Γ ≥ 1, and the range of possible inferences is reported for various values
of Γ to display the magnitude of bias that would need to be present to materially alter
the study’s conclusion; see, for instance, Rosenbaum (2002a) for the case of matched binary
responses, as in the current paper. For instance, a sensitivity analysis may report the range
of possible P -values or point estimates that are consistent with the data and a bias of at
most Γ for several values of Γ.
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For various approaches to sensitivity analysis in observational studies, see Cornfield et al.
(1959), Gastwirth (1992), Gilbert et al. (2003), Egleston et al. (2009), Hosman et al. (2010),
Liu et al. (2013). For some discussion of software in R, see Rosenbaum (2015) and Rosen-
baum and Small (2016).

3.2.2. Three Strategies Examining Effect Modification

There is effect modification if the magnitude of the effect, rTij − rCij , varies systematically
with xi. We partition the space of values of xi into subsets and are concerned with effects
that differ in magnitude or stability between subsets. Let G be a subset of the values of x,
and define the null hypothesis HG to be Fisher’s null hypothesis for individual j in set i with
xij ∈ G, so HG asserts that rT ij = rCij for all ij with xij = xi ∈ G. Let g = (G1, . . .GG) be
a mutually exclusive and exhaustive partition of values of xij = xi, so each pair i has an xi
contained in exactly one Gg. A simple form of effect modification occurs if HGg is true for

some g but not for other g. Write Ig for the number pairs with xi ∈ Gg, so I =
∑G

g=1 Ig.

There are three strategies for defining the groups, g = (G1, . . . ,GG), two of which are
practically useful but technically straightforward, the third having interesting technical
aspects that we illustrate using the Medicare example. One useful strategy defines the
groups, g = (G1, . . . ,GG), a priori, without reference to data. For example, on the basis
of clinical judgement, one might believe certain surgical procedures are more challenging
or hazardous than others, and therefore divide the exactly matched procedures into a few
groups based on clinical judgement alone. Alternatively, clinical judgement might separate
patients with severe chronic conditions unrelated to the current surgery, such as congestive
heart failure.

A second strategy uses an external source of data to define the groups. In particular,
Silber et al. (2016) fit a logit model to an external data source, predicting mortality from
covariates, xij , then formed five groups g = (G1, . . . ,G5) based on this predicted risk for
a given x. This approach made no use of the mortality experience of the patients in the
current study in defining the groups. A variant of the second strategy is to split one data
set at random into two parts, create the groups using the first part, then analyze only the
second part with these, again, externally determined groups.

In both of the first two strategies, the groups, g = (G1, . . . ,GG), were determined by events
external to the outcomes reported study. The second strategy makes explicit use of an
external source of data, while the first strategy uses judgement that is presumably informed
historically by various external sources of data. The key element in both strategies is that
the groups were fixed before examining outcomes in the current study, and in that sense
are unremarkable as groups, requiring no special handling because of their origin. With
a priori groups, we could use any of a variety of methods to test the G hypotheses HGg in
such a way as to strongly control the family-wise error rate at α, meaning that the chance
of falsely rejecting at least one true HGg is at most α no matter which hypotheses are true
and which are false.

The third strategy that we illustrate here creates the groups, g = (G1, . . . ,GG), by ex-
ploratory techniques using all of the current data, and then goes on to perform an analysis
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of the same data as if the groups had been determined a priori. The third strategy is
designed so that it controls the family-wise error rate in a sensitivity analysis despite the
data-dependent generation of G particular groups from among the infinitely many ways
of splitting the space of values of the observed covariates x. This strategy is discussed
in detail in Hsu et al. (2015) and it entails certain restrictions on the way the groups are
constructed.

A simple version of the strategy regresses |Yi| = |(Zi1 − Zi2) (Ri1 −Ri2)| on xi using a form
of regression that yields groups, such as CART. For discussion of CART, see Breiman
et al. (1984) and Zhang and Singer (2010). Note that the unsigned |Yi| not the signed
Yi are used; that is, the regression does not know who is treated and who is control. The
leaves of a CART tree become the groups, g = (G1, . . . ,GG). The signs of the Yi are
then “remembered,” in an analysis that views the groups, g = (G1, . . . ,GG), as fixed, so it
resembles analyses that would have been appropriate with an a priori grouping of the type
created by the first two strategies.

It is important to understand what is at issue in the third strategy; see Hsu et al. (2015) for a
precise and general technical discussion. Briefly if obscurely, the groups, g = (G1, . . . ,GG),
and hence the hypotheses, HGg , are not stable. If the observed data had been slightly
different, the CART tree would have been different, and we would be testing different
hypotheses. What does it mean to speak about the probability of falsely rejecting HGg if
most data sets would not lead us to test HGg?

Consider the simplest case, a paired randomized experiment. If Fisher’s null hypothesis
of no effect of any kind were true, then Yi = (Zi1 − Zi2) (rCi1 − rCi2) = ± (rCi1 − rCi2)
and, given (F ,Z), different random assignments Zij always yield |Yi| = |rCi1 − rCi2|, so
all 2I random assignments produce the same CART tree and the same g = (G1, . . . ,GG).
In other words, under H0, the CART tree and hence g = (G1, . . . ,GG) is a function of
(F ,Z) and not of Z. Therefore, under H0, the 2Ig possible treatment assignments for the
Ig pairs with xi ∈ Gg each have probability 2−Ig , resulting in conventional permutation
tests within each of the G groups, tests that are conditionally independent given (F ,Z)
under H0. The problem occurs because we are interested in testing not just H0, but also
individual HGg when H0 is false because some individuals are affected by the treatment.
If H0 is false, different random assignments Z yield different |Yi|, hence different CART
trees and different hypotheses, g = (G1, . . . ,GG). With a bit of care, it is possible to
demonstrate two useful facts. First, if rT ij − rCij = 0 for all ij with xi ∈ Gg, then the
conditional distribution given g = (G1, . . . ,GG) and (F ,Z) of the corresponding Zij with
xi ∈ Gg is its usual randomization distribution. In that sense, the instability of the tree
over repeated randomizations has not distorted this conditional distribution of treatment
assignments in groups with no treatment effect. Second, if a method is applied to test the
HGg that would strongly control the family-wise error rate at α with a priori fixed groups,
then conditionally given g = (G1, . . . ,GG) and (F ,Z), the method will reject at least one
null group with probability at most α. These two facts are extended to include sensitivity
analyses in observational studies and are proved as Propositions 1 and 2 of Hsu et al. (2015).
That paper also presents some reasons to hope that subsets of xi that systematically predict
|Yi| may identify groups in which either the magnitude of rT ij − rCij or its stability varies

23



with xi.

In the current paper, we present a practical application of this third strategy.

3.3. Discovering and Using Effect Modification in the Magnet Hospital Study

3.3.1. Forming Groups of Pairs for Consideration as Possible Effect Modifiers

The analyses here first broke and then re-paired the pairs in Silber et al. (2016) so that:
(i) as in Silber et al., every pair was exactly matched for the 130 four-digit ICD-9 surgical
procedure codes, (ii) the maximum number of pairs were exactly matched for an indicator
of age greater than 75, congestive heart failure (CHF), emergency admission or not, and
chronic obstructive pulmonary disease (COPD). Because identically the same people were
paired differently, the balancing properties of the new pairs are exactly the same as reported
by Silber et al. (2016, Table 2), because balancing properties refer to marginal distributions
of covariates and do not depend upon who is paired with whom.

Using rpart in R, the CART tree was built using the 22,622 pairs that were exactly matched
in the sense described in the previous paragraph, regressing |Yi| on xi, where Yi records the
difference in binary indicators of mortality. So, the tree is essentially trying to locate pairs
discordant for mortality, |Yi| = 1, on the basis of exactly matched covariates. Here, a pair
is discordant if exactly one patient in the pair died within 30-days. CART was not offered
all 130 exactly matched surgical procedure codes, but rather 26 mutually exclusive clusters
of the 130 surgical procedures, as listed in Table 4, plus the binary covariates age>75,
CHF, emergency admission, and COPD. The resulting tree is depicted in Figure 4. A
few procedure clusters — e.g., liver procedures — are diverse, perhaps meriting further
subdivision that we do not consider here.

We began with 25,752 matched pairs. As described above, only the 22,622 pairs that were
exactly matched for five potential effect modifiers were used to build the tree in Figure 4.
Ultimately CART used three of the five covariates and ignored the remaining two covariates,
namely ‘age>75’ and COPD. To use the classification in Figure 4, we need pairs that are
exactly matched for three covariates, not for five covariates. Can we recover some of the
pairs that we did not use because they were not matched for five covariates? To recover
omitted pairs, we followed the tactic in Hsu et al. (2015). Specifically, we re-paired as many
of the pairs that were not used to build the tree to be exact for the 130 procedures plus CHF
and emergency admission, adding these additional 1,093 pairs to the groups in Figure 4,
making 23,715 pairs in total, or 95% of the original study. All analyses that follow refer to
these 23,715 pairs.

Consider the tree in Figure 4, starting from its root at the top of the figure. The tree
split the population into two groups, patients without congestive heart failure (CHF) and
patients with CHF, a serious comorbid condition. It then split this divided population by
grouping the 26 surgical procedure clusters. There are, of course, many way to group 26
procedure clusters; for instance, there are 226 − 1 = 67, 108, 863 ways to split them into
two groups. There are four groups of procedures, two for patients with CHF and two for
patients without CHF. Table 4 displays CART’s grouping of the 26 procedure clusters into
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proc1, proc2, proc3 and proc4. In Figure 4, CART further divided proc2 into two subsets
of patients, those admitted as emergencies and the remaining nonemergent patients. In
Table 4, notice that proc1 and proc3 overlap extensively, as do proc2 and proc4. To the
clinical eye, with a few raised eyebrows, the procedures in proc2 and proc4 look riskier or
more complex than those in proc1 and proc3. Groups proc1 and proc3 are very similar but
not identical, and groups proc2 and proc4 are very similar but not identical. For instance,
appendectomy is grouped with the less risky procedures in proc1 if the patient does not
have CHF, but it was grouped with the more risky procedures in proc4 for a patient with
CHF; however, it is unclear whether that switch is a profound insight or a hiccup.

The CART tree was built by predicting |Yi| from xi. In contrast, hypothesis testing will
use the signed value of Yi.

3.3.2. Informal Examination of Outcomes

In §3.3.3, an analysis of mortality is carried out as proposed in Hsu et al. (2015). This
analysis is easier to understand if we take a quick look first. The upper part of Table 5
describes mortality informally. The first three numeric rows of Table 5 describe information
that CART could use in building the tree, namely the number of pairs, the number of
discordant pairs, and the proportion of discordant pairs. In Table 5, 43% = 10127/23715
of pairs are in the group 1, that is, patients without CHF undergoing less risky procedures.
Expressed differently, group 1 has the most pairs and the fewest discordant pairs of the five
groups. As one might expect given the information that CART was permitted to use, the
proportion of discordant pairs varies markedly among the groups CART built.

The next three numeric rows of Table 5 display outcomes by treatment group, making use
of Yi and not just |Yi|. The mortality rates for magnet and control groups are given, as is
the odds ratio computed from discordant pairs; see Cox (1970). All of the odds ratios are
greater than or equal to 1, suggesting higher mortality at control hospitals. The largest
odds ratio is in group 2, 1.53, while the largest difference in mortality rates is in group 5,
18.6%-16.5% = 2.1%. The odds ratio closest to 1 is in group 3, the group most similar to
group 2 except for admission through the emergency room.

3.3.3. Structured Analysis of Outcomes in Discovered Groups

The structured analysis in Hsu et al. (2015) starts by computing randomization tests and
upper sensitivity bounds on P -values for each of the five groups separately. In Table 5, these
are based on a test of the McNemar type, essentially binomial calculations using discordant
pairs; see Cox (1970) for discussion of paired binary data, and see Rosenbaum (2002b),
§4.3.2 for the sensitivity analysis. In the bottom part of Table 5 are upper bounds on one-
sided P -values testing no treatment effect in a group in the presence of a bias in treatment
assignment of at most Γ. Also given in Table 5 are the odds ratios from discordant pairs
associated with McNemar’s test.

The final column in the bottom of Table 5 gives the P -value for the truncated product of
P -values as proposed by Zaykin et al. (2002). The truncated product generalizes Fisher’s
method for combining independent P -values: the test statistic is the product of those P -
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values that are smaller than a threshold, τ , where τ = 0.1 in Table 5. Zaykin et al.
(2002) determined the null distribution of the truncated product statistic. Hsu et al.
(2013) show that the same null distribution may be used to combine upper bounds on
P -values in a sensitivity analysis for a tree like Figure 4, and that it often has superior
power in this context compared to Fisher’s product of all P -values, essentially because
sensitivity analyses promise P -values that are stochastically larger than uniform for a given
Γ. Truncation eliminates some very large upper bounds on P -values.

Hsu et al. (2015) combine the truncated product statistic with the closed testing procedure
of Marcus et al. (1976) to strongly control the family-wise error rate at α in a sensitivity
analysis with a bias of at most Γ. Given G hypotheses, HGg , g = 1, . . . , G, asserting no
effect in each of G groups, closed testing begins by defining 2G− 1 intersection hypotheses,
HL, where L ⊆ {1, . . . , G} is a nonempty set, and HL asserts that HG` is true for every
` ∈ L. Closed testing rejects HL if and only if the P -value testing HK is ≤ α for every
K ⊇ L. The P -value testing HK is based on the truncated product of P -values for HGk for
k ∈ K.

The P -value in the final column of Table 5 tests Fisher’s hypothesis H0, or HL with L =
{1, 2, 3, 4, 5}. For Γ = 1, this test combines five McNemar tests using the truncated
product, and in the absence of bias, the hypothesis H0 is rejected with a one-sided P -value
of 2.7× 10−6. To complete closed testing of subhypotheses, one performs 25− 1 = 31 tests
of intersection hypotheses. Hypothesis H{3,4} has a P -value using the truncated product
of 0.080, so neither HG3 nor HG4 is rejected at the 0.05 level by closed testing, but HG1 , HG2
and HG5 are rejected. In short, in the absence of bias, Γ = 1, the hypothesis of no effect is
rejected in groups 1, 2, and 5.

At Γ = 1.05, Fisher’s hypothesis of no effect at all is rejected at the 9.0 × 10−5 level, and
closed testing rejects both HG1 and HG2 at the 0.05 level. At Γ = 1.10, Fisher’s hypothesis
H0 of no effect is rejected at the 0.012 level, but only HG2 is rejected at the 0.05 level. At
Γ = 1.17, Fisher’s hypothesis H0 of no effect is rejected at the 0.044 level, no individual
subgroup hypothesis is rejected at the 0.05 level, but H{1,2} is rejected at the 0.05 level. At
Γ = 1.18, no hypothesis is rejected at the 0.05 level.

A bias of Γ = 1.17 corresponds with an unobserved covariate that doubles the odds of
having surgery at a control hospital and increases the odds of death by more than 60%.
That is, stated technically, Γ = 1.17 amplifies to (Λ,∆) = (2.0, 1.61); see Rosenbaum and
Silber (2009a). McNemar’s test applied to all 23,715 pairs yields a P -value bound of 0.063
at Γ = 1.15, so this overall test is slightly more sensitive to unmeasured biases and provides
no information about subgroups.

What range of possible unmeasured biases, measured by Γ, should be explored? We do
not know and cannot know how much bias is actually present in an observational study.
However, in a straightforward way, we can and should determine the quantity of bias that
would need to be present to alter the study’s conclusions, for instance the bias that might
lead to acceptance of a null hypothesis rejected in a conventional analysis that assumed no
bias, Γ = 1. The degree of sensitivity to bias is a fact in the data brought to light by an
appropriate analysis.

26



3.3.4. Use of the Intensive Care Unit (ICU)

In Table 5, magnet hospitals exhibited lower mortality than control hospitals for ostensibly
similar patients undergoing the same surgical procedure, that is, magnet hospitals exhibited
better quality. Does better quality cost more? For resources that are allocated by a market
mechanism — say, restaurants or hotels — we expect better quality to cost more, but market
forces play little role in Medicare payments. In the absence of market forces, it is an open
question whether better quality costs more. Silber et al. (2016) examine this issue in
several ways, but Table 6 restricts attention to the consumption of a particularly expensive
resource, namely use of the intensive care unit or ICU. In a hospital with inadequate
nursing staff, a patient may be placed in the ICU to ensure that the patient is monitored,
while in a hospital with superior nursing this same patient might remain in a conventional
hospital room. This is one mechanism by which better quality — lower mortality rates —
might cost less, not more.

Is the lower mortality in magnet hospitals associated with greater use of the ICU? Appar-
ently not. Overall and in all five groups in Figure 4, the use of the ICU in Table 6 is lower
at magnet hospitals than at control hospitals. The odds ratio is largest in group 2, but it
is not small in any group. In various other ways also, Silber et al. (2016) found that costs
were lower at hospitals with superior nursing, despite lower mortality rates.

The closed testing procedure applied to the sensitivity analysis in the bottom part of Table 6
rejects the null hypothesis of no effect on ICU utilization in all five groups providing the
bias in treatment assignment is at most Γ = 1.5. Using the method in Rosenbaum and
Silber (2009a), a bias of Γ = 1.5 corresponds with an unobserved covariate that increases
the odds of surgery at a control hospital by a factor of 4 and increases the odds of going to
the ICU by a factor of 2. Closed testing rejects no effect only in group 2 for 1.6 ≤ Γ ≤ 1.8,
and cannot reject even Fisher’s H0 for Γ = 1.9. Detailed results for group 2 are given in
Table 7.

To emphasize a point emphasized in §3.1, Tables 5, 6 and 7 concern the effect of going to a
magnet hospital rather than a control hospital for surgery, but they do not show the specific
role of nurses in this effect. It is entirely plausible that superior nurse staffing would permit
more patients to stay out of the ICU, but nothing in the data speaks to this directly. The
main difference between the ICU and the floor of the hospital is the higher density, often
higher quality, of the nurse staffing in the ICU. A hospital with a higher nurse-to-bed ratio
and superior nurse staffing may be able to care for a seriously ill patient on the hospital
floor, where some other hospital would be forced to send the same patient to the ICU.

3.3.5. Other Analyses and Options for Analysis

The tree in Figure 4 was built for mortality, but was used also for ICU use. In an additional
analysis, we applied CART to each leaf of Figure 4 to predict unsigned discordance for ICU
use. The two interesting aspects of this analysis were: (i) subgroup 2 in Figure 4 was
not further divided; (ii) subgroup 5 in Figure 4 was further divided, with more evidence of
an effect on ICU use among patients in this subgroup who were not admitted through the
emergency room, a pattern analogous to subgroups 2 and 3. An interesting feature of this
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type of analysis is that it makes mortality the primary endpoint, as it would be in most
surgical studies, so only mortality determines the initial tree for the mortality analysis, but
it permits the secondary outcome of ICU use to affect a secondary tree.

We let CART build the groups. Any analysis that used only |Yi| and xi could be used
to build the groups. In saying this, we mean that the strong control of the family-wise
error rate in Hsu et al. (2015) would not be affected by revisions to the tree that used
only |Yi| and xi. Indeed, a surgeon who did not look at Yi could look at Figure 4 and
Table 4 and decide to regroup some of the procedure groups. Perhaps the surgeon would
view some of CART’s decisions as clinically unwise and would change them, or perhaps
the surgeon would prefer that proc1 and proc3 be identical, and that proc2 and proc4 be
identical. Indeed, the surgeon might suggest fitting the tree again, using only |Yi| and
xi, but subdividing some procedure clusters, say liver procedures, that seem too broad to
be clinically meaningful. What is critical is that the groups are formed using |Yi| and xi
without using the sign of Yi.

3.4. Summary and Discussion: Confirmatory Analyses that Discover Larger Effects
by Exploratory Methods

3.4.1. Summary: It is Important to Notice Subgroups with Larger Treatment Effects in
Observational Studies

In an observational study of treatment effects, there is invariably concern that an osten-
sible treatment effect is not actually an effect caused by the treatment, but rather some
unmeasured bias distinguishing treated and control groups. Larger or more stable treat-
ment effects are more insensitive to such concerns than smaller or more erratic effects;
that is, larger biases measured by Γ would need to be present to explain a large and sta-
ble treatment effect. These considerations motivate an interest in effect modification in
observational studies. Perhaps the treatment effect is larger or more stable in certain
subgroups defined by observed covariates. If so, the ostensible treatment effect in such
subgroups is likely to be insensitive to larger unmeasured biases, therefore more credible,
and additionally, a larger or more stable effect is likely to be more important clinically.

The magnet hospitals had lower mortality overall, and lower or equivalent mortality in each
of the five groups. However, the superior staffing of magnet hospitals was least sensitive to
unmeasured bias in our group 2, consisting of patients undergoing relatively serious forms of
surgery in the absence of other life-threatening conditions, such as congestive heart failure or
an emergency admission leading to surgery. Moreover, not only were mortality rates lower
in magnet hospitals for these patients (2.5% rather than 3.5%), but additionally the magnet
hospitals cared for these patients with greatly reduced use of an expensive resource, namely
the intensive care unit (ICU rate of 28.9% rather than 43.3%). Determining the cost of
hospital care for Medicare patients is not straightforward, so Silber et al. (2016) contrasted
several formulas to appraise the cost of magnet hospitals. In all of these formulas, use of
the ICU plays a substantial part, as does the length of stay in the hospital. Regardless of
which formula was used, magnet hospitals appear to produce lower mortality either at no
additional cost or with a cost savings.
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A plausible interpretation of Figure 4, Table 4 and Table 5 is that: (i) patients in groups 2,
4 and 5 should be directed to magnet hospitals, a limited resource; (ii) the large number of
comparatively healthy patients requiring simpler surgical procedures may go to non-magnet
hospitals if space in a magnet hospital is unavailable, (iii) patients in group 3 requiring
emergency surgery should go to the nearest hospital.

3.4.2. Exploration and Confirmation Using Regression Trees

The CART method of Breiman et al. (1984), as originally proposed, did not lend itself to
conventional inference, such as hypothesis testing, much less to simultaneous inference for
the groups it produced. In contrast, Hsu et al. (2015) proposed a way to use CART, or
similar methods, combining exploratory construction of groups together with a confirmatory
sensitivity analysis that controls the family-wise error rate in the constructed groups. All
of the data are used to build the tree and all of the data are used in confirmatory analyses.
This is important in Table 5 because the number of pairs discordant for mortality is not
large in some groups — happily, most people survive surgery — so sample splitting to build
the groups would leave less data for confirmatory analyses. The double use of all of the
data works by having CART predict |Yi| from xi without knowing who is treated and who
is control, then using the signed Yi in confirmatory analyses with CART’s groups. CART
trees can be unstable, so the tree should be regarded as an interesting partition of the data,
not a search for a “true” partition. The formal hypothesis tests are conditional inferences
given CART’s partition: they correctly use, but do not endorse, the partition.

Will a tree built from |Yi| be useful in the study of effect modification? It is straightforward
to construct theoretical examples in which an analysis of |Yi| would miss effect modification
that an analysis of Yi might find. Obviously, a tree built from all of the Yi is preferable,
but this would preclude a confirmatory analysis using the same data. As noted by Hsu
et al. (2015), a result of Jogdeo (1977), Theorem 2.2 provides some encouragement. A
simple version of this result says: if Yi = µi+ εi, µi ≥ 0, i = 1, . . . , I, where the errors εi are
independent and identically distributed with a unimodal distribution symmetric about zero,
then |Yi| is stochastically larger than |Yj | whenever µi > µj . Under this simple model, trees
that form groups from the level of |Yi| have some hope of finding groups heterogeneous in µi.
True, if the εi are not identically distributed, if the dispersion of εi varies with i, then the
groups may be affected by both level and dispersion; however, sensitivity to unmeasured
bias is also affected by both the level and dispersion of the treatment effects, so groups
reflecting unequal dispersion are interesting also. For additional encouragement, see also
the simulation results in Hsu et al. (2015).

3.4.3. Other Applications

We discussed in detail a clinical application that extends results in Silber et al. (2016).
However, the proposed method is also applicable outside clinical medicine. Hsu et al. (2013)
presented an example from public health, in which treatments intended to prevent malaria
in Nigeria were much more effective for children than for adults, so the conclusions were
much more insensitive to unmeasured bias for children than for adults. Hsu et al. (2015)
presented an example from labour economics concerning the effect of the 2010 Chilean
earthquake on work income. Does a major disaster create employment or interfere with it?
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They found that the earthquake had its largest and least sensitive effects on men who had
no work income prior to the earthquake: these men were less likely to find jobs and secure
work income than similar men who were unaffected by the earthquake.

3.4.4. Alternative Methods

As noted in §3.2.2, there are at least three basic approaches to confirmatory sensitivity
analyses for effect modification. One approach starts with a priori groups, or, what amounts
to the same thing, groups built from one or more external data sets. Essentially this
approach was used in Silber et al. (2016) for these data. The five groups were defined
by quintiles of risk-of-death as estimated using a model fit to another set of data. That
analysis was enlightening, but the plausible interpretation at the end of §3.4.1 makes useful
distinctions that risk quintiles do not make.

Another approach is to: (i) split the data into two parts at random, (ii) form patient
groups from Yi rather than |Yi| using the first part of the data, (iii) discard the first part,
(iv) perform a confirmatory analysis on the second part using the patient groups formed
from the first part. This approach is attractive when I is very large. For some indirectly
related theory, see Heller et al. (2009). Presumably, if we had twice as many pairs as we
actually had, I → 2I, if we split the data in half as just described, then the resulting analysis
would be uniformly better than the analysis we did with half as much data, because: (i)
the tree would be better having been built from Yi instead of |Yi|, but (ii) the confirmatory
analysis would have the same quantity of data as our confirmatory analysis. Silber et al.
(2016) used data from New York, Illinois and Texas primarily because purchasing Medicare
data is expensive. There are, however, 47 more states where these came from.
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Table 4: Grouping of procedure clusters, with and without congestive heart failure (CHF).
No CHF CHF No CHF CHF

Procedure Cluster proc1 proc3 proc2 proc4

1 Adrenal procedures x x
2 Appendectomy x x
3 Bowel anastamoses x x
4 Bowel procedures, other x x
5 Breast procedures x x
6 Esophageal procedures x x
7 Femoral hernia procedures x x
8 Gallbladder procedures x x
9 Incisional and abdominal hernias x x
10 Inguinal hernia procedures x x
11 Large bowel resection x x
12 Liver procedures x x
13 Lysis of adhesions x x
14 Ostomy procedures x x
15 Pancreatic procedures x x
16 Parathyroidectomy x x
17 PD access procedure x x
18 Rectal procedures x x
19 Repair of vaginal fistulas x x
20 Small bowel resection x x
21 Splenectomy x x
22 Stomach procedures x x
23 Thyroid procedures x x
24 Ulcer surgery x x
25 Umbilical hernia procedures x x
26 Ventral hernia repair x x
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Table 5: Mortality in 23,715 matched pairs of a patient receiving surgery at a magnet
hospital or a control hospital, where the pairs have been divided into five groups selected
by CART.

Subgroups Pooled
Group 1 Group 2 Group 3 Group 4 Group5

CHF no no no yes yes
Procedures proc1 proc2 proc2 proc3 proc4

ER admission both no yes both both

Number of Pairs 10127 5636 2943 2086 2923 23715
Discordant Pairs 210 293 488 217 760 1968

Percent Discordant % 2.1 5.2 16.6 10.4 26.0 8.3
Odds Ratio 1.41 1.53 1.09 1.28 1.18 1.23

Mortality %, Magnet 0.9 2.5 10.1 4.9 16.5 4.7
Mortality %, Control 1.3 3.5 10.8 6.2 18.6 5.6

Sensitivity analysis: Upper bounds on P -values for various Γ

Γ Subgroups Truncated
Group 1 Group 2 Group 3 Group 4 Group 5 Product

1.00 0.008 0.000 0.195 0.039 0.013 0.000
1.05 0.019 0.001 0.374 0.080 0.062 0.000
1.10 0.042 0.003 0.576 0.143 0.184 0.012
1.15 0.079 0.010 0.753 0.230 0.386 0.032
1.17 0.099 0.015 0.809 0.270 0.479 0.044
1.20 0.135 0.025 0.875 0.335 0.616 0.163
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Table 6: Use of the intensive care unit (ICU) in 23,715 matched pairs of a patient receiving
surgery at a magnet hospital or a control hospital, where the pairs have been divided into
five groups indicated in Figure 4.

Subgroups Pooled
Group 1 Group 2 Group 3 Group 4 Group5

CHF no no no yes yes
Procedures proc1 proc2 proc2 proc3 proc4

ER admission both no yes both both

Number of Pairs 10127 5636 2943 2086 2923 23715
Discordant Pairs 2675 2361 1282 859 970 8147

Percent Discordant % 26.4 41.9 43.6 41.2 33.2 34.4
Odds ratio 1.63 2.05 1.67 1.70 1.88 1.78

ICU %, Magnet 15.3 28.9 53.8 41.0 69.8 32.3
ICU %, Control 21.7 43.3 64.6 51.7 80.0 42.0

Sensitivity analysis: Upper bounds on P -values for various Γ

Γ Subgroups Truncated
Group 1 Group 2 Group 3 Group 4 Group 5 Product

1 0.000 0.000 0.000 0.000 0.000 0.000
1.5 0.017 0.000 0.037 0.040 0.000 0.000
1.6 0.312 0.000 0.254 0.203 0.009 0.000
1.7 0.849 0.000 0.651 0.511 0.074 0.000
1.8 0.993 0.002 0.916 0.798 0.276 0.049
1.9 1.000 0.047 0.989 0.945 0.582 0.235

Table 7: Mortality and ICU use in 5,636 pairs in Group 2. The table counts pairs of
patients, not individual patients.

Control Hospital Magnet Hospital

Dead Alive, ICU Alive, no ICU Total

Dead 23 72 105 200
Alive, ICU 60 744 1493 2297

Alive, no ICU 56 726 2357 3139

Total 139 1542 3955 5636
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Mortality in 23715 Matched Pairs

 

No CHF CHF

Group 1

(1.41, 0.9, 1.3)

proc1 proc2

Group 4

(1.28, 4.9, 6.2)
Group 5

(1.18, 16.5, 18.6)

proc3 proc4

Group 2

(1.53, 2.5, 3.5)
Group 3

(1.09, 10.1, 10.8)

Not Emergency Emergency

Figure 4: Mortality in 23,715 matched pairs of two Medicare patients, one receiving surgery
at a magnet hospital identified for superior nursing, the other undergoing the same surgical
procedure at a conventional control hospital. The three values (A,B,C) at the nodes of the
tree are: A = McNemar odds ratio for mortality, control/magnet, B = 30-day mortality
rate (%) at the magnet hospitals, C = 30-day mortality rate (%) at the control hospitals.
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CHAPTER 4 : A New, Powerful Approach to the Study of Effect Modification in
Observational Studies

4.1. Does Physical Activity Prolong Life? Equally for Everyone?

4.1.1. A Matched Comparison of Physical Inactivity and Survival

Davis et al. (1994) used the NHANES I Epidemiologic follow-up study (NHEFS) to ask:
Is greater physical activity reported at the time of the NHANES I survey associated with
a longer subsequent life? We examine the same data in a similar way, but with new
methodology, specifically the subgroup maximum method or submax-method.

A representative national sample was collected in the first NHANES I survey in 1971-
1975, and these sampled individuals were followed up for survival until 1992. Data on all
variables other than death were collected at baseline (NHANES I). Physical activity was
measured in two variables: self-reported nonrecreational activity (“In your usual days, aside
from recreation are you physically very active, moderately active or quite inactive?”) and
self-reported recreational activity (“Do you get much, moderate or little or no exercise in
the things you do for recreation?”). We formed a treated group of 470 adults who were
quite inactive, both at work and at leisure, and we matched them to a control group of
470 adults who were quite active (very active in physical activity outside of recreation and
much or moderate recreational activity). We compare quite inactive to quite active rather
than moderately inactive to moderately active individuals because making the treated and
control groups sharply differ in dose increases the insensitivity of the study to unobserved
biases when there is a treatment effect and no bias (i.e., it increases the design sensitivity,
Rosenbaum (2004)). Following Davis et al. (1994), we excluded people who were quite ill
at the time of the NHANES I survey. Both of our groups included people aged between 45
and 74 at baseline in the NHANES I study and excluded people who, prior to the NHANES
I evaluation, had had heart failure, a heart attack, stroke, diabetes, polio or paralysis, a
malignant tumor, or a fracture of the hip or spine. Table 8 shows the covariates used in
matching. Pairs were exactly matched on sex, smoking status (current smoker) and income
(cut at two times the Federal poverty level). Other matched variables were age, race (white
or other), years of education, employment (employed or not employed outside the home
during the previous three months), marital status, alcohol consumption and dietary quality
(number of five nutrients – protein, calcium, iron, Vitamin A and Vitamin C – that were
consumed at more than two thirds of the recommended dietary allowance). After matching,
the groups are fairly similar, whereas before matching, the inactive group was older, more
often female, more often nonwhite, more often poor, more often not working in the prior 3
months, more often not married, and less often had an adequate diet.

The top panel of Figure 5 shows the Kaplan-Meier survival curves for the matched active and
inactive groups. We ask two interconnected questions: (i) What magnitude of unmeasured
bias from nonrandom treatment assignment would need to be present to explain Figure 5
as something other than an effect caused by inactivity? (ii) Is there greater insensitivity to
unmeasured bias in some subgroups because the ostensible effect is larger in those subgroups,
or is there similar evidence of effect in all subgroups? We will study sex, smoking and the
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two categories of income as potential effect modifiers. These three binary covariates are
exactly matched.

4.1.2. A New Approach to Effect Modification in Observational Studies

If some subgroups experience larger or more stable effects, then the ostensible effect of a
treatment may be less sensitive to bias from nonrandomized treatment assignment in these
subgroups; see Hsu et al. (2013). Conversely, if a treatment appears to be highly effective
in all subgroups, then it is safer to generalize to other populations that may have different
proportions of people in the various subgroups.

One approach to studying effect modification in observational studies constructs a few
promising subgroups from several measured covariates using an algorithm such as Breiman
et al. (1984)’s CART technique, as discussed by Hsu et al. (2013, 2015), and as described
in §4.3.7. A limitation of this approach is that it is hard to study the power and operating
characteristics of such a technique except by simulation, because the CART step does not
lend itself to such an evaluation. In the current paper we propose a different approach —
the submax method — for which a theoretical evaluation is possible. The submax method
has a formula for power and design sensitivity, and additionally permits statements about
Bahadur efficiency. In particular, the new method achieves the largest — i.e., best — of the
design sensitivities for the subgroups, and the highest Bahadur efficiency of the subgroups;
moreover, both the power formula and a simulation confirm that the asymptotic results are
a reasonable guide to performance in samples of practical size. The simulation in §4.3.7
also compares the submax and CART methods. An additional limitation of the CART
method is that it is defined for matched pairs. In contrast, the submax-method works for
matched pairs, for matched sets with multiple controls, variable numbers of controls and
with the full matching method described by Rosenbaum (1991) and Hansen and Klopfer
(2006).

The submax-method considers a single combined analysis together with several ways to
split the population into subgroups. It does not form the interaction of subgroups, which
would quickly become thinly populated with small sample sizes; rather, it considers one
split, reassembles the population, then considers another split. If the splits were defined by
L binary covariates, then there would be 2L interaction subgroups, but the submax-method
would do only 1 overall test plus 2L subgroup tests, making a total of 2L+1 highly correlated
tests, not 2L independent tests. If the binary covariates each split every subpopulation
in half, then each interaction subgroup would contain a fraction 2−L of the population —
i.e., not much — but each of our 2L subgroup tests would use half the population — i.e.,
a much larger fraction. The submax-method uses the joint distribution of the 2L+ 1 test
statistics, with the consequence that the correction for multiple testing is quite small due
to the high correlation among the test statistics. Specifically, the two halves of one binary
split are independent because they refer to different people, but each of those test statistics
is highly correlated with test statistics for other splits, because all the splits use the same
people. In the example, we split the population by gender (male or female), by current
cigarette smoking (yes or no), and by two income groups, so we do 2K + 1 = 2× 3 + 1 = 7
correlated tests. Although the test statistics for men and women are independent, the
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statistics for men and smokers are highly correlated because there are many male smokers.

4.2. Notation and Review of Observational Studies

4.2.1. Treatment Effects in Randomized Experiments

There are G groups, g = 1, . . . , G, of matched sets, i = 1, . . . , Ig, with ngi individuals in set
i, j = 1, . . ., ngi, one treated individual with Zgij = 1 and ngi− 1 controls with Zgij = 0, so
that 1 =

∑ngi
j=1 Zgij for each g, i. Matched sets were formed by matching for an observed

covariate xgij , but may fail to control an unobserved covariate ugij , so that xgij = xgik for
each g, i, j, k, but possibly ugij 6= ugik. In §4.1.1, the matched sets are pairs, ngi = 2, and
there are G = 23 = 8 groups of pairs defined by combinations of L = 3 binary covariates,
sex, smoking and income group, with 470 =

∑8
g=1 Ig pairs in total.

Individual gij exhibits response rTgij if treated or response rCgij if given the control, so
this individual exhibits response Rgij = Zgij rTgij + (1− Zgij) rCgij , and the effect of the
treatment, rTgij − rCgij , is not observed for anyone; see Neyman (1923, 1990) and Rubin
(1974). Fisher’s (1935) null hypothesis of no treatment effect asserts that H0 : rTgij = rCgij
for all i, j. Write F = {(rTgij , rCgij , xgij , ugij) , g = 1, . . . , G, i = 1, . . . , Ig, j = 1, . . . , ngi}.
Write |S| for the number of elements in a finite set S.

Write Z for the set containing the |Z| =
∏G
g=1

∏Ig
i=1ngi possible values z of the treatment

assignment Z =
(
Z111, Z112, . . . , ZG,IG,nG,IG

)T
, so z ∈ Z if zgij = 0 or zgij = 1 and 1 =∑ngi

j=1 zgij for each gi. Conditioning on the event Z ∈ Z is abbreviated as conditioning on Z.
In an experiment, randomization picks a Z at random from Z, so that Pr (Z = z | F , Z) =
|Z|−1 for each z ∈ Z. In a randomized experiment, randomization creates the exact null
randomization distribution of familiar test statistics, such as Wilcoxon’s signed rank statistic
or the mean pair difference or Maritz (1979)’s version of Huber M-statistic. In the analysis
of the paired censored survival data in §4.1.1, the test statistic is the Prentice-Wilcoxon test
proposed by O’Brien and Fleming (1987). These test statistics and many others are of the

form T =
∑G

g=1

∑Ig
i=1

∑ngi
j=1 Zgij qgij for suitable scores qgij that are a function of the Rgij ,

ngi and possibly the xgij , so that, under H0 in a randomized experiment, the conditional
distribution Pr (T | F , Z) of the test statistic T is the distribution of the sum of fixed
scores qgij with Zgij = 1 selected at random. In a conventional way, randomization tests
are inverted to obtain confidence intervals and point estimates for magnitudes of treatment
effects; see, for instance, Lehmann (1975), Maritz (1979) and Rosenbaum (2007).

In large sample approximations, the number of groups, G, will remain fixed, and the number
of matched sets Ig in each group will increase without bound.

4.2.2. Sensitivity to Unmeasured Biases in Observational Studies

In an observational study, conventional tests of H0 appropriate in the randomized experi-
ments in §4.2.1 can falsely reject a true null hypothesis of no effect because treatments are
not assigned at random, Pr (Z = z | F , Z) 6= |Z|−1. A simple model for sensitivity analysis
in observational studies assumes that, in the population prior to matching for x, treatment

37



assignments are independent and two individuals, gij and g′i′j′, with the same observed
covariates, xgij = xg′i′j′ , may differ in their odds of treatment by at most a factor of Γ ≥ 1,

1

Γ
≤

Pr (Zgij = 1 | F) Pr
(
Zg′i′j′ = 0

∣∣ F)
Pr
(
Zg′i′j′ = 1

∣∣ F) Pr (Zgij = 0 | F)
≤ Γ whenever xgij = xg′i′j′ ; (4.2.1)

then the distribution of Z is returned to Z by conditioning on Z ∈ Z.

Under the model (4.2.1), one obtains conventional randomization inferences for Γ = 1,
but these are replaced by an interval of P -values or an interval of point estimates or an
interval of endpoints for a confidence interval for Γ > 1. The intervals become longer as
Γ increases, the interval of P -values tending to [0, 1] as Γ→∞, reflecting the familiar fact
that association, no matter how strong, does not logically entail causation. At some point,
the interval is sufficiently long to be uninformative, for instance including P -values that
would both reject and accept the null hypothesis of no effect. The question answered by a
sensitivity analysis is: How much bias in treatment assignment, measured by Γ, would need
to be present before the study becomes uninformative? For instance, how large would Γ
have to be to produce a P -value above α, conventionally α = 0.05?

An approximation to the upper bound on the P -value is obtained in the following way; see
Gastwirth et al. (2000) for detailed discussion and see Rosenbaum (2007) for its application
to Huber-Maritz M-tests. Assume H0 is true for the purpose of testing it, so that Rgij =

rCgij and qgij are fixed by conditioning on F . Write Tg =
∑Ig

i=1

∑ngi
j=1 Zgij qgij , so that

T =
∑G

g=1 Tg. Subject to (4.2.1) for a given Γ ≥ 1, find the maximum expectation, µΓg, of
Tg. Also, among all treatment assignment probabilities that satisfy (4.2.1) and that achieve

the maximum expectation µΓg, find the maximum variance, νΓg, of Tg. If T ≥
∑G

g=1 µΓg,
report as the upper bound on the P -value for T ,

1− Φ


 G∑
g=1

Tg − µΓg

 /

√√√√ G∑
g=1

νΓg

 , (4.2.2)

where Φ (·) is the standard Normal cumulative distribution. The bound is derived as
min (Ig)→∞ with some mild conditions to ensure that no one qgij dominates the rest, and
that the fixed scores qgij do not become degenerate as min (Ig) increases. For Γ = 1, this
yields a Normal approximation to a randomization P -value using T as the test statistic. If
treatment assignments were governed by the probabilities satisfying (4.2.1) that yield µΓg

and νΓg, then, under H0 and mild conditions on the qgij , the joint distribution of

{(T1 − µΓ1) /
√
νΓ1, . . . , (TG − µΓG) /

√
νΓG}T

would converge to a G-dimensional Normal distribution with expectation vector 0 and
covariance matrix I as min (Ig) → ∞. Simpler methods of proof and formulas apply in
simple cases, such as matched pairs; for instance, contrast §3 and §4 of Rosenbaum (2007).
These simpler methods of proof bound the distribution of T exactly, then approximate the
bounding distribution, whereas the general method is merely a large sample approximation
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to the upper bound on the P -value when T ≥
∑G

g=1 µΓg. Write µΓ = (µΓ1, . . . µΓG)T and
VΓ for the G×G diagonal matrix with gth diagonal element νΓg.

For various methods of sensitivity analysis in observational studies, see Egleston et al.
(2009), Gilbert et al. (2003), Hosman et al. (2010), and Liu et al. (2013).

4.2.3. Design Sensitivity and Bahadur Efficiency

Suppose that there is a treatment effect and there is no bias from the unobserved covariate
ugij , and call this the favorable situation. In an observational study, if an investigator
were in the favorable situation, then she would not know it, and the best she could hope
to say is that the results are insensitive to small and moderate biases Γ. The power of a
sensitivity analysis is the probability that she will be able to say this. More precisely, in
the favorable situation, the power of a level α sensitivity analysis at sensitivity parameter
Γ is the probability that (4.2.2) will be less than or equal to α when computed at the given
Γ.

As the sample size increases, there is a value, Γ̃, called the design sensitivity, such that the
power tends to 1 if Γ < Γ̃ and the power tends to zero if Γ > Γ̃, so Γ̃ is the limiting sensitivity
to unmeasured bias for a given favorable situation and test statistic; see Rosenbaum (2004);
Rosenbaum (2010), Zubizarreta et al. (2013) and Stuart and Hanna (2013). In a particular
favorable situation, for a specific Γ, the rate at which (4.2.2) declines to zero with increasing
sample size yields the Bahadur efficiency of the sensitivity analysis, and the efficiency drops
to zero at Γ = Γ̃; see Rosenbaum (2015).

4.3. Joint Bounds for Two or More Comparisons

4.3.1. Subgroup Comparisons

We are interested in K specified comparisons, k = 1, . . . ,K, among the G groups of matched
sets. By one comparison we mean a fixed nonzero vector ck = (c1k, . . . , cGk)

T of dimension
G with cgk ≥ 0 for g = 1, . . . , G, and we evaluate a comparison using the statistic Sk =∑G

g=1 cgk Tg. For instance, the comparison c1 = (1, . . . , 1)T yields the overall test in
§4.2.2. By replacing the scores qgij in §4.2.2 by scores q∗gij = cgk qgij , the bound for Sk is
obtained in parallel with (4.2.2). If groups 1, . . . , G/2 are matched sets of men and groups
G/2 + 1, . . . , G are matched sets of women, then the comparison c2 = (1, . . . , 1, 0, . . . , 0)T

confines attention to men, while the comparison c3 = (0, . . . , 0, 1, . . . , 1)T confines attention
to women. Perhaps an additional comparison c4 = (1, . . . , 1, 0, . . . , 0, 1, . . . , 1, 0, . . . , 0)T

would confine attention to people over the age of 65, and so on.

If the treatment effect for women were larger than the effect for men, the comparison,
c3, restricted to women might be insensitive to larger unmeasured biases than the overall
comparison, c1. Hsu et al. (2013) present an example in which a treatment to prevent
malaria is far more effective for children than for adults, so that only very large biases in
treatment assignment could explain away the ostensible benefits for children.
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4.3.2. Joint Evaluation of Subgroup Comparisons

Let C be the K × G matrix whose K rows are the cTk = (c1k, . . . , cGk), k = 1, . . . ,K.
Define θΓ = CµΓ and ΣΓ = CVΓCT , noting that ΣΓ is not typically diagonal. Write
θΓk for the kth coordinate of θΓ and σ2

Γk for the kth diagonal element of ΣΓ. Define

DΓk = (Sk − θΓk) /σΓk and DΓ = (DΓ1, . . . , DΓK)T . Finally, write ρΓ for the K × K
correlation matrix formed by dividing the element of ΣΓ in row k and column k′ by σΓk σΓk′ .
Subject to (4.2.1) under H0, at the treatment assignment probabilities that yield the µΓg

and νΓg, the distribution of DΓ is converging to a Normal distribution, NK (0,ρΓ), with
expectation 0 and covariance matrix ρΓ as min (Ig)→∞. Using this null distribution, the
null hypothesis H0 is tested using

DΓ max = max
1≤k≤K

DΓk = max
1≤k≤K

Sk − θΓk

σΓk
.

The α critical value κΓ,α for DΓ max solves

1− α = Pr (DΓ max < κΓ,α) = Pr

(
Sk − θΓk

σΓk
< κΓ,α, k = 1, . . . ,K

)
(4.3.1)

under H0. The multivariate Normal approximation to κΓ,α is obtained using the qmvnorm

function in the mvtnorm package in R, as applied to the NK (0,ρΓ) distribution; see Genz
and Bretz (2009). Notice that this approximation to κΓ,α depends upon Γ only through
ρΓ, which in turn depends upon Γ only through νΓg. The resulting approximate α critical
value κΓ,α for DΓ max is larger than Φ−1 (1− α) because the largest of K statistics DΓk has
been selected, and it reflects the correlations ρΓ among the coordinates of DΓ.

4.3.3. Behavior of the critical constant κΓ,α in a simple case

Consider a simple, balanced case under the null hypothesis H0, in which every matched set
is a matched pair, ngi = 2 for all g, i, and outcomes are continuously distributed and hence
untied with probability one. Additionally, there are L matched binary covariates, such as
gender, to be examined as potential effect modifiers making G = 2L groups of pairs, with
the same number of matched pairs in each group, I1 = · · · = IG = I, say. Suppose that, in
each group, Tg is Wilcoxon’s signed rank statistic computed from the I pairs in that group.

In this case, µΓg = {Γ/ (1 + Γ)} I
(
I + 1

)
/2 and νΓg =

{
Γ/ (1 + Γ)2

}
I
(
I + 1

) (
2I + 1

)
/6;

see (Rosenbaum, 2002b), §4.3.3. In this simple case, by symmetry, the correlation matrix
ρΓ does not depend upon Γ. There are K = 2L+ 1 comparisons, namely c1 = (1, . . . , 1)T

in §4.3.1 using all of the pairs, yielding T as in §4.2.2, plus two comparisons for each binary
covariate for half the pairs at the high and low levels of that covariate, for instance, c2,
c3 and c4 in §4.3.1, making a total of K = 2L + 1 tests. Because of the symmetry of
this situation, the correlation/covariance matrix ρΓ of DΓk has the simple form in Table
9; that is, DΓ1 has correlation 0.707 = 1/

√
2 with DΓk for k ≥ 2, the two consecutive

comparisons for the two categories of the same binary variable are uncorrelated, and all
other comparisons have correlation 0.5.

In this simple, balanced case, Table 10 shows the critical constant κΓ,α for α = 0.05 and L =
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0, 1, . . . , 15 potential effect modifiers, and K = 2L+1 = 1, 3, . . . , 31 tests. For comparison
in Table 10, κΓ,α is compared to Φ−1 (1− α/K), the critical constant obtained from the
Bonferroni inequality. For instance, the Bonferroni critical constant Φ−1 (1− α/K) for
K = 15 tests and L = 7 is 2.71, which is larger than the submax critical constant of 2.70
for K = 25 tests and L = 12.

4.3.4. Application in the NHANES Example

Table 11 performs the test in §4.3.2 for the NHANES data in §4.1.1 using the Prentice-
Wilcoxon statistic T of O’Brien and Fleming (1987). The row of Table 11 for Γ = 1
consists of Normal approximations to randomization tests, while the rows with Γ > 1
examine sensitivity to bias from nonrandom treatment assignment. For Γ = 1, the test
statistic DΓ max = 6.09 ≥ κΓ,α = 2.31, so Fisher’s hypothesis of no treatment effect would
be rejected at level α if the data had come from a randomized experiment with Γ = 1.
For Γ = 1, the maximum statistic is based on all 470 pairs, DΓ max = DΓ1; however,
DΓk ≥ κΓ,α = 2.31 for every subgroup, k = 1, . . . ,K = 7. At Γ = 1.4, the deviates DΓ2

and DΓ6 for females (k = 2) and the nonpoor (k = 6) no longer exceed κΓ,α = 2.31, and the
precise meaning of this is examined in more detail in §4.4. At Γ = 1.64, Fisher’s hypothesis
of no treatment effect is still rejected because the deviate DΓ3 for males exceeds κΓ,α = 2.31.
Although there are 275 pairs of women and 195 pairs of men, the strongest evidence, the
least sensitive evidence, of an effect of inactivity on survival is for men. The bottom two
panels of Figure 5 show the separate survival curves for men and women.

Table 11 is compactly and conveniently indexed by one parameter Γ. It is sometimes
helpful to give a two-parameter interpretation of this one parameter. In particular, the
longer life of active men in Table 11 is insensitive to an unmeasured bias of Γ = 1.64. In
a matched pair, Γ = 1.64 corresponds with an unobserved covariate that doubles the odds
of a longer life and increases the chance of inactivity by a factor of more than 6-fold; see
the amplification of Γ into two equivalent parameters ∆ and Λ in Rosenbaum and Silber
(2009a), where 1.64 = Γ = (∆Λ + 1) / (∆Λ) for ∆ = 2 and Λ = 6.33.

In §4.3.8, an alternative analysis of the NHANES data is presented using Breiman et al.
(1984)’s CART regression, as proposed by Hsu et al. (2013, 2015). The CART technique
is described in §4.3.7 where a simulation compares it to the submax method.

4.3.5. Design Sensitivity and Bahadur Efficiency

As in Rosenbaum (2012), it is easy to see that under an alternative hypothesis given by a
favorable situation — a treatment effect with no unmeasured bias — the design sensitivity
of DΓ max, say Γ̃max, is equal to the maximum design sensitivity Γ̃k of the K component

tests, Γ̃max = max
(

Γ̃1, . . . , Γ̃K

)
. Briefly, by the definition of design sensitivity, if Γ < Γ̃k,

then the probability that DΓk ≥ κ tends to 1 for every κ as min (Ig)→∞, so the probability
that DΓ max ≥ κΓ,α tends to 1 because DΓ max ≥ DΓk. Although there is a price to be paid
for multiple testing, that price does not affect the design sensitivity.

Define β1 = 1. Berk and Jones (1979) show that, if DΓk has Bahadur efficiency βk relative
to DΓ1 for k = 2, . . . ,K under some alternative hypothesis, then DΓ max has Bahadur
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efficiency βmax = max1≤k≤K βk. Berk and Jones call this “relative optimality” meaning
DΓ max is optimal among the fixed set DΓ1, . . . , DΓK . In other words, the correction for
multiplicity, κΓ,α > Φ−1 (1− α), does reduce finite sample power, but in a limited way, so
that the Bahadur efficiency is ultimately unaffected.

4.3.6. Power Calculations and Design Sensitivity in a Simple Case

Under an alternative hypothesis, if the Tg are independent and asymptotically Normal
with expectation µ∗g and variance ν∗g , then straightforward manipulations involving the
multivariate Normal distribution yield an asymptotic approximation to the power of tests
based on DΓ max or DΓk for fixed k.

Specifically, write θ∗k =
∑G

g=1 cgk µ
∗
g and σ∗k for the square root of the kth diagonal element

of the K × K covariance matrix Cdiag (ν∗1 , . . . , ν
∗
K) CT , so θ∗k is the expectation and σ∗k

is the standard deviation of Sk under the alternative; moreover, write ρ∗ for the K × K
correlation matrix computed from this covariance matrix. The approximate power is the
following probability computed under the alternative hypothesis,

1− Pr (DΓ max < κΓ,α) = 1− Pr

(
Sk − θΓk

σΓk
< κΓ,α, k = 1, . . . ,K

)

= 1− Pr

(
Sk − θ∗k
σ∗k

<
θΓk − θ∗k + κΓ,α σΓk

σ∗k
, k = 1, . . . ,K

)
. (4.3.2)

The Normal approximation to the joint distribution of the Tg under the alternative means
that the last term in (4.3.2) is approximately a particular quadrant probability for the
NK (0,ρ∗) distribution, and this may be calculated using the pmvnorm function in the
mvtnorm package in R. Under the same assumptions, the power of a test based on one fixed
DΓk is approximately

1− Pr

{
Sk − θ∗k
σ∗k

<
θΓk − θ∗k + Φ−1 (1− α) σΓk

σ∗k

}
, (4.3.3)

and this may be calculated using the standard Normal distribution.

Moreover, the design sensitivity Γ̃k for Sk =
∑G

g=1 cgkTg is the limit of values of Γ that

solve 1 =
(∑G

g=1 cgk µ
∗
g

)
/
(∑G

g=1 cgk µΓg

)
. That is, using Sk, as I →∞, the power tends

to 1 for Γ < Γ̃k and it tends to 0 for Γ > Γ̃k. This formula emphasizes the importance of
effect modification. For instance, with two groups, G = 2, say g = 0 and g = 1, if µ∗0 > µ∗1,
then the design sensitivity is largest with c0k = 1 and c1k = 0, so as I → ∞, there are
values of Γ such that the power of the overall test is tending to 0 while the power of a test
focused on the first subgroup is tending to 1. This will be quite visible in both theoretical
and simulated power calculations.

An oracle would use the one DΓk with the highest power. Lacking such an oracle, it is
interesting to compare DΓ max to: (i) the oracle, (ii) the one test, DΓ1, that uses all of the
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matched sets, as in §4.2.2.

To illustrate, consider the simple, balanced case in §4.3.3, and suppose that there are L
binary covariates as potential effect modifiers. We would like to compute power under
a favorable alternative, meaning that, unknown to the investigator, the treatment has an
effect and there is no unmeasured bias from ugij . Because the investigator cannot know
that the data came from the favorable situation, a sensitivity analysis is performed. A
simple favorable situation has Ig = I independent treated-minus-control pair differences in
every group g, where the pair differences are Normal with various expectations and variance
1. Then Wilcoxon’s signed rank statistic in group g, namely Tg, is asymptotically Normal
under the alternative hypothesis as I → ∞, and simple formulas in Lehmann (1975), §4.2
give the expectation and variance, µ∗g and ν∗g , of Tg, under this alternative. There are

GI = 2L · I pairs in total. Note that the K = 2L + 1 statistics, Sk, are each computed
from at least 2L−1 · I pairs, not from I pairs, and they are each sums of at least 2L−1 signed
rank statistics Tg.

Table 12 displays theoretical power for a level α = 0.05 test of no effect in several favorable
situations, that is, situations with a treatment effect and no bias. In Table 12, “one
covariate” refers to L = 1 binary covariate, making G = 2L = 2 groups, so that DΓ max is
the maximum of three statistics, namely the deviates for the signed rank statistics in groups
1 and 2 and for the sum of these two statistics. In Table 12, “five covariates” refers to
L = 5 binary covariates, making G = 2L = 32 groups, so that DΓ max is the maximum of
11 = 2×5 + 1 statistics, namely the deviates for 10 totals of 16 signed rank statistics at the
high and low levels of each covariate, and also for the sum of all 32 signed rank statistics.

The sample size in Table 12 is constant in each group, Ig = I, with total sample size
2016 = GI = 2L · I, so this is I = 1008 for L = 1 covariate and I = 63 for L = 5 covariates.
In both cases, L = 1 and L = 5, only the first covariate is a potential effect modifier, in
the sense that the expected pair difference only changes with the level of the first covariate,
being ζ0 for the 0 level and ζ1 for the 1 level. When ζ0 6= ζ1, there is effect modification.
With L = 5, four of the five covariates are simply a distraction that require DΓ max to make
a larger correction for multiple testing. The first situation in Table 12 has no treatment
effect, ζ0 = ζ1 = 0, so the reported values are the actual size of a level α = 0.05 test.
The second situation in Table 12 has a constant treatment effect, ζ0 = ζ1 = 0.5, so it is
a mistake to look for effect modification because there is none. The third situation in
Table 12 has slight effect modification, ζ0 = 0.6 > 0.4 = ζ1, although the average treatment
effect is 0.5 = (ζ0 + ζ1) /2 as in the second situation. The fourth situation in Table 12
has substantial effect modification, ζ0 = 0.5 > 0 = ζ1, so the average treatment effect is
0.25 = (ζ0 + ζ1) /2. The design sensitivity Γ̃g for Wilcoxon’s statistic Tg in group g is
3.17 if ζg = 1/2 and it is 1 if ζg = 0; see Rosenbaum (2010, p. 272) for details of this
calculation. For instance, in Table 12 with ζ0 = ζ1 = 0.5, the power of the test is below
the level α = 0.05 when Γ > Γ̃g = 3.17.

Table 12 compares the power of DΓ max to a single combined test DΓ1 that uses all pairs
and an oracle that performs a single test using all the pairs that have the largest value of
ζg. Obviously, the oracle is not a statistical procedure because it requires the statistician
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to know what she does not know, namely which groups have the largest ζg. From theory,
in the nonnull situations 2, 3 and 4, we know that DΓ max has the same design sensitivity
as the oracle, whereas the DΓ1 has lower design sensitivity than the oracle unless there
is no effect modification, ζ0 = ζ1, as in situation 2. In situation 2, all three procedures
have design sensitivity Γ̃ = 3.17, with negligible power for Γ = 3.2 > 3.17. In situation 3,
ζ0 = 0.6, and both DΓ max and the oracle have design sensitivity Γ̃ = 4.05 by focusing on
group 0 for covariate 1, and they have nonnegligible power at Γ = 3.4 < 4.05; however, DΓ1

has design sensitivity Γ̃ = 3.13 in situation 3, with negligible power at Γ = 3.2. In situation
4, ζ1 = 0, and both DΓ max and the oracle have design sensitivity Γ̃ = 3.17 by focusing on
group 0 for covariate 1; however, DΓ1 has design sensitivity Γ̃ = 1.70 in situation 3, with
negligible power at Γ = 2.8.

In the first situation in Table 12, all tests have the correct size for Γ = 1, and because
there is no actual bias in the favorable situation, they have size below 0.05 for Γ > 1.
In the second situation in Table 12, DΓ max pays a price in power in its search for effect
modification that is not there. In situations 3 and 4, DΓ max has much higher power than
the DΓ1 statistic, but it is behind the oracle, reflecting the price paid to discover the true
pattern of effect modification. For instance, at Γ = 2.8, with L = 5 binary covariates and
slight effect modification, ζ0 = 0.6 > 0.4 = ζ1, the statistic DΓ max has power .959, the
oracle has power 0.996, and DΓ1 has power 0.521.

4.3.7. Simulated Power and a Comparison with CART Groups

Table 13 describes simulated power for the same situation as the theoretical power in Table
12. Unlike Table 12, the simulation includes the power for a competing method for
matched pairs proposed by Hsu et al. (2015), in which groups are built from covariates
using the CART procedure of Breiman et al. (1984). There is no known power formula
for the CART method, so it cannot be included in Table 12. In this approach, the pairs
are initially ungrouped, and so lack a g subscript. However, the pairs have been exactly
matched for several covariates that may be effect modifiers. The absolute treated-minus-
control pair difference in outcomes in pair i, namely |Yi| = |Ri1 −Ri2|, is regressed on these
covariates using CART, and the leaves of the tree define the groups. The P -values with
the groups so-defined are combined using the truncated product of P -values proposed by
Zaykin et al. (2002). The truncated product is analogous to Fisher’s product of P -values,
except P -values above a prespecified truncation point, ς, enter the product as 1, so the
two methods are the same for ς = 1. In Table 12, ς = 1/10. Unlike DΓ max, there is no
guarantee that the CART procedure will equal the oracle in terms of design sensitivity. In
other words, we expect DΓ max to win in sufficiently large samples, tracking the oracle as
min (Ig)→∞; however, DΓ max may not win in the finite samples in Table 13.

Table 13 provides a check on the theoretical power formulas that yielded Table 12, and
in general the two tables are in agreement. The CART procedure has higher power than
DΓ max when there is no effect modification in situation 2, ζ0 = ζ1 = 0.5, because the CART
procedure typically produces a single group in this situation. The CART procedure has
lower power than DΓ max when there is slight effect modification in situation 3, ζ0 = .6 >
.4 = ζ1, perhaps because the CART procedure fails to locate the slight effect modification.
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In situation 4, with ζ0 = .5 > 0 = ζ1, the move from L = 1 covariate to L = 5 covariates
reduces the power of both DΓ max and the CART procedure, but it does more harm to
DΓ max. Presumably, DΓ max pays a higher price for multiple testing with L = 5 than with
L = 1 consistent with Table 10, while the CART procedure has more difficulty finding the
right groups with L = 5 than with L = 1.

There is no uniform winner in Table 13. However, when compared to the CART method,
we expect DΓ max to gradually catch up, or to move ahead, or to stay ahead as min (Ig)→∞
because it has the best design sensitivity; therefore, relative performance depends upon the
sample size.

4.3.8. Use of CART in the Example

As an alternative to the analysis in §4.3.4, consider using the CART method in §4.3.7,
implemented using the rpart package in R. In an rpart tree, the number of splits is
controlled by a complexity parameter that defaults to the value 0.01. Using the default
settings in rpart, the CART tree is a single group of all 470 pairs. At Γ = 1.64, the single
group test has deviate DΓ1 = 2.29 and one-sided P -value bound of 1 − Φ (2.29) = 0.011.
If the complexity parameter in rpart is reduced below 0.0062, then the CART tree splits
on sex. Hsu et al. suggest combining the P -value bounds from the leaves of the tree
using Zaykin et al. (2002)’s truncated product of P -values, an extension of Fisher’s method
of combining P -values. At Γ = 1.64, if the two P -value bounds for females and males,
1 − Φ (0.97) = 0.166 and 1 − Φ (2.32) = 0.010, are combined using the truncated product
with truncation 0.1, then the combined P -value bound is 0.028. In this one example, the
two analyses give fairly similar impressions.

4.4. Simultaneous Inference and Closed Testing

Strictly speaking, the statisticDΓ max is a test of a global null hypothesis, specifically Fisher’s
hypothesis H0 of no treatment effect in the study as a whole. In previous sections, the cgk
are either 0 or 1, and the kth comparison defines a subpopulation Sk as those groups with
cgk = 1, that is, Sk = {g : cgk = 1}, for instance, the subpopulation of men. We are, of
course, interested in the hypothesis, say Hk, that asserts there is no effect in subpopulation
Sk, say no effect in the subpopulation of men. We would like to test all K hypotheses Hk,
k = 1, . . . ,K, strongly controlling the family-wise error rate at α in the presence of a bias
of at most Γ. We may do this with the closed testing method of Marcus et al. (1976).

Define HI for I ⊆ {1, . . . ,K} to be the hypothesis that there is no treatment effect in the
union of the subpopulations Sk, k ∈ I. For instance, in Table 11, the hypothesis H{2,5}
says that there is no effect for females, k = 2, and no effect for smokers, k = 5. If H{2,5}
were true, there might nonetheless be an effect for male nonsmokers. If the goal were to
test HI alone at level α in the presence of a bias of at most Γ, then this could be done using
DΓI = maxk∈I DΓk, which is a test of the same form as DΓ max, whose approximate critical
constant from (4.3.1), say κΓ,α,I , must be recalculated using a |I|-dimensional multivariate
Normal distribution. Of course, DΓI ≥ DΓJ whenever J ⊂ I, so κΓ,α,J ≤ κΓ,α,I ; that
is, the correction for multiple testing is less severe when fewer comparisons are made. In
particular, κΓ,α,I ≤ κΓ,α for all I ⊆ {1, . . . ,K}.
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The closed testing method of Marcus et al. (1976) rejects HI at level α in the presence of a
bias of at most Γ if it rejects HK for all K ⊇ I, that is, if DΓK ≥ κΓ,α,K for all hypotheses K
that contain I. Closed testing has several attractive properties. In general, closed testing
strongly controls the family-wise error rate, as demonstrated by Marcus et al. (1976). The
extension of this property to sensitivity analyses is straightforward; see Rosenbaum and
Silber (2009b), §4.4. That is, no matter which hypotheses are true or false, the probability
that closed testing falsely rejects at least one true HI is at most α whenever the bias is
at most Γ. There is an additional property of closed testing that is specific to sensitivity
analyses. Use of the Bonferroni inequality in sensitivity analysis is conservative in a way
that closed testing is not conservative; see Rosenbaum and Silber (2009b) and Fogarty and
Small (2016).

There is a short-cut that simplifies closed testing in this context using the inequality κΓ,α,I ≤
κΓ,α for all I ⊆ {1, . . . ,K}, noted above. Specifically, DΓK = maxk∈KDΓk ≥ DΓk for all
k ∈ K and yet κΓ,α ≥ κΓ,α,K, so whenever DΓk ≥ κΓ,α it follows that DΓK ≥ κΓ,α,K
for all hypotheses K with k ∈ K. This means that closed testing will reject Hk whenever
DΓk ≥ κΓ,α, and may reject Hk in other cases as well. For instance, in Table 11, at Γ = 1.5,
we may reject H3 and H7 without calculating κΓ,α,K because 2.77 = DΓ3 ≥ κΓ,α = 2.31 and
2.45 = DΓ7 ≥ κΓ,α = 2.31. That is, at Γ = 1.5, closed testing rejects the null hypothesis of
no effect on men and the hypothesis of no effect on the poor.

Consider Γ = 1.4 in Table 11. The short-cut reject in all groups except females (k = 2) and
nonpoor (k = 6), so that, without further computation, DΓK ≥ κΓ,α,K for every nonempty K
except {2, 6}, {2}, and {6}. The short-cut does not apply in these cases, so κΓ,α,K must be
computed. Using the 2×2 submatrix of ρΓ for (DΓ2, DΓ6), we determine κΓ,α,{2,6} = 1.92,
and trivially for K = {2} and K = {6} the critical constant is κΓ,α,K = 1.64. Because the
short-cut has rejected every HI with {2, 6} ⊂ I, we compare DΓ{2,6} = 2.07 to κΓ,α,{2,6} =
1.92 and therefore reject H{2,6}. Continuing, we compare DΓ2 = 1.86 and DΓ6 = 2.07 to
κΓ,α,K = 1.64, and we reject both H2 and H6. So, at Γ = 1.40, some of the DΓk are below
κΓ,α = 2.31, but nonetheless closed testing rejects all seven hypotheses.

It is possible, in principle, to strengthen closed testing when there are logical implications
among the hypotheses, H1, . . . ,HK , as is true here. Here, strengthening means changing
the procedure so that it still controls the family-wise error rate but it may, from time to
time, reject an additional hypothesis not rejected by closed testing. For instance, Holm
(1979) method is the application of closed testing using the Bonferroni inequality, and
Shaffer (1986) strengthened Holm’s method when applied to the analysis of variance using
logical implications among hypotheses. What are the logical implications in Table 11?
Recall that the hypotheses assert that no one in certain subpopulations was affected by the
treatment. If any of H2, . . . ,HK is false, then H1 is false. Similarly, if H5 is false, so
at least some smokers are affected, then either H2 or H3 or both must be false, because
every smoker is either male or female. Bergmann and Hommel (1988) discuss the nontrivial
general steps required to strengthen a closed testing procedure based on logical implications
among hypotheses.
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4.5. Aids to Interpreting Subgroup Comparisons

The analysis in §4.4 yields indications of a beneficial effect of physical activity on survival
in each subpopulation, but these indications are insensitive to larger biases for men than
for women. In the second and third panel of Figure 5, the men are matched for observed
covariates, so paired men are similar, as are paired women. However, the men may differ
from the women; so, it is useful to examine the observed covariates within subgroups, as
is done in Table 14. The men and women are of similar age, but the men are more likely
than the women to smoke, drink alcohol, be working, be married, and they have somewhat
less education.

The deviates, DΓk, in Table 11 may be affected by effect modification, but they are also
affected by differing sample sizes. For instance, the deviate for the entire population, DΓ1,
is based on 470 pairs, whereas the deviate for women, DΓ2, is based on 275 pairs of women,
and the deviate for men, DΓ3, is based on 195 pairs of men. If there were an effect but
there were no effect modification — that is, if men and women experienced the same effect
of physical inactivity — then we might reasonably expect DΓ1 to be larger than DΓ2 and
DΓ3 simply because of the reduced sample size in subpopulations. To separate the sample
size and insensitivity to unmeasured bias, a relevant point estimate would be helpful.

It is possible to produce a consistent point estimate of the design sensitivity, Γ̃k, for the kth
statistic. Sample size does not affect the design sensitivity, as it is the limit as the sample
size increases without bound. Differing sample sizes alone do not predict an increase or
a decrease in the estimated design sensitivity, in contrast with the effect of sample size on
the standardized deviates, DΓk. This estimate of Γ̃k assumes that there is a treatment
effect and no unmeasured bias, and then estimates the limiting sensitivity to unmeasured
bias as the sample size in this subpopulation increases. In general, Γ̃k depends upon the
choice of test statistic. In the example, this is the Prentice-Wilcoxon statistic for censored
paired survival times, because follow-up ended in 1992 for everyone. Given that the end of
follow-up is a fixed date, it is safe to assume that the treatment, physical inactivity, did not
affect the length of follow-up. The estimate of Γ̃k solves for Γ in the equation DΓk = 0 or
equivalently in the equation Sk−θΓk = 0. For all 470 pairs, the estimate of Γ̃1 is 2.32. For
the 275 pairs of women, the estimate of Γ̃2 is 1.96. For the 195 pairs of men, the estimate of
Γ̃3 is 2.91. In the example, both the deviates DΓk and the estimates of Γ̃k suggest there is
greater insensitivity to bias for men, and that this is not a consequence of changing sample
sizes. In contrast, if the paired survival times for men and for women were independent
draws from the same censored bivariate population, then we would expect DΓ2 and DΓ3 to
be smaller than DΓ1 because of the reduced sample size, but we would have Γ̃1 = Γ̃2 = Γ̃3,
so the three point estimates would estimate the same quantity.

4.6. Pairs or Sets that Are Not Exactly Matched for Some Covariates

To avoid confusing a main effect of gender and effect modification involving gender, we
search for effect modification in pairs or matched sets that are exactly matched for gender,
say in pairs of men, or in pairs of women. In the example in §4.1.1, all pairs were exactly
matched for gender, smoking and the indicator of an income above twice the poverty level.
With more potential effect modifiers, it may not be possible to match exactly for every
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potential effect modifier. What can be done in this case?

If a matched pair were exactly matched for gender, it seems reasonable to use that pair in
an analysis that splits on gender, even if the pair is not exactly matched for other potential
effect modifiers. Although there may be only a few pairs exactly matched for twenty
covariates, it will often be the case that there are many pairs exactly matched for the first
covariate, say gender, ignoring the rest, many pairs exactly matched for the second covariate
ignoring the rest, and so on. It is straightforward to compare all the pairs of two men, all
the pairs of two women, all the pairs of two smokers, etc. It simply requires a small change
in the comparison weights, cgk.

Refine the grouping of matched pairs or sets so that there are groups containing only men,
groups containing only women, and groups containing matched sets that have both men and
women. Then define the comparison weights for men so that a group g of sets containing
only men has cgk = 1 and all other groups have cgk = 0. Define the comparison for women
analogously. In this way, there is a comparison for men and a comparison for women, both
comparisons use only sets that are exactly matched for gender, some pairs not matched for
gender do not get used when analyzing gender, but some of these unused matched sets do
get used in other comparisons, say the comparison of smokers.

4.7. Summary and Discussion

4.7.1. Using the submax method to study effect modification and its consequences

Effect modification is important in observational studies for several reasons.

If there were effect modification, then we expect to report firmer causal conclusions in
subpopulations with larger effects. That is, we expect the design sensitivity and the power
of the sensitivity analysis to be larger, so we expect to report findings that are insensitive to
larger unmeasured biases in these subpopulations. Such a discovery is important in three
ways. First, the finding about the affected subpopulation is typically important in its own
right as a description of that subpopulation. Second, if there is no evidence of an effect in
the complementary subpopulation, then that may be news as well. Third, if a sensitivity
analysis convinces us that the treatment does indeed cause effects in one subpopulation,
then this fact demonstrates the treatment does sometimes cause effects, and it makes it
somewhat more plausible that smaller and more sensitive effects in other subpopulations
are causal and not spurious. This is analogous to the situation in which we discover that
heavy smoking causes lots of lung cancer, and are then more easily convinced that second-
hand smoke causes some lung cancer, even though the latter effect is much smaller and
more sensitive to unmeasured bias.

Conversely, it can be useful to discover evidence of a treatment effect of the same sign in
every major subpopulation. We often worry whether the findings of an observational study
in one population can generalize to second population that was not studied. Will a study
done in Georgia generalize to Kansas where no study was done? If the second population
were simply a different mixture of the same types of people — e.g., in Table 11, a different
mixture of men and women, smokers and nonsmokers, rich and poor — then finding strong
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evidence of a nontrivial effect of constant sign in all subpopulations gives us some reason
to hope that the direction of effect found in the first population will reappear in the second
population.

The simulation contrasted the new submax method with another method using groups
formed by CART. One big difference between the two methods is that there is more theory
concerning the performance of the submax method, including power, design sensitivity and
Bahadur efficiency. The submax method achieves the largest design sensitivity of the
subgroups, but there is no similar claim for the CART method. In the simulation, the
CART method was cautious about forming groups, so it failed to capitalize on slight effect
modification, with a loss of power in situation 3; however, that also meant that CART
rarely paid a price for multiple testing when there was no effect modification in situation
2. One might tinker with the settings of the CART procedure or the simulation and
produce a different result, but that is part of the attraction of the submax method: it
has desirable properties that hold in general, without tinkering. In principle, the CART
method might discover complex patterns of effect modification that the submax procedure
does not consider. More practically, one could combine the two approaches, using the
submax procedure with a combination of groups defined a priori, like gender, and a few
groups suggested by CART, say poor, nonsmoking, men; however, we have not studied such
a joint procedure, in part because it could only be evaluated by simulation.

4.7.2. Other Uses of the Submax Method

Although we have discussed the submax method in §4.3 in the context of effect modification,
the same mathematical calculation is useful in other contexts. The method looks at K
specified comparisons, k = 1, . . . ,K, among the G groups of matched sets using weights
ck = (c1k, . . . , cGk)

T of dimension G with cgk ≥ 0 for g = 1, . . . , G. The ck need not
pick out subpopulations defined by measured covariates, such as men and women. Two
examples will be described briefly. Essentially, the examples distinguish groups of matched
sets, but the groups were not formed using the observed covariates, and effect modification
is not the concern.

If the treated condition were recorded in G increasing doses or intensities, then we could
group matched sets with multiple controls into G groups of sets based on the dose given to
the one treated subject in that matched set. The quality or relevance of the dose information
may be uncertain. Consider three statistics defined by the comparisons c1 = (1, 1, . . . , 1)T ,
c2 = (1, 2, . . . , G)T and c3 = (0, 0, . . . , 0, 1, 1, . . . , 1)T . The comparison c1 uses all the
matched sets with equal weights, ignoring the doses. The comparison c2 gives positive
weight to all sets, but gives larger weight to sets with higher doses. The comparison c3

confines attention to sets that received high doses. See Rosenbaum (2010) for calculations
of design sensitivities for statistics using doses in different ways. The submax method would
use all three statistics, reporting the least sensitive result, adjusting for multiple testing in
a manner that reflects the high correlation between three tests that use the same data in
different ways.

In an effort to provide information about unmeasured biases, Zubizarreta et al. (2012)
produced two types of matched pairs: (i) pairs matched for the hospital providing the
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treatment in hospitals that used both the treatment and the control, and (ii) pairs with
treated and control patients from different hospitals, one hospital that almost invariably
used treatment and another hospital that almost invariably used the control. The first
type of pair controls unmeasured covariates that are constant within each hospital, say
the hospital’s nurse-to-bed ratio. However, in the first type of pair, physicians looked at
patients, giving treatment to some patients and control to others, so the first type of pair
might be affected by selection bias. In the second type of pair, each patient received the
treatment that the hospital almost invariably provides, reducing concern about the selection
of individuals for treatment, but the hospitals themselves and the communities they serve
may differ in unmeasured ways. In this case, there are G = 2 groups of pairs. The
comparison c1 = (1, 1)T uses all pairs, c2 = (1, 0)T uses type (i) pairs, and c3 = (0, 1)T uses
type (ii) pairs. The submax method would do all three tests with multiple comparisons,
as in §4.4, taking account of the high correlation between comparison c1 and each of the
other comparisons.

Table 8: Covariate balance in 470 matched, treatment-control pairs. The standardized
difference (Std. Dif) is the difference in means before and after matching in units of the
standard deviation before matching.

Covariate Mean Std. Dif.
Covariate Treated Control P -value Before After

Age 61.7 61.7 0.985 0.283 0.001
Male 0.415 0.415 1.000 -0.245 0.000
White 0.789 0.823 0.187 -0.252 -0.093

Poverty 0.460 0.460 1.000 0.377 0.000
Former Smoker 0.170 0.145 0.283 -0.142 0.064
Current Smoker 0.360 0.360 1.000 -0.141 0.000
Working last three months 0.247 0.247 1.000 -0.589 0.000
Married 0.621 0.666 0.153 -0.350 -0.099
Dietary Adequacy 3.254 3.379 0.143 -0.303 -0.098

Education

≤ 8 0.494 0.466 0.397 0.309 0.057
9-11 0.183 0.204 0.410 -0.097 -0.053
High School 0.166 0.172 0.794 -0.193 -0.016
Some College 0.066 0.070 0.796 -0.158 -0.015
College 0.085 0.085 1.000 0.038 0.000
Missing 0.006 0.002 0.317 0.004 0.054

Alcohol Consumption

Never 0.406 0.432 0.428 0.189 -0.053
< 1 time per month 0.198 0.185 0.619 0.016 0.032
1-4 times per month 0.172 0.153 0.427 -0.125 0.048
2+ times per week 0.089 0.089 1.000 -0.069 0.000
Just about everyday/everyday 0.134 0.140 0.776 -0.073 0.000

50



Table 9: Correlation and covariance matrix ρΓ under H0 for DΓk for all Γ ≥ 1 in the
balanced situation, using Wilcoxon’s statistic, with L = 3 potential effect modifiers.

DΓ1 DΓ2 DΓ3 DΓ4 DΓ5 DΓ6 DΓ7

DΓ1 1.000 0.707 0.707 0.707 0.707 0.707 0.707
DΓ2 0.707 1.000 0.000 0.500 0.500 0.500 0.500
DΓ3 0.707 0.000 1.000 0.500 0.500 0.500 0.500
DΓ4 0.707 0.500 0.500 1.000 0.000 0.500 0.500
DΓ5 0.707 0.500 0.500 0.000 1.000 0.500 0.500
DΓ6 0.707 0.500 0.500 0.500 0.500 1.000 0.000
DΓ7 0.707 0.500 0.500 0.500 0.500 0.000 1.000

Table 10: The critical constant κα for L = 0, . . . , 15 balanced binary effect-modifiers, using
Wilcoxon’s statistic, yielding K = 2L + 1 correlated tests with α = 0.05. For comparison,
the final column gives the critical constant obtained using the Bonferroni inequality, testing
K one-sided hypotheses at family-wise level α = 0.05.

L K = 2L+ 1 κα Bonferroni

0 1 1.64 1.64
1 3 2.03 2.13
2 5 2.20 2.33
3 7 2.32 2.45
4 9 2.40 2.54
5 11 2.46 2.61
6 13 2.51 2.67
7 15 2.55 2.71
8 17 2.59 2.75
9 19 2.62 2.79
10 21 2.65 2.82
11 23 2.67 2.85
12 25 2.70 2.88
13 27 2.72 2.90
14 29 2.74 2.92
15 31 2.75 2.95
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Table 11: Seven standardized deviates from Wilcoxon’s test, DΓk, k = 1, . . . ,K = 7, testing
the null hypothesis of no effect and their maximum, DΓmax, where the critical value is
dα = 2.31 for α = 0.05. Deviates larger than dα = 2.31 are in bold.

k 1 2 3 4 5 6 7

Subpopulation All Female Male Non-smoker Smoker > 2× PL ≤ 2× PL Maximum

DΓ1 DΓ2 DΓ3 DΓ4 DΓ5 DΓ6 DΓ7 DΓmax

Sample-size 470 275 195 301 169 254 216

Γ = 1.00 6.09 3.79 4.88 4.67 3.92 3.88 4.71 6.09
Γ = 1.20 4.66 2.73 3.91 3.52 3.06 2.89 3.68 4.66
Γ = 1.40 3.48 1.86 3.11 2.57 2.36 2.07 2.83 3.48
Γ = 1.60 2.47 1.11 2.44 1.76 1.76 1.37 2.10 2.47
Γ = 1.64 2.29 0.97 2.32 1.62 1.65 1.24 1.97 2.32
Γ = 1.65 2.24 0.94 2.29 1.58 1.63 1.21 1.94 2.29

Table 12: Theoretical power for Wilcoxon’s signed rank test in subgroup analyses using (i)
the maximum statistic DΓ max, (ii) an oracle that knows a priori which group has the largest
effect (Oracle), and (iii) one statistic that sums all Wilcoxon statistics, thereby using all
the matched pairs, DΓ1.

Situation One covariate, L = 1 Five covariates, L = 5

Γ DΓ max Oracle DΓ1 DΓ max Oracle DΓ1

(ζ0, ζ1) = (0, 0) 1 0.050 0.050 0.050 0.050 0.050 0.050
1. No effect. Values 1.01 0.035 0.033 0.033 0.035 0.033 0.033
are the size test. 1.2 0.000 0.000 0.000 0.000 0.000 0.000

1.3 0.000 0.000 0.000 0.000 0.000 0.000

(ζ0, ζ1) = (0.5, 0.5) 1 1.000 1.000 1.000 1.000 1.000 1.000
2. Constant effect. 2.8 0.579 0.671 0.671 0.460 0.601 0.601
Every subgroup 3.0 0.177 0.218 0.218 0.126 0.167 0.167
has effect 0.5. 3.2 0.030 0.030 0.030 0.020 0.019 0.019

3.4 0.004 0.002 0.002 0.002 0.001 0.001

(ζ0, ζ1) = (0.6, 0.4) 1 1.000 1.000 1.000 1.000 1.000 1.000
3. Slight effect 2.8 0.991 0.998 0.593 0.959 0.996 0.521
modification, 3.0 0.928 0.971 0.161 0.791 0.959 0.121
ζ0 > ζ1 3.2 0.733 0.855 0.018 0.492 0.816 0.011

3.4 0.446 0.615 0.001 0.220 0.554 0.001

(ζ0, ζ1) = (0.5, 0) 1 1.000 1.000 1.000 1.000 1.000 1.000
4. Effect confined 2.8 0.268 0.418 0.000 0.113 0.369 0.000
to a subgroup. 3.0 0.071 0.144 0.000 0.020 0.117 0.000
ζ1 = 0 3.2 0.013 0.033 0.000 0.002 0.025 0.000

3.4 0.002 0.006 0.000 0.000 0.004 0.000
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Table 13: Simulated power (number of rejections in 10,000 replications) for Wilcoxon’s
signed rank test in subgroup analyses using (i) the maximum statistic DΓ max, (ii) groups
built by CART, (iii) an oracle that knows a priori which group has the largest effect (Oracle),
and (iv) one statistic that sums all of the Wilcoxon statistics, thereby using all matched
pairs, DΓ1.

One covariate, L = 1 Five covariates, L = 5

µ = (µ0, µ1) Γ DΓ max CART Oracle DΓ1 DΓ max CART Oracle DΓ1

(0,0) 1 540 525 525 525 515 504 503 503
1.01 382 344 344 344 345 329 328 328
1.1 7 1 1 1 7 7 7 7
1.2 0 0 0 0 1 0 0 0
1.3 0 0 0 0 0 0 0 0

(0.5, 0.5) 1 10000 10000 10000 10000 10000 10000 10000 10000
2.8 5804 6713 6713 6713 4581 6014 6014 6014
3.0 1643 2104 2101 2101 1215 1685 1681 1681
3.2 279 315 313 313 158 187 183 183
3.4 30 13 12 12 11 10 9 9

(0.6, 0.4) 1 10000 10000 10000 10000 10000 10000 10000 10000
2.8 9913 7073 9977 6058 9589 6584 9955 5348
3.0 9264 3788 9701 1657 7975 3471 9588 1242
3.2 7387 2313 8565 173 5071 2212 8208 121
3.4 4603 1535 6265 6 2245 1363 5679 8

(0.5, 0) 1 10000 10000 10000 10000 10000 10000 10000 10000
2.8 2687 1908 4195 0 1105 1626 3686 0
3.0 678 514 1476 0 174 398 1139 0
3.2 120 100 320 0 23 67 208 0
3.4 16 14 47 0 3 10 31 0
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Table 14: Covariate means in 275 pairs of women and 195 pairs of men.
Covariate Mean

Female Male

Treated Control Treated Control

Sample size 275 275 195 195

Age 61.2 61.0 62.5 62.7
Male 0.000 0.000 1.000 1.000
White 0.775 0.822 0.810 0.826

Education
0-8 0.476 0.429 0.518 0.518
9-11 0.211 0.211 0.144 0.195
High School 0.185 0.207 0.138 0.123
Some College 0.069 0.084 0.062 0.051
College 0.051 0.069 0.133 0.108
Missing 0.007 0.000 0.005 0.005

Poverty 0.476 0.476 0.436 0.436
Former Smoker 0.116 0.080 0.246 0.236
Current Smoker 0.273 0.273 0.482 0.482
Working last three months 0.193 0.189 0.323 0.328
Married 0.502 0.553 0.790 0.826
Dietary Adequacy 3.045 3.139 3.549 3.716

Alcohol Consumption
<1 time per month 0.222 0.222 0.164 0.133
1-4 times per month 0.116 0.135 0.251 0.179
2+ times per week 0.051 0.069 0.144 0.118
Just about everyday/everyday 0.084 0.084 0.205 0.221
Never 0.527 0.491 0.236 0.349
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Figure 5: Survival in inactive and matched active groups following the NHANES survey.
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CHAPTER 5 : Estimating the Malaria Attributable Fever Fraction Accounting for
Parasites Being Killed by Fever and Measurement Error

5.1. Introduction

Malaria is a mosquito-borne infectious disease caused by a parasite. In many tropical re-
gions, malaria is a giant-killer of children, imposes financial hardship on poor households,
and holds back economic growth and improvements in living standards (World Health Orga-
nization, 2011). The most characteristic clinical feature of malaria is fever (Warrell, 1993).
The malaria attributable fever fraction (MAFF) for a group of people is the proportion of
fevers in the group of people that are attributable to (caused by) malaria. We will consider
the MAFF for children in sub-Saharan Africa, the population hit hardest by malaria (World
Health Organization, 2011). The MAFF is an important public health quantity for several
reasons that include

• The MAFF provides information about the public health burden from malaria and
how much resources should be devoted to combatting malaria compared to other
diseases (Mabunda et al., 2009).

• The MAFF is an essential input to the prevalence of malaria attributable fevers
(PMAF); the PMAF equals MAFF × prevalence of fevers. Changes in the PMAF
over time provide information about the effects of public health programs that combat
malaria (Koram and Molyneux, 2007).

• For planning the sample size for a clinical trial of an intervention against malaria,
the MAFF is an essential input (Halloran et al., 1999; Smith, 2007). For example,
suppose we are planning a trial of duration one year and want to have 80% power
for an intervention that halves malaria attributable fever but has no effect on other
sources of fever, and in the population of interest, the average child suffers from
10 fevers per year. The needed sample size depends on the MAFF and is about
n = (800, 1325, 2500) in this example if the MAFF is (0.5, 0.4, 0.3) respectively.

• For clinicians treating a child suffering from fever and needing to decide how to prior-
itize providing antimalarial treatment vs. treatments for other possible sources of the
fever, knowing the MAFF conditional on the child’s symptoms (e.g., the intensity of
the fever and the child’s parasite density) is a valuable input (Koram and Molyneux,
2007). In particular, letting ‘MAFF | Symptoms’ denote the MAFF conditional on
the child’s symptoms, a doctor would want to treat a patient with an anti-malarial if
(Expected gain in utility from treating child at time t with an anti-malarial if she has
a malaria attributable fever vs. not treating)×(MAFF | Symptoms) > (Expected loss
in utility from treating child at time t with an anti-malarial if she has a fever that is
not malaria attributable fever vs. not treating) × [1-(MAFF | Symptoms)].

The MAFF could be estimated from a survey by a usual ratio estimator if it was easy to
determine whether or not a fever was attributable to malaria parasites. However, fevers
caused by malaria parasites often cannot be distinguished on the basis of clinical features
from fevers caused by other common childhood infections such as the common cold, pneu-

56



monia, influenza, viral hepatitis or typhoid fever (Hommel, 2002; Koram and Molyneux,
2007). One aid to deciding whether a fever is caused by malaria parasites or some other
infection is to measure the density of malaria parasites in the child’s blood. However, in
areas where malaria is highly endemic, children can develop partial immunity to the toxic
effects of the parasites and can tolerate high parasite densities without developing fever
(Marsh, 2002; Boutlis et al., 2006). Consequently, even if a child has a fever and has a high
parasite density, the fever might still be caused by another infection. In summary, it cannot
be determined with certainty whether a given child’s fever is malaria attributable, making
estimating the MAFF challenging.

In this paper, we make two contributions to estimating the MAFF. First, we provide an
analysis of the assumptions needed for existing estimators of the MAFF to be consistent and
show that these assumptions are not plausible. Although there has been numerous previous
work on estimating the MAFF (Greenwood et al. (1987), Smith et al. (1994), Vounatsou
et al. (1998), Qin and Leung (2005), Wang and Small (2012)), estimators have been proposed
without clearly defining the estimand. We use the potential outcomes framework to clearly
define the estimand and make clear the causal assumptions on which the consistency of these
previous estimators rest. These assumptions include that non-malaria attributable fevers
do not kill parasites and that there is no measurement error of a certain type in measuring
parasite density. We discuss evidence that these assumptions are not plausible in most
settings, and show that existing MAFF estimation methods are biased under plausible
violations of the assumptions.

The second major contribution of our paper is that we develop a consistent estimator of the
MAFF that allows for parasites being killed by fever and measurement error in parasite den-
sity. Our novel estimation method extends the g-modeling method for solving deconvolution
problems (Efron, 2016) to the setting of malaria survey data, accounting for parasites being
killed by fever and measurement error. Specifically, survey data on malaria can be divided
into two groups, the children with fever (the febrile group) and the children without fever
(the afebrile group). The group with fever is a mixture of two components: children with a
fever that is malaria attributable and children with a fever that is not malaria attributable.
The group without fever can be used as a training sample that provides information about
the distribution of parasite densities of the latter mixture component. The main idea of our
method is to recover the distributions of the parasite densities of the mixture components
before fever killing and measurement error by assuming that the mixture components are
in flexible exponential families and solving the deconvolution problem. Using simulation
studies, we show that our proposed method produces approximately unbiased estimates of
the MAFF when the magnitude of fever killing and the measurement error mechanism are
correctly specified. We apply our method to make inferences about the MAFF for a study
area in Kilombero, Tanzania.

The rest of this article is organized as follows. In Section 5.2, we define the MAFF and state
critical assumptions in the potential outcome framework. We also reveal the relationship
between the potential outcome framework MAFF and the existing estimators of the MAFF
based on observable quantities under the assumptions. Also, we describes possible violations
of the assumptions that there is no fever killing and no measurement error. Also, the
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impact of a violation of these assumptions on current estimation methods is investigated.
In Section 5.3, we develop our new estimation method, the maximum likelihood estimation
method using the g-modeling approach. Section 5.4 shows the performance of our proposed
method with simulation studies and Section 5.5 shows the application to the malaria data
in Tanzania with a sensitivity analysis. Section 5.6 includes summary and discussion.

5.2. Malaria Attributable Fever Fraction

5.2.1. Potential Outcome Definition of the MAFF

To define a fever as being caused by (i.e., attributable to) malaria parasites, we use the
Neyman-Rubin potential outcomes framework for causal inference (Neyman, 1923, 1990).

For each child i and each possible parasite density level d, the potential outcome Y
(d)
i is 1

or 0 according to whether or not the child would have fever if an intervention set the child’s
parasite density level to d (the intervention does not need to be specified but need to satisfy
Assumption 2 which we will discuss below; for example, an intervention can be malaria
prevention program such as antimalarial drugs, vaccines and control of the mosquitoes that
carry the malaria parasites). Each child has many potential outcomes, but we observe

only one potential outcome, Y obs
i ≡ Y

(Di)
i , where Di is the child’s actual parasite density

(we are only able to measure Di with some error; see Section 5.2.2). In addition to the
actually observed outcome Y obs

i , we consider two latent variables, called Y nmi
i and Y mi

i ,
that represent a fever caused by non-malarial infections and a fever caused by malarial
infections respectively. The observed fever Y obs

i is represented as Y obs
i = max{Y nmi

i , Y mi
i },

which means that if a fever is observed, either non-malarial infections or malarial infections
or both triggered the fever. That is, the way malaria and non-malaria infections affect a
fever is like parallel circuits. Interestingly, Y nmi

i can be understood by using the potential

outcome Y
(0)
i that is the outcome under an intervention that eliminates malaria parasites

from child i’s body. In the absence of malaria parasite in blood, the only possible source
of fever were non-malarial infections. Therefore, when child i had a non-malarial fever (i.e,
Y nmi
i = 1), if an intervention eliminated all parasites in blood, then the fever would remain

(i.e., Y
(0)
i = 1). This implies Y nmi

i = Y
(0)
i , so we will use this property for the rest of this

article.

We define a child i who is observed to have a fever as having a malaria attributable fever
if that fever would not have occurred if the child had been given an intervention that
prevented the child from having malaria parasites. In terms of potential outcomes, a child

i has a malaria attributable fever if Y
(Di)
i = 1, but Y

(0)
i = 0 or alternatively, if Y obs

i = 1
but Y nmi

i = 0. Let (Y mi, Y nmi) be the random vector from the experiment of choosing a
random child and time point from the study area and study period. The fraction of fevers
in the study area and time period that are attributable to malaria, i.e., the MAFF, is

MAFF = Pr(Y (0) = 0|Y (D) = 1) = Pr(Y nmi = 0|Y obs = 1). (5.2.1)

Because we have defined the MAFF using potential outcomes based on an intervention
that could alter parasite density, the MAFF could depend on the intervention that alters
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parasite density, e.g., possible interventions are antimalarial drugs, vaccines and control of
the mosquitoes that carry the malaria parasites. Consider an intervention that satisfies:
Assumption 2. No Side Effects Assumption. The intervention has no effects on fever
beyond removing the parasites from the child.

Assumption 2 implies that the intervention cannot cause a fever:

P (Y nmi = 1, Y obs = 0) = 0. (5.2.2)

Under Assumption 2, the MAFF can be interpreted as the proportion of fevers in the
observed world that would be eliminated if malaria were eradicated by the intervention. We
will not specify the intervention under consideration but will assume that the intervention
satisfies Assumption 2. Although it is possible that interventions currently being studied
could have side effects and violate Assumption 2, the MAFF for a hypothetical intervention
that satisfies Assumption 2 provides an estimate of the potential benefit of an intervention
to eliminate malaria which is useful for policymakers (Walter, 1976).

The potential outcome framework MAFF (5.2.1) is defined based on unobservable latent
variables Y nmi and Y mi. In order to identify the MAFF from data, assumptions need to
be made about the way these unobserved variables link to observed variables. To estimate
the MAFF, we make the following assumptions:
Assumption 3. The potential outcome Y (d) satisfies that

(i) (Monotonicity Assumption) For any 0 ≤ d ≤ d′, Y (d) ≤ Y (d′)

(ii) A fever caused by a non-malaria infection Y nmi is independent of a fever caused by a
malaria infection Y mi, i.e. Y nmi ⊥⊥ Y mi.

Assumption 3 (i), the monotonicity assumption, is biologically plausible because having
more parasites means that more red blood cells are ruptured by the parasites and more
hemozoin is released, meaning that if a child’s hemozoin level was enough to cause a fever
at parasite level d, then a child would surely have a fever at parasite level d′ since the
child’s hemozoin level would be even higher. Assumption 3 (ii) means that two causes of
a fever, non-malarial infections and malarial infections, act separately to trigger a fever.
However, this assumption might not hold if Y nmi and Y mi have an impact on each other.
For example, imagine someone has a severe cold, he or she have weaker immune system and
is more likely to be vulnerable to malarial infections. These malarial infections may cause a
fever that would not be triggered if he or she did not have a cold, which implies Y nmi and
Y mi can be positively correlated. Also, the assumption can be violated if Y nmi and Y mi

have some confounding variables, such as age or health condition. For the former situation,
the impact of the violation can be analyzed by conducting sensitivity analyses discussed in
Section 5.3.3. The latter violation can be eased by controlling for other observed covariates.
We will discuss incorporting covariates into our estimation method in Section 5.3.1.

The conventional approaches for estimating the MAFF have been designed to estimate
associative measures of the MAFF that do not entail causal interpretation. Let pf be the
parasite prevalence in febrile children and pa be the parasite prevalence in afebrile children.
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That is, pf = Pr(Dobs > 0|Y obs = 1) and pa = P (Dobs > 0|Y obs = 0) where Dobs is the
observed parasite density. One popular measure is based on relative risk (Smith et al., 1994)
which is defined as pf (R − 1)/R where R = Pr(Y obs = 1|Dobs > 0)/Pr(Y obs = 1|Dobs = 0)
is the relative risk of fever associated with the exposure of parasites. Greenwood et al.
(1987) proposed a simple estimator that pf and R are directly estimated from the observed
data. For more complicated methods on estimating the relative risk measure, see Smith
et al. (1994); Wang and Small (2012). Another popular associative measure is based on
odds ratio, i.e., OR = pf (1 − pa)/(pa(1 − pf )). The relative risk is often approximated by
the odds ratio, so the relative risk can be replaced by the odds ratio. The measure on odds
ratio is defined as (pf − pa)/(1 − pa). Many sophisticated methods have been developed
to estimate this measure (Vounatsou et al., 1998; Qin and Leung, 2005). The existing
methods using the relative risk measure actually estimate the same quantity as the MAFF
defined by potential outcome if Assumption 1 and 2 hold and, additionally, the density is
correctly measured. On the other hand, the existing methods using the odds ratio measure
need an additional step for adjustment to estimate the potential outcome MAFF under the
assumptions. If the assumptions are violated, then all the existing methods would provide
biased estimates. We discuss the connection between the associative measures and the
potential outcome measure in Appendix with more detail.

5.2.2. Fever killing effect and measurement error

To investigate the MAFF, it is required to observe parasite density D as well as the outcome
of fever. However, parasite density can be observed with some errors because of fever killing
and measurement error. Fever killing refers to the fact that a fever kills some parasites in
the body and measurement error refers to the fact that it is difficult to measure parasite
density with great accuracy. We provide a brief review of fever killing and measurement
error, and provide a model describing them.

To account for fever killing and measurement error, we consider three different variables
related to the parasite density: Dno.nmi

i , Dcur
i and Dobs

i . Let Dno.nmi
i be the parasite density

that a subject i would have if the subject does not have a non-malaria infection strong
enough to cause a fever (Small et al., 2010). This is the true parasite density if there
is no fever killing and no error in measuring malaria parasites. Therefore, we ultimately
want to have Dno.nmi

i for analysis. If fever killing occurs, then the parasite density may be
changed. We denote Dcur

i as the amount of the parasite density in blood of the subject
after fever killing occurs. If a subject i has a fever that is solely caused by a non-malaria
infection, Y nmi

i = 1, Y mi
i = 0, then there is evidence that fever kills some of the parasites

that would have remained alive in the absence of the infection (Kwiatkowski, 1989; Rooth
and Bjorkman, 1992; Long et al., 2001). In particular, Long et al. (2001) estimate that a
fever of 38.8◦C kills 50 % of parasites and a fever of 40◦C kills 92 % of parasites. Fever
killing will make Dno.nmi

i greater than the actual current parasite density. See Small et al.
(2010) for more discussion on fever killing.

Fever killing occurs in some sense for all fevers, however we define Dno.nmi
i for malarial fevers

(Y mi
i = 1) in such a way that fever killing in terms of Dcur

i being different from Dno.nmi
i

occurs only for non-malarial fevers Y nmi
i = 1, Y mi

i = 0 Specifically, we define Dno.nmi
i in the
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following way for a child with a malarial fever, Y mi
i = 1. In a malaria infection that is not

brought under control by a child’s immunity, the parasites multiply inside the red blood
cells they invade, eventually causing the red blood cell to rupture, and the released parasites
then invade new red blood cells (Kitchen, 1949). This causes an exponential growth phase
of the parasites that terminates shortly after the onset of periodic fever (Kitchen, 1949).
The fever starts killing parasites while at the same time the parasites that remain alive
continue to multiply. The clash of these two forces and the features of the parasite life
cycle cause the parasite density to oscillate (Kwiatkowski and Nowak, 1991). For a child
with a malaria fever Y mi

i = 1, even if any non-malarial infection were removed, this process
of the parasites multiplying and eventually rising above the pyrogenic threshold and then
oscillating would occur. For a child with a malarial fever, we define the child’s parasite
density Dno.nmi

i = Dcur
i as the parasite density at the point in the child’s fever at which the

child is observed.

Besides fever killing, measurement error occurs when researchers measure the actual current
parasite density Dcur

i . Let Dobs
i be the observed (measured) parasite density. For example,

since it is impossible to count all malaria parasites in blood, doctors typically take a blood
sample of an individual and estimate the total amount of the parasites in blood from the
sample. During this procedure, some measurement errors may occur, and therefore we
only observe (or measure) Dobs

i with some errors. Dowling and Shute (1966) and O’Meara
et al. (2007) study the sources and magnitude of measurement error. The sources include
the following: (1) Sample variability. The parasite density is estimated from a sample of
blood; (2) Loss of parasites in the sample handling and staining process; (3) Microscopy
error. The accuracy of the parasite density measurement depends on the quality of the
microscope and the concentration and motivation of the microscopist; (4) Sequestration and
synchronization. Microscopic examination of a blood sample only estimates the parasite
density in the peripheral blood and not the total parasite density. Older parasites sequester
in the vascular beds of organs. Due to a tendency of the life cycles of the parasites to be
synchronized, there can be large variation in the parasite density in the peripheral blood
relative to the total parasite density (Bouvier et al., 1997); (5) Variability in white blood
cell density. The most common method of estimating parasite density counts the number
of parasites found for a fixed number of white blood cells and then assumes that there are
8000 white blood cells per µl of blood. White blood cell counts actually vary considerably
from person to person and from time to time within a person (McKenzie et al., 2005).

Figure 1 summarizes the relationship between all the defined variables. As can be seen,
Dno.nmi
i is the only parasite density variable that decides whether child i has a malaria

fever or not while Dcur
i and Dobs

i are proxy variables of Dno.nmi
i . We can think of Dno.nmi

i

as the parasitological challenge faced by the child which is a function of the amount of the
parasites injected from mosquito bites and the immune response of the child. The other
two parasite density variables, Dcur

i and Dobs
i , change according to both fever killing and

measurement error but do not directly affect whether the child has a malarial fever.
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Figure 6: Causal diagram

5.3. Estimation Method

There are n individuals. Each individual has two observable variables and a vector of covari-
ates (Y obs

i , Dobs
i ,Xi). The observed fever outcome Y obs

i is binary, but Dobs
i is usually contin-

uous. In the Kilombero study that we will discuss later, Xi contains intercept and age, but
we do not consider this covariate vector in this section. Xi is not required in our estimation
method if the independent assumption of Y nmi and Y mi holds, but controlling for Xi can
make the assumption more plausible. Incorporating Xi will be discussed in Section 5.3.4. In
our discussion of methods for estimating the MAFF, we will assume that we have a random
sample such that the random vectors (Y obs

i , Dobs
i ,Xi, Y

nmi
i , Y mi

i , Dcur
i , Dno.nmi

i ), i = 1, . . . , n
are i.i.d. with the same distribution as the random vector (Y obs, Dobs,X, Y nmi, Y mi, Dcur, Dno.nmi).

5.3.1. Bayes deconvolution problem and g-modeling

As shown in Figure 1, Y obs and Dobs are associated due to the true parasite density Dno.nmi.
Therefore, we build a model for the true density Dno.nmi instead of Dobs. To model this
density, we use parametric exponential family distribution modelling, called g-modeling, pro-
posed by Efron (2016). The g-modeling is the approach to estimate the density of a latent
variable such as Dno.nmi from the observable variable in Bayes deconvolution problems. In
the malaria study, the deconvolution process is both fever killing effects and measurement
error. Efron shows that parametric exponential family modeling can give useful estimates
in moderate-sized samples while traditional asymptotic calculations are discouraging, indi-
cating very slow nonparametric rates of convergence. Although this approach assumes a
parametric model, it can be made more flexible by increasing the number of parameters
as the sample size increases. The problem of overfitting from using too many parameters
can be avoided by penalizing the likelihood. With enough parameters, the risk of model
misspecification is reduced.
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To model the fever killing effect, we use a parameter β for the size of the effect; if β = 0.1,
then the non-malaria caused fever kills 90% of parasites. Fever killing occurs only when
Y nmi = 1, Y mi = 0. Therefore, Dcur is equal to βDno.nmi if Y nmi = 1, Y mi = 0, and Dcur

is the same as Dno.nmi otherwise. For measurement error, let h be the measurement error
mechanism. Dobs has the density function with the parameter Dcur, i.e. Dobs = x|Dcur ∼
h(x;Dcur). For example, one way to measure malaria parasites is to count the number of
parasites in a fixed volume of sampled blood (Earle et al., 1932); this measurement method
was advocated by McKenzie et al. (2005). If this measurement error method is used and the
only source of measurement error is the sampling of blood, thenDobs|Dcur ∼ Poisson(Dcur).
We assume that the size of the fever killing effect and the measurement error mechanism
are known to researchers; if these are unknown, they can be varied in a sensitivity analysis.
The assumptions of a known 100(1−β)% fixed size of fever killing and known measurement
error mechanism h allow us to estimate the MAFF through a Bayes deconvolution approach
under Assumptions 2 and 3.

Define

g1(z) ≡ f(Dno.nmi = z|Y mi = 0)

g2(z) ≡ f(Dno.nmi = z|Y mi = 1).

Since Y nmi andDno.nmi are independent in Assumption 2, the conditional density f(Dno.nmi =
z|Y mi) is independent of Y nmi. This implies that f(Dno.nmi = z|Y mi = 0) = f(Dno.nmi =
z|Y mi = 0, Y nmi = 0) = f(Dno.nmi = z|Y obs = 0). Similarly, we can construct the condi-
tional density f(Dno.nmi = z|Y obs = 1) as a mixture of two densities,

f(Dno.nmi = z|Y obs = 1) = (1− λ∗)g1(z) + λ∗g2(z),

where λ∗ = Pr(Y mi = 1)/Pr(Y obs = 1).

To apply the g-modeling approach, we assume that the two densities g1(z) and g2(z) have
the form of exponential family distributions. Since the parasite density is non-negative (i.e.,
g1(z) = 0 and g2(z) = 0 for z < 0) and no parasite cannot cause malarial infections (i.e.,
g2(0) = 0), we give a specific form of the model. We also consider an exponential tilt model
between g1(z) and g2(z) when z > 0, we assume the following model,

g1(z; q, α) = q · I(z = 0) + (1− q) · exp{QTz α− φ1(α)}I(z > 0), 0 ≤ q ≤ 1

g2(z;α, γ) = exp{γ0 + γ1z} · exp{QTz α− φ(α)} = exp{QTz α+ γz − φ2(α, γ)} (5.3.1)

where α is a m-dimensional parameter, Qz is a smoothly defined m × 1 vector function of
x, and φ1(α) = log{

´
exp(QTz α)dz}. Similarly, φ2(α, γ) = log{

´
exp(QTz α + γz)dz}. For

further computational details, see Efron (2016).

5.3.2. Estimation

Given the density functions g1(z) and g2(z) defined in the previous section, we can describe
the observed data. The overall observed data can be partitioned into two groups: a febrile
group that contains individuals with Y obs = 1 and an afebrile group with Y obs = 0. For
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simplicity, let the sample for the afebrile group be Dobs
0 := (Dobs

01 , . . . , D
obs
0n0

) and the sample
for the febrile group be Dobs

1 := (Dobs
11 , . . . , D

obs
1n1

) with n = n0 + n1. Then, the two samples
are drawn from the following observed parasite densities,

Dobs
01 , . . . , D

obs
0n0
∼
ˆ
h(d; z) · g1(z; q, α)dz

Dobs
11 , . . . , D

obs
1n1
∼
ˆ
h(d; z) · {(1− λ∗)g∗1(z; q, α) + λ∗g2(z;α, γ)} dz

where g∗1(z) = β−1g1(z/β) that incorporate fever killing effect and h is the known measure-
ment error mechanism.

Denote p := Pr(Y obs = 1). Then, the likelihood L(Dobs
0 ,Dobs

1 ; p, λ∗, q, α, γ) is written as

L(Dobs
0 ,Dobs

1 ; p, λ∗, q, α, γ)

= Pr(Y obs = 0)n0 Pr(Y obs = 1)n1

n0∏
i=1

P (Dobs = Dobs
0i |Y obs = 0))

n1∏
i=1

P (Dobs = Dobs
1i |Y obs = 1)

=(1− p)n0pn1 ×
n0∏
i=1

{ˆ
h(Dobs

0i ; z) · g1(z; q, α)dz

}

×
n1∏
i=1

{ˆ
h(Dobs

1i ; z) · {(1− λ∗)g∗1(z; q, α) + λ∗g2(z;α, γ)} dz
}
.

The log-likelihood `(Dobs
0 ,Dobs

1 ; p, λ∗, q, α, γ) is written as the sum of two parts, `1(p) +
`2(λ∗, q, α, γ), where

`1(p) = n0 log(1− p) + n1 log p

`2(λ∗, q, α, γ) =

n0∑
i=1

log

{ˆ
h(Dobs

0i ; z) · g1(z; q, α)dz

}
(5.3.2)

+

n1∑
i=1

log

{
(1− λ∗) ·

ˆ
h(Dobs

1i ; z) · g∗1(z; q, α)dz + λ∗ ·
ˆ
h(Dobs

1i ; z)g2(z;α, γ)dz

}
.

The estimates p̂ can be obtained by maximizing the log-likelihood `1p and λ̂∗ can be obtained
by maximizing the log-likelihood `2(λ∗, q, α, γ). Then, the estimate λ̂ of the MAFF is
obtained from λ̂∗ and p̂ by using adjustment λ = λ∗(1− p)/(1− pλ∗).

To apply the g-modeling approach, a practical question that can be raised is the choice
of the dimension of the parameter vector α. An increase of the dimension of α would
provide a higher likelihood value, but excessive number of parameters may cause problems
such as overfitting. To avoid the overfitting problem, we choose a model based on Bayesian
information crierian (BIC). Haughton et al. (1988) discussed this issue for exponential family
distributions, and analytically proved choosing a model based on BIC leads to a correct
choice of a model with high probability. An alternative is cross-validation approaches to
find an optimal dimension of α using likelihood-based cross-validation approaches (van der
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Laan et al., 2004). For adequate smoothness of the exponential family distribution fitting,
we suggest using either BIC or cross-validation approaches to choose the dimension of α.

Efron (2016) suggests to use a penalized likelihood as he finds that the accuracy of a
deconvolution estimate obtained from the g-modeling approach can be greatly improved by
regularization of the maximum likelihood algorithm. Instead of maximizing `(p, λ∗, q, α, γ),
we maximize a penalized log-likelihood

m(p, λ∗, q, α, γ) = `(p, λ∗, q, α, γ)− s(α)

where s(α) is a penalty function. In this article, the function s(α) is defined as s(α) = c0‖α‖
where c0 is a regularizing constant. The choice of c0 is related to bias-variance tradeoff.
Efron (2016) discussed evaluation of the choice of c0, and we take a similar evaluation
strategy of choosing c0 specific to our likelihood. In the Kilombero study data, c0 = 50 is
as a modest choice that restricts the trace of the added variance due to the penalization,
see Appendix A.4.1. For general computation details, see Efron (2016), Remark A4.

5.3.3. Sensitivity Analysis for Assumption 3

Our proposed estimation method relies on Assumption 3, particularly, Assumption 3 (ii)
that assume Y mi and Y nmi have independent causal pathways that form a parallel circuit
to trigger a fever. However, these assumptions could potentially be violated. For example,
consider a situation such that a child has some malaria parasites in blood, but it is not
strong enough to trigger a malarial fever. Without any further malarial infections, if a child
got a cold, this non-malarial infection might trigger a malarial fever because a combined
effect of some malaria parasites and some non-malarial infections might weaken the child’s
immune system to be enough to trigger a fever. We consider this

If the independent assumption is violated, the following equalities do not hold: (1) f(Dno.nmi =
z|Y nmi = 0, Y mi = 0) = f(Dno.nmi = z|Y nmi = 1, Y mi = 0) and (2) Pr(Y nmi = 0, Y mi =
0) = Pr(Y nmi = 0) Pr(Y mi = 0). If the two equal relationships are broken, then it is
impossible to identify the MAFF from the data. Instead, in this situation, we can consider
sensitivity parameters to describe and restrict the relationships. By doing so, the range
of the MAFF can be obtained. For describing the former relationship, an exponential till
model can be used as

f(Dno.nmi = z|Y nmi = 1, Y mi = 0) = exp(δ0 + δ1z)f(Dno.nmi = z|Y nmi = 0, Y mi = 0).

The parameter δ0 is identified because of
´
f(Dno.nmi = z|Y nmi = 1, Y mi = 0) dz =

1, and is a function of δ1. Similar to the estimation method in Section 5.3, we use the
exponential family distribution model for the density f(Dno.nmi = z|Y nmi = 0, Y mi =
0) = exp{Qzα − φ1(α)} where φ1(α) = log

( ´
exp{Qzα}

)
. Therefore, the parasite density

f(Dno.nmi
i = dj |Y mi,∗

i = 0, Y nmi
i = 1) is represented as

exp(δ0 + δ1z) exp{Qzα− φ1(α)} = exp{(δz +Qzα) + φ2(α, δ))},

where φ2(α, δ) = log
(´

exp{Qzα+ δz}
)

and δ = δ1. Typically, Y nmi and Y mi is positively
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associated if they are associated, which restricts the sensitivity parameter δ to satisfying
the inequality δ ≥ 0. For the relationship between P (Y nmi = 0|Y mi = 1) and P (Y nmi =
0|Y mi = 0), we use a sensitivity parameter τ as the ratio of the probabilities τ = P (Y nmi =
0|Y mi = 1)/P (Y nmi = 0|Y mi = 1). From the positive association of Y nmi and Y mi, the
parameter τ should be above 1, i.e. τ ≥ 1. We conduct a sensitivity analysis by using the
sensitivity parameter δ and τ in Section 5.5 to investigate the impact of the violation of
Assumption 3 (ii) on the estimate of the MAFF.

5.3.4. Incorporating covariates

Another possible violation scenario of the independence assumption is that both Y nmi and
Y mi are dependent on some variables. To make the assumption more plausible, we need to
control for those confounding variables.

Let X be the s× 1 vector. To incorporate covariates, consider the following model:

g1(z|X = x; q, α, η) := f(Dno.nmi = z|Y mi = 0,X = x)

=
exp(xT q)

1 + exp(xT q)
· I(z = 0)

+
1

1 + exp(xT q)
· exp{(xT η) · z +QTz α− φ1(α, η)} · I(z > 0),

where q and η are s×1 vectors and φ1(α, η) = log
{´

exp((xT η) · z +QTz α)
}

. The parameter
η represents dependence of the density on X. As in Section 5.3.1, we assume an exponential
tilt model for both z and X. Therefore, the conditional density f(Dno.nmi = z|Y mi =
1,X = x) is given as

g2(z|X = x;α, η, γ) := f(Dno.nmi = z|Y mi = 1,X = x)

= exp{γ0 + (xTγ1) · z} · exp{(xT η) · z +QTz α− φ1(α, η)}
= exp{(xT (η + γ)) · z +QTz α− φ2(α, γ, η)}

where γ = γ1 is a s× 1 vector and φ2(α, γ, η) = log
{´

exp((xT (η + γ)) · z +QTz α)
}

.

Besides these models for g1(z|X = x) and g2(z|X = x), the probability that a fever is
observed is depend on X = x and the mixing proportion λ∗ is also depend on X = x.
We denote p := p(x) as the probability Pr(Y obs = 1|X = x). Similarly, we use notation
λ∗ := λ∗(x). The joint density given covariates, (Y obs, Dobs|X), can be represented as the
product of f(Dobs|Y obs,X) × f(Y obs|X). Therefore, similar to the likelihood (5.3.2), the
log-likelihood function can be decomposed into two sub-loglikelihood functions,

`(p, λ∗, q, α, η, γ) = `1(p) + `2(λ∗, α, η, γ),
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where

`1(p) =
n∑
i=1

log{Pr(Y obs = Y obs
i |X = xi)}

`2(λ∗, q, α, η, γ) =

n0∑
i=1

log

{ˆ
h(Dobs

0i ; z) · g1(z|xi; q, α, η)dz

}

+

n1∑
i=1

log

{
(1− λ∗) ·

ˆ
h(Dobs

1i ; z) · g∗1(z|xi; q, α, η)dz

+ λ∗ ·
ˆ
h(Dobs

1i ; z)g2(z|xi;α, η, γ)dz

}
.

The sub-loglikelihood function `1(p) is only needed for estimating p(x). Any regression
method can be used to estimate the conditional probability. For example, nonparametric
logistic regression methods can be used. However, the parameter λ∗(x) is estimated si-
multaneously with other parameters from `2(λ∗, q, α, η, γ). We restrict the model for this
as λ∗(x) = exp(xTκ)/(1 + exp(xTκ)) where κ is a s × 1 vector. Although incorporating
covariates require more computation time, but the estimation scheme is the same as the
estimation without covariates discussed in Section 5.3.2. We apply this approach to the
Kilombero malaria data in Section 5.5.

5.4. Simulation Study

In this section, we evaluate the performance of our proposed method including the regular
likelihood approach and the penalized likelihood approach in a simulation study. In addi-
tion to evaluating the performance of our proposed method, we compare it to the existing
methods by considering various simulation settings. The distribution of g1 is a mixture of
a point mass at zero and a distribution for positive parasite levels and the distribution of
g2 satisfies g2(0) = 0. We consider two scenarios; (i) g1 and g2 are exponential family dis-
tributions and (ii) g1 and g2 are not exponential family distributions. For the first scenario,
we assume

g1(z) = q · I(z = 0) + (1− q) · TN(0,∞)(µ1, σ1) · I(z > 0)

where q is the proportion of zero parasite level and TN(0,∞)(µ, σ) is a truncated normal
distribution with mean µ and standard deviation σ in the interval (0,∞). The distribution
of g2 can only take positive parasite levels,

g2(z) = TN(0,∞)(µ2, σ2).

The second scenario considers uniform distributions, which are not in exponential family
distributions. To be specific, g1(z) = q1 · I(z = 0) +

{
(1 − q1)q2 · TN(0,∞)(µ1, σ1) + (1 −

q1)(1− q2) ·U(0, 2µ1)
}
· I(z > 0) and g2(z) = q2 ·TN(0,∞)(µ2, σ2) + (1− q2) ·U(0, 2µ2) where

U(a, b) is the uniform distribution in the interval (a, b). Throughout the simulation study,
the probability q2 is fixed as 1/8. The number of parameters is chosen as dim(α) = 3 for
g1 in model (5.3.1). Along with the parameter q, the total number of parameters in g1(z)
is 4. Similarly, including a exponential tilt parameter γ, the total number of parameter
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Table 15: Exponential family distribution case. Means (standard deviations) of the estima-
tors in simulation settings are displayed; P represents the power model regression method,
S represents the adjusted semiparametric method, and LI represents the nonparametric
method. True MAFF is 0.5

MAFF

n q β Regular Penalized P S LI

500 0.2 1 0.501 (0.120) 0.488 (0.118) 0.443 (0.089) 0.471 (0.083) 0.475 (0.078)
0.8 0.499 (0.117) 0.487 (0.112) 0.406 (0.102) 0.437 (0.089) 0.441 (0.081)
0.2 0.512 (0.056) 0.491 (0.045) 0.119 (0.037) 0.138 (0.064) 0.143 (0.059)

0.8 1 0.499 (0.028) 0.497 (0.028) 0.485 (0.027) 0.487 (0.026) 0.483 (0.025)
0.8 0.498 (0.028) 0.495 (0.028) 0.483 (0.027) 0.485 (0.027) 0.480 (0.025)
0.2 0.499 (0.024) 0.495 (0.022) 0.453 (0.025) 0.457 (0.024) 0.444 (0.020)

1000 0.2 1 0.499 (0.081) 0.490 (0.082) 0.440 (0.063) 0.468 (0.058) 0.472 (0.055)
0.8 0.500 (0.076) 0.490 (0.072) 0.406 (0.072) 0.437 (0.062) 0.438 (0.057)
0.2 0.507 (0.039) 0.495 (0.031) 0.117 (0.022) 0.138 (0.039) 0.135 (0.042)

0.8 1 0.498 (0.020) 0.496 (0.020) 0.484 (0.019) 0.486 (0.019) 0.482 (0.018)
0.8 0.498 (0.020) 0.497 (0.020) 0.483 (0.019) 0.485 (0.018) 0.480 (0.017)
0.2 0.499 (0.017) 0.497 (0.016) 0.455 (0.018) 0.458 (0.017) 0.446 (0.015)

in g2(z) is 4. Also, we assume that we know the Poisson measurement error mechanism
Dobs ∼ Pois(Dcur), i.e. the mechanism h is the standard Poisson distribution.

In addition, we consider the following three factors that may affect the performance of our
method.

1. Size of fever killing effect. Three different sizes of the fever killing effect are considered.
The settings are large fever killing effect (fever kills approximately 80% of parasites
which means β = 0.2), small fever killing effect (fever kills approximately 20% of
parasites, β = 0.8) and no fever killing effect (β = 1). The no fever effect case will be
used as a standard for comparison between the other two fever killing effects settings.

2. Endemicity. Endemic regions differ greatly by how many people have the malaria
parasites in their blood. Endemicity could affect the variance of the estimate of
the MAFF. Two levels of endemicity are considered: mesoendemic q = 0.8 (low to
moderate) and holoendemic q = 0.2 (high).

3. Sample size n. Two sample sizes, n = 500 and n = 1000, are considered.

There are 3 × 2 × 2 = 12 settings for each scenario to investigate the effect of the settings
on the performance of our proposed method.

We use both the regular likelihood approach and the penalized likelihood approach to esti-
mate the MAFF and compare them to the existing methods that do not account for fever
killing and measurement error. Table 15 shows the means and standard deviations of the
maximum likelihood estimates in the various settings when the true models are in the expo-
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Table 16: Non-exponential family distribution case. Means (standard deviations) of the
estimators in simulation settings are displayed; P represents the power model regression
method, S represents the adjusted semiparametric method, and LI represents the nonpara-
metric method. True MAFF is 0.5

MAFF

n q β Regular Penalized P S LI

500 0.2 1 0.492 (0.116) 0.499 (0.126) 0.423 (0.094) 0.458 (0.087) 0.466 (0.081)
0.8 0.488 (0.112) 0.503 (0.121) 0.379 (0.103) 0.420 (0.091) 0.430 (0.080)
0.2 0.516 (0.062) 0.517 (0.071) 0.123 (0.033) 0.133 (0.060) 0.140 (0.055)

0.8 1 0.498 (0.029) 0.501 (0.029) 0.480 (0.027) 0.482 (0.027) 0.478 (0.026)
0.8 0.497 (0.030) 0.499 (0.031) 0.479 (0.027) 0.481 (0.026) 0.475 (0.025)
0.2 0.501 (0.025) 0.505 (0.027) 0.451 (0.025) 0.454 (0.024) 0.441 (0.021)

1000 0.2 1 0.502 (0.091) 0.499 (0.095) 0.420 (0.065) 0.454 (0.060) 0.462 (0.055)
0.8 0.498 (0.090) 0.498 (0.093) 0.379 (0.074) 0.421 (0.063) 0.430 (0.056)
0.2 0.503 (0.051) 0.493 (0.040) 0.125 (0.022) 0.138 (0.038) 0.137 (0.040)

0.8 1 0.497 (0.020) 0.497 (0.020) 0.481 (0.019) 0.483 (0.018) 0.478 (0.018)
0.8 0.498 (0.022) 0.498 (0.022) 0.480 (0.019) 0.482 (0.019) 0.476 (0.018)
0.2 0.501 (0.019) 0.498 (0.020) 0.450 (0.017) 0.453 (0.017) 0.440 (0.015)

nential family. The means and the standard deviations of the estimates are obtained from
1000 repetitions. Three aspects are found in this table. First, both the regular likelihood
and the penalized likelihood approaches provide approximately unbiased estimates of the
true MAFF while other existing methods (P, S, LI) are biased. There is a trend that the
regular likelihood estimates have lower bias and slightly larger standard deviations than
the penalized likelihood estimates. This is because the true models are exponential fam-
ily distributions. Second, the larger proportion of zero parasite level contributes to more
efficient estimates. That is, the estimate of the MAFF in mesoendemic regions is more
efficient than the estimate in holoendemic regions. Finally, as sample size n increases, both
the approaches produce estimates which are closer to the true MAFF value 0.5 (less bias)
and have smaller standard deviations.

Table 16 displays the means and standard deviations of the estimates when the true models
are not exponential family distributions. As can be seen in Table 16, a larger n and a
larger q contribute to a smaller standard deviation. A smaller β leads to a smaller standard
deviation, but it also leads to a bias. A different aspect in Table 16 compared to Table 15
is that the penalized likelihood approach generally performs better with smaller standard
deviations than the regular likelihood approach in the non-exponential family distribution
case of Table 16.

Furthermore, we examine the impact of misspecification of measurement error mechanism
on estimation. Consider three measurement error mechanisms: (1) Poisson error (i.e.,
Dobs ∼ Pois(Dcur)), (2) Negative binomial error with r = 10 with mean Dcur (i.e., Dobs ∼
NB(Dcur, 10)) and (3) Negative binomial error with r = 20 (i.e., Dobs ∼ NB(Dcur, 20)).
We note that if r → ∞, the negative binomial distribution NB(Dcur, r) converges to
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Table 17: Simulations for misspecification of the measurement error model. True MAFF is
0.5.

MAFF

True Used Regular Penalized

Pois(Dcur) Pois(Dcur) 0.498 (0.078) 0.501 (0.077)
NB(10, Dcur) 0.444 (0.075) 0.478 (0.061)
NB(20, Dcur) 0.470 (0.085) 0.483 (0.080)

NB(10, Dcur) Pois(Dcur) 0.537 (0.087) 0.535 (0.087)
NB(10, Dcur) 0.498 (0.080) 0.502 (0.078)
NB(20, Dcur) 0.518 (0.087) 0.518 (0.086)

NB(20, Dcur) Pois(Dcur) 0.519 (0.078) 0.519 (0.077)
NB(10, Dcur) 0.477 (0.081) 0.490 (0.076)
NB(20, Dcur) 0.499 (0.077) 0.500 (0.076)

Pois(Dcur). Consider the setting n = 1000, β = 1, q = 0.2 used in the previous simu-
lations. Table 17 shows simulation results for misspecification. In every simulation, the
penalized likelihood method provides estimates closer to the true MAFF 0.5 than the reg-
ular likelihood method does.

We will use the penalized likelihood method for the analysis of the Kilombero malaria data
in the next section.

5.5. Application to the Data From Kilombero, Tanzania

We consider data from a study of children in the Kilombero District (Morogoro Region) of
Tanzania (Smith et al., 1994). The study collected parasite density levels and the presence
of fever among 426 children under six years of age in two villages from June 1989 until May
1991 in the Kilombero District (Morogoro Region) of Tanzania. This area is highly endemic
for Plasmodium falciparum malaria. A total of 1996 blood films from the 426 children were
examined. Smith et al. (1994) found that the correlation between consecutive observations
on the same child is not significant and the impact of the correlation on the MAFF is neg-
ligible. We will follow Smith et al. (1994) in assuming that the 1996 collected observations
are independent and for brevity will describe the data as involving 1996 children. In this
dataset, there are n1 = 137 children who had a fever and n0 = 1859 children who did not
have a fever. The former is a group of febrile children whose fever was caused by either
malaria infection or non-malaria infection. The latter is a group of afebrile controls that is
used to provide information on the parasite density of the non-malaria infection population.
Table 18 summarizes the data. The proportions of zero parasite level is 0.086 = 160/1858
and 0.117 = 16/137 in the afebrile and febrile groups respectively. The proportion of zero
parasite density level in the afebrile group must be greater than that in the febrile group
so the proportions in Table 18 implies some errors in measuring malaria parasites.

Also, in the absence of measurement error and fever killing, under Assumption 3, the
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Table 18: Summary of the data from Kilombero, Tanzania
Parasite level Afebrile Febrile

= 0 160 16
> 0 1698 121

Total 1858 137
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Figure 7: The relationship between parasite density and probability of fever. The solid
curve represents the point estimate across parasite density obtained by using penalized
splines, and the dashed curves are 95% pointwise confidence intervals.

probability of a fever should be monotonically increasing in the parasite density. Figure 7
shows the relationship between probability of fever and parasite density and also suggests
a violation of the assumptions. Smith et al. (1994) point out that this phenomenon that
the probability of a fever is not monotonically increasing in the parasite density has been
observed in many other datasets, and consider it a consequence of non-malarial fevers
suppressing low density parasitaemia, i.e., fever killing.

The existing four estimation methods are compared: (1) logistic regression method (L), (2)
logistic regression with power (P), (3) local linear smoothing followed by isotonic regression
(LI) and the semiparametric method (S). These methods do not account for the fever killing
effect and measurement error problems. Under the assumption of the absence of the fever
killing effect and measurement error, the estimates of the MAFF from the existing methods
are 0.176 (L), 0.202 (P), 0.177 (LI) and 0.177 (S) shown in the bottom of Table 19. The
displayed standard deviations are computed from 2000 bootstrapped samples.

For choosing the dimension of α, we conducted 10-fold likelihood-based cross-validation,
and found that cross-validated values start to be flattened at dim(α) = 4. For the rest of
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analysis, we use a model with a 4-dimensional parameter α. Also, to apply our proposed
method, a measurement error mechanism needs to be specified. In the Kilombero study,
the number of parasites is counted in a predetermined number of white blood cells (WBCs),
usually 200, and then the parasite density per µl is estimated as 40 times the count, un-
der the assumption that there are 8000 WBCs per µl. The simplest choice is the Poisson
measurement error mechanism. The Poisson measurement error mechanism will hold if the
only source of measurement error is the sampling of parasites from 1/40 µl of blood and
parasites are uniformly distributed throughout the blood. Without any other sources of
measurement error but this sampling error, the measurement error model would be (M1)
h1(Dobs|Dcur) ∼ Poisson(Dobs/40;Dcur/40). As we discussed in Section 5.2.2, microscopy
error is another source of measurement error as well as sampling error. A more complicated
model than the Poisson model to account for the microscopy error is a negative binomial
measurement error model. The negative binomial (NB) model is (M2) h2(Dobs|Dcur) ∼
NB(Dobs/40; r, r/(r +Dcur/40)) where r is the dispersion parameter. From O’Meara et al.
(2007), we estimate the dispersion parameter is r = 6. The estimation process is shown
in Appendix A.4.2. Furthermore, another source of measurement error is WBCs count
variability; the number of WBCs per µl is not fixed as 8000, but varies from person to
person (McKenzie et al., 2005). Based on McKenzie et al. (2005), we consider a discrete
distribution w(z) of WBCs counts per µl: Point masses of (4, 5, 6, 7, 8, 9, 10, 11, 12)× 103 =
(.12, .16, .20, .16, .16, .10, .04, .04, .02). The distribution w(z) accounts for the potential ef-
fect of the variability of WBCs counts. The most complicated measurement error model
(M3) we consider combines the microscopy error and the WBC count variability, and is
h3(Dobs|Dcur) ∼

∑
w(z)· NB(Dobs/(z/200); r, r/(r +Dcur/(z/200))). We note that the

distribution h1 has the smallest variance and the distribution h3 has the largest variance.
The models (M1)-(M3) are considered and compared in our analysis.

In addition to the measurement error mechanism, the size of fever killing 1− β needs to be
specified, but it is not known precisely based on current scientific knowledge. We consider
a series of various plausible fever killing sizes, and calculate the corresponding estimates of
the MAFF. Based on previous studies, we can shorten the plausible range of the size of fever
killing effect by using children’s temperature data. We found that the temperature data
are distributed between 37.5◦C and 40◦C with 90% percentile 38.7◦C and 95% percentile
39.1◦C. Long et al. (2001) found that when the temperature is 38.8◦C, the fever killing effect
was 50% so we consider 50% an upper bound on the fever killing effect (i.e., the range of the
fever killing size is 1− β ∈ [0, 0.5]). We do not consider no fever killing to be plausible but
include it for comparison purposes. Furthermore, the assumption that there is a fixed size of
fever killing across population can be eased by incorporating the temperature data into the
analysis by accounting for temperature-varying fever killing size. However, incorporating
the temperature data is beyond the scope of our paper.

Table 19 shows the estimates of the MAFF from the different values of the fever killing
effect parameter β for each measurement error model from (M1) to (M3). As the fever
killing effect becomes larger (i.e., β decreases), the estimate of the MAFF increases roughly
from 0.18 to 0.34 for the considered measurement error mechanisms. This shows that the
problem of fever killing effects is much severer in estimating the MAFF than the problem
of measurement error is. This is because three mechanisms recovered the true parasite
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Table 19: Estimates of the MAFF. The upper table: the estimates corresponding to the
different sizes of fever killing; 1− β = 0.5 means 50% fever killing and 1− β = 0 means no
fever killing. The standard deviations are computed from 1000 bootstrapped samples. The
lower table: the estimates from the existing methods.

MAFF
1− β M1 M2 M3

0.00 0.187 (0.063) 0.190 (0.059) 0.189 (0.057)
0.05 0.201 (0.059) 0.200 (0.061) 0.203 (0.060)
0.10 0.215 (0.063) 0.218 (0.058) 0.218 (0.059)
0.15 0.231 (0.065) 0.234 (0.062) 0.233 (0.059)
0.20 0.247 (0.067) 0.251 (0.062) 0.249 (0.063)
0.25 0.264 (0.067) 0.268 (0.060) 0.266 (0.064)
0.30 0.282 (0.071) 0.286 (0.062) 0.284 (0.065)
0.35 0.302 (0.068) 0.306 (0.067) 0.303 (0.065)
0.40 0.323 (0.069) 0.327 (0.065) 0.324 (0.069)
0.45 0.344 (0.074) 0.349 (0.069) 0.345 (0.066)
0.50 0.368 (0.072) 0.373 (0.071) 0.369 (0.072)

L P S LI

MAFF 0.176 (0.042) 0.202 (0.074) 0.177 (0.063) 0.182 (0.079)

density similarly, especially, the proportion of zero parasite. Even in the positive number
of parasites, no parasite can be observed due to measurement errors. We found that the
recovered proportion of zero parasite was almost identical in every considered measurement
error mechanism, which leads to similar MAFF estimates.

In the analysis of the Tanzania malaria data, an additional age variable can be used to make
Assumption 3 more plausible. It is studied that there is evidence that younger children tend
to have a higher probability to have a malarial fever (Rogier et al., 1996) as well as a non-
malarial fever. We control for this variable using the method discussed in Section 5.3.4.
Figure 8 visually shows the estimates after incorporating the age variable compared to the
results in Table 19. The figure plots the estimates of the MAFF on the size of fever killing
effects for the mechanisms (M1) to (M3). One distinct pattern is that the MAFF curves are
slightly tilted after incorporating the age variable, and the difference in the MAFF estimates
between before and after incorporating the age variable is at most 0.017. Also, the three
measurement error mechanisms produced similar estimates of the MAFF for each setting.
This analysis shows that the violation of Assumption 3 due to age is not significant.

We also conduct an additional sensitivity analysis for violation of Assumption 3. We use
two sensitivity parameters δ1 and τ discussed in Section 5.3.3. The sensitivity parameter
δ1 represents how two densities f(Dno.nmi = z|Y mi = 0, Y nmi = 0) and f(Dno.nmi =
z|Y mi = 0, Y nmi = 1) differ (δ1 = 0 means that the densities are equal), and the sensitivity
parameter τ represents the relative rate of not having a non-malarial fever according to Y mi.
We consider plausible ranges of the parameters: 0 ≤ δ1 ≤ 0.1 and 1 ≤ τ ≤ 1.06. Figure 9
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Figure 8: The plot of the estimates of the MAFF on the size of fever killing (i.e., 100(1−β)%)
for the measurement error models (M1)-(M3).

shows the estimates of the MAFF according to the values of δ1 and τ for a size of fever
killing β (β = 0, 0.2 or 0.5) and a measurement error mechanism M1 (M2 and M3 provide
similar results). The estimates are plotted by using contour plots. The effect of deviation
from Assumption 3 (ii) is shown differently according to which factor caused a violation. As
δ1 increases, the estimate of the MAFF decreases and as τ increases, the estimate increases.
Therefore, a mixed effect of δ1 and τ appears to cancel each other out and to have a slight
impact on the estimate. Another noticeable pattern is that the impact of δ1 is more severe
than the impact of τ when a fever killing effect is small, but this pattern is reversed when
a fever killing effect is large.

5.6. Summary

In this article, we have proposed a new approach to estimate the MAFF in the presence of
both fever killing and measurement error. We have shown that existing MAFF estimators
can be substantially biased in the presence of these problems. We develop a new estima-
tor using the g-modeling approach to the Bayes deconvolution problem. To develop this
new estimator, we extended the existing g-modeling approach that solves the convolution
problem in non-mixture data to a setting of two-component mixture data such as malaria
data. Under the assumptions that the size of fever killing effect is known and measurement
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Figure 9: Sensitivity Analysis for violation of Assumption 3. From left to right, the size
of fever killing is from 0% to 50%. The estimates of the MAFF are represented as contour
levels according to the values of δ1 and τ . The difference between adjacent contour levels
is 0.005 in every sensitivity analysis.

error mechanism is known, our new estimator performs well. In practice, when the size of
the fever killing effect is not known, we recommend choosing a plausible range of the fever
killing size and comparing the corresponding estimates for a sensitivity analysis. To get
a better estimate of the MAFF, further research is needed to better understand the fever
killing effect to be able to get a narrower range of the fever killing size. Another difficulty
in practice is to specify the measurement error mechanism. This problem can be eased
by considering several plausible measurement error mechanism models from the simplest
to the most complicated (i.e., allowing more sources of measurement errors) as we did in
Section 5.5. If a more complicated model produces a similar estimate to that of a less
complicated model, then we can be more confident with our conclusion. More research on
understanding the measurement error mechanism would also be useful.
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CHAPTER 6 : Discussions

Throughout Chapter 2 to 5, we studied three other quantities of interest which are more
complicated than the ATE. In Chapter 2, we studied the distributional treatment effects
by estimating potential outcome distributions. We showed the limitations of the existing
estimation methods, and provided a new nonparametric likelihood method to overcome
these limitations. We further developed a theory on the nonparametric BL to test whether
a treatment caused any change in the potential outcome distributions. In Chapter 3 and
4, we developed novel approaches of discovering effect modification in a data-driven way
while avoiding the issue of using the data twice. More specifically, the CART approach
was applied to the absolute treated-minus-control pair differences that do not use treat-
ment assignment. The CART method can deal with high-dimensional observational study
data, and can efficiently detect effect modification despite the lack of supporting statisti-
cal properties. Furthermore, we developed a statistical approach based on multiple testing
correction with providing statistical properties. In Chapter 6, we established a theory of
the MAFF in causal inference. We elucidated the causal definition of the MAFF using
the potential outcome framework and developed a method to estimate the MAFF from the
data. We delineated potential measurement error scenarios and the problems that arise in
the presence of such measurement errors. To obtain an unbiased estimate of the MAFF,
we developed a novel maximum likelihood estimation method to incorporate the potential
measurement errors based on exponential family g-modeling.

In conclusion, the focus of the current theory and methods in observational studies has been
restricted to the ATE. We studied other treatment effects beyond the ATE, and revealed
that more complex and sophisticated causal inference can be made with the same underlying
assumptions.
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APPENDIX

A.1. Simulation for the Estimation of Distributions from Chapter 2

Table 20: Normal Mixture. The average performance comparison between the MBL
method, the method of moment method and the parametric normal mixture method when
the true distributions are normal; AD means the average discrepancy from the true CDF.

MBL MOM Parametric

Causal
effect IV Z AD SE AD SE AD SE

No Strong Z = 0 0.0030 0.0028 0.0031 0.0029 0.0016 0.0023
No Strong Z = 1 0.0030 0.0028 0.0031 0.0029 0.0016 0.0023

Some Strong Z = 0 0.0030 0.0030 0.0031 0.0031 0.0017 0.0026
Some Strong Z = 1 0.0030 0.0028 0.0031 0.0029 0.0017 0.0025

No Weak Z = 0 0.0287 0.0307 0.0951 0.7838 0.0182 0.0287
No Weak Z = 1 0.0274 0.0312 0.0934 0.8526 0.0188 0.0312

Some Weak Z = 0 0.0277 0.0288 0.0764 0.5993 0.0176 0.0269
Some Weak Z = 1 0.0301 0.0343 0.0773 0.3546 0.0184 0.0272

We conduct a simulation study to examine the accuracy of our proposed MBL estimation
method. We consider three different methods to estimate the outcome CDFs for com-
pliers; the MBL method, the MOM method described in Section 2.2.2 and a parametric
normal mixture method Imbens and Rubin (1997). The parametric normal mixture model
assumes that all outcome distributions for compliance classes have normal distributions.
Then, using the EM algorithm, it estimates the means and the variances of the outcome
distributions. Specifically, we consider two simulation scenarios: (1) normal mixture models
and (2) gamma mixture models.

Also, in each scenario, we consider two more factors that can affect the performance of
these three methods. First, we consider whether there is any effect of the treatment for

compliers, i.e. whether the outcome distributions of F
(0)
co and F

(1)
co are the same or not

the same. Second, we consider whether the IV is strong or weak. The strength of an
IV is how strongly the IV is associated with the treatment. One common definition of a
weak IV is that the first stage F-statistic when the treatment is regressed on the IV is
less than 10 Stock et al. (2002). We consider a strong IV setting where the proportions
of subpopulations (co, nt, at) is (1/3, 1/3, 1/3) (average first stage F-statistic≈124) and
a weak IV setting where proportions of (co, nt, at) = (0.10, 0.45, 0.45) (average first stage
F-statistic≈10).

We repeat simulations for 1000 times with the sample size n = 1000 to see average per-
formance of estimating the true CDFs. The measurement of the discrepancy between the
estimated and the true CDFs is defined by L2 distance, i.e. if the true CDF is F and our
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estimated CDF is F̂ , the L2 distance is

L2(F, F̂ ) =

ˆ
{F (x)− F̂ (x)}2dF (x). (A.1.1)

Under the assumption that all subpopulations have normal outcome distributions, we con-

sider the case that there is no causal effect of Z on Y for compliers, specifically, F
(0)
co =

F
(1)
co ∼ N(0, 42), Fnt ∼ N(2, 42), Fat ∼ N(−2, 42) and the case that there is some effect of

Z on Y , specifically, F
(0)
co ∼ N(1, 42), F

(1)
co ∼ N(−1, 42), Fnt ∼ N(2, 42), Fat ∼ N(−2, 42).

Table 20 shows that the average performance of the MBL method is better than that of the
MOM method in all cases, and it is not much different from the average performance of the
parametric normal mixture method that assumes the correct parametric distributions. All
three method are greatly affected by the IV being weak. In particular, the MOM method
is more sensitive to the IV being weak; the MOM method and the MBL method perform
similarly when the IV is strong but the MBL method is much better than the MOM method
when the IV is weak.

Table 21: Gamma Mixture case. The average performance comparison between the MBL
method, the MOM method and the parametric normal mixture method when the true
distributions are nonnormal; AD means the average discrepancy from the true CDF.

MBL MOM Parametric

Causal
effect IV Z AD SE AD SE AD SE

No Strong Z = 0 0.0030 0.0029 0.0031 0.0030 0.0054 0.0128
No Strong Z = 1 0.0029 0.0029 0.0030 0.0030 0.0061 0.0172

Some Strong Z = 0 0.0029 0.0027 0.0030 0.0028 0.0148 0.0443
Some Strong Z = 1 0.0028 0.0027 0.0029 0.0027 0.0198 0.0608

No Weak Z = 0 0.0290 0.0310 0.1048 0.9679 0.0888 0.1239
No Weak Z = 1 0.0271 0.0312 0.1116 1.6740 0.0753 0.1266

Some Weak Z = 0 0.0280 0.0294 0.0523 0.1292 0.0711 0.1173
Some Weak Z = 1 0.0271 0.0285 0.0508 0.1039 0.1047 0.1371

Under the normal assumption, the normal parametric mixture method is the best method
of the three methods. However, the assumption of normality is a strong assumption. If
normality does not hold, then the normal parametric method is no longer the best. Table 21
summarizes the simulation results of a gamma case. Let Γ(α, β) be a Gamma distribution
with shape α and rate β. In Table 21, similar to the normal case, we consider the no causal

effect case that F
(0)
co = F

(1)
co ∼ Γ(1.2, 1), Fnt ∼ N(1, 1), Fat ∼ N(1.4, 1) and the some causal

effect case that F
(0)
co ∼ Γ(1.1, 1), F

(1)
co ∼ Γ(1.3, 1), Fnt ∼ N(1, 1), Fat ∼ N(1.4, 1).

Table 21 shows that the MBL method is the dominant method in all scenarios considered
when normality is not satisfied. Though the MOM method has a similar performance in

78



the strong IV setting, it is much worse than the MBL method in the weak IV setting as
in the normal mixture model setting. Also, the parametric normal mixture method has
significantly increased ADs with large SEs. In short, since the MBL method does not
rely on any assumption about the distribution of the data, it is robust to any distribution
assumption and is the least sensitive to the IV being weak.

A.2. Proofs from Chapter 2

A.2.1. Proof of Theorem 2.3.1

Observation A.2.1. Fix a ∈ [0, 1]. Then for every x ∈ [0, 1], J(a, x) = a log x + (1 −
a) log(1− x) ≤ a log a+ (1− a) log(1− a) = J(a, a).

Proof. The inequality is trivially satisfied when a ∈ {0, 1}. Therefore, assume that a ∈
(0, 1), and define a random variable W which takes values x

a and 1−x
1−a with probabilities

a and 1 − a, respectively. Note that EW = 1. Then by Jensen’s inequality, E(logW ) =
a log x

a + (1− a) log 1−x
1−a ≤ logEW = 0, which completes the proof of the result.

Lemma A.2.1. Let F = (F
(0)
co , Fnt, F

(1)
co , Fat) be as defined in (2.2.2). Then,

arg max
θ∈ϑ+

M(θ) = arg max
θ∈ϑ

M(θ) = F , (A.2.1)

Proof. By Observation A.2.1,

M(θ) ≤ 1

n

n∑
b=1

{η00I(F00(Yb)) + η10I(F10(Yb)) + η01I(F01(Yb)) + η11I(F11(Yb))} . (A.2.2)

Moreover, the equality is attained when (θ00, θ10, θ01, θ11) = (F00, F10, F01, F11). Recall that

F01(t) = Fat(t), F10(t) = Fnt(t). Moreover, from (2.2.4) and (2.2.5), F00(t) = φc
φc+φn

F
(0)
co (t)+

φn
φc+φn

Fnt(t) and F11(t) = φc
φc+φa

F
(1)
co (t) + φa

φc+φa
Fat(t). This implies that the equality in

(A.2.2) above, is attained when (θ
(0)
co , θnt, θ

(1)
co , θat) = (F

(0)
co , Fnt, F

(1)
co , Fat). Finally, since

(F
(0)
co , Fnt, F

(1)
co , Fat) ∈ ϑ+, (A.2.1) follows.

Observation A.2.2. Fix 0 < t < 1. Suppose Y1, Y2, . . . , Yn are i.i.d. samples with distri-
bution function H = η00F00 + η01F01 + η10F10 + η11F11. Then, for u, v ∈ {0, 1}

Fuv(Ydnte)
P−→ H−1

uv (t),

where Huv(t) = η00(F00 ◦F−1
uv )(t)+η01(F01 ◦F−1

uv )(t)+η10(F10 ◦F−1
uv )(t)+η11(F11 ◦F−1

uv )(t).

Proof. Without of generality, take u = 0 and v = 0. Then the distribution of

W1 := F00(Y1), W2 := F00(Y2), . . . , Wn := F00(Yn)
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are i.i.d. samples with distribution function H00(t) = η00t + η01(F01 ◦ F−1
00 )(t) + η10(F10 ◦

F−1
00 )(t) + η11(F11 ◦ F−1

00 )(t). This implies, for any 0 < t < 1, F00(Y(dnte)) = W(dnte)
P−→

H−1
00 (t), where the last step uses the convergence of sample quantiles to the corresponding

population quantiles.

Lemma A.2.2. Let Mn(·) and M(·) be as in (2.3.6) and (2.3.7). Then

sup
θ∈ϑ+

|Mn −M|(θ)
P−→ 0.

Proof. Denote θ01 = θat and θ10 = θnt. Therefore, for u, v ∈ {0, 1},

T (n)
uv (θuv|Y )− Tuv(θuv|Y )

=
1

n
·
∑
b∈Iκ

nuv
n

{
Fuv(Y(b))− Fuv(Y(b))

}
log

θuv(Y(b))

1− θuv(Y(b))

and

(Mn −M)(θ)

=
∑

u,v∈{0,1}

(
T (n)
uv (θuv|Y )− Tuv(θuv|Y )

)
=

1

n

∑
u,v∈{0,1}

∑
b∈Iκ

nuv
n

{
Fuv(Y(b))− Fuv(Y(b))

}
log

θuv(Y(b))

1− θuv(Y(b))
. (A.2.3)

Now, by the monotonicity of θuv,∣∣∣∣log
θuv(Y(b))

1− θuv(Y(b))

∣∣∣∣ ≤ ∣∣∣∣log
θuv(Y(dnκe))

1− θuv(Y(dnκe))

∣∣∣∣+

∣∣∣∣log
θuv(Y(dn(1−κ)e))

1− θuv(Y(dn(1−κ)e))

∣∣∣∣ = OP (1),

and

|Fuv(Y(b)) log θuv(Y(b)) + (1− Fuv(Y(b))) log(1− θuv(Y(b)))|
≤ max

(
| log θuv(Ydnκe)|, | log(1− θuv(Ydn(1−κ)e))|

)
= Op(1)

Using this and supt∈R |Fuv(t) − Fuv(t)| = OP (1/
√
n), it follows from (A.2.3), that |(Mn −

M)(θ)| ≤ OP (1/
√
n), completing the proof of the lemma.

Lemma A.2.3. Let F = arg maxθ∈ϑ+ M(θ). Then

max
θ∈B(F ,δ)

M(θ) <M(F , ),

where B(F , δ) :=
{
θ ∈ ϑ+ : 1

n

∑
b∈Iκ ||θ(Y(b))− F (Y(b))||22 > δ1

}
.
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Proof. Note that

M(θ)−M(F )

=
∑

u,v∈{0,1}

Tuv(θuv|Y )− Tuv(Fuv|Y )

=
1

n

∑
u,v∈{0,1}

∑
b∈Iκ

ηuv

{
Fuv(Y(b)) log

θuv(Y(b))

Fuv(Y(b))
+ (1− Fuv(Y(b))) log

1− θuv(Y(b))

1− Fuv(Y(b))

}
.

(A.2.4)

For a given a ∈ (0, 1), let fa(x) = a log x
a + (1− a)1−x

1−a . By a second order Taylor expansion

around the point a, fa(x) = 1
2(x− a)2f ′′a (γx,a) where γx,a ∈ [x∧ a, x∨ a] (x∧ a := min(x, a)

and x ∨ a := max(x, a)) and f ′′a (x) = − a
x2
− 1−a

(1−x)2
. Note that, for a ∈ (0, 1) fixed, the

function f ′′a (x) is convex. It is easy to check that the minimum is attained at x0 = ( a
1−a)

1
3 ,

and f ′′a (x) ≥ f ′′a (x0) > 1. Then,

M(θ)−M(F ) < − 1

n

 ∑
u,v∈{0,1}

∑
b∈Iκ

ηuv
(θuv(Y(b))− Fuv(Y(b)))

2

2


. − 1

n

∑
b∈Iκ

‖θ(Y(b))− F (Y(b))‖22

≤ −δ,

completing the proof of the lemma.

The proof of Theorem 2.3.1 can now be completed using the Lemma A.2.2 and A.2.3 above,
as follows: By definition, Mn(θ̂) ≥ supθ∈ϑ+ Mn(θ).

By the definition of the BL estimates, Mn(θ̂) ≥ Mn(F ) − oP (1). By Lemma A.2.2, this
implies that Mn(θ̂) ≥M(F )− oP (1). Therefore,

M(F )−M(θ̂) ≤Mn(θ̂)−M(θ̂) + oP (1)

≤ sup
θ∈ϑ+

|Mn −M|(θ) + oP (1)
P−→ 0. (A.2.5)

By the Lemma A.2.3, for every δ > 0 there exists ε = ε(δ) > 0 such that M(θ) <M(F )− ε
for every θ ∈ B(F , δ) where B(F , δ) is defined in Lemma A.2.3. Thus, the event {θ ∈
B(F , δ)} is contained in the event {M(θ̂) <M(F )− ε}, and by (A.2.5),

P(B(F , δ)) = P

 1

n

∑
b∈Iκ

||θ̂(Y(b))− F (Y(b))||22 > δ

→ 0,

This completes the proof of (2.3.8).
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A.2.2. Proof of Theorem 2.3.2

Hereafter, denote θ01 = θat and θ10 = θnt. Then from (A.2.3)

(Mn −M)(θ) =
1

n

∑
u,v∈{0,1}

nuv
n

n∑
b=1

{Fuv(Yb)− Fuv(Yb)} log
θuv(Yb)

1− θuv(Yb)
.

Recall that θ̃ ∈ ϑ+ is a function from R→ [0, 1]4 such that θ̃(t) = (θ
(0)
co (t), θnt(t), θ

(1)
co (t), θat(t))

′.

Moreover, recall that F (t) = (F
(0)
co (t), Fnt(t), F

(1)
co (t), Fat(t))

′, are the true population distri-
bution functions.

Define a matrix Vn as 4n× 4n matrix such as Vn =

Σ1

. . .

Σn

 where

Σb =



∂2M(θ)

(∂θ
(0)
co (Yb))2

∂2M(θ)

(∂θ
(0)
co (Yb))(∂θnt(Yb))

∂2M(θ)

(∂θ
(0)
co (Yb))(∂θ

(1)
co (Yb))

∂2M(θ)

(∂θ
(0)
co (Yb))(∂θat(Yb))

∂2M(θ)

(∂θnt(Yb))(∂θ
(0)
co (Yb))

∂2M(θ)
(∂θnt(Yb))2

∂2M(θ)

(∂θnt(Yb))(∂θ
(1)
co (Yb))

∂2M(θ)
(∂θnt(Yb))(∂θat(Yb))

∂2M(θ)

(∂θ
(1)
co (Yb))(∂θ

(0)
co (Yb))

∂2M(θ)

(∂θ
(1)
co (Yb))(∂θnt(Yb))

∂2M(θ)

(∂θ
(1)
co (Yb))2

∂2M(θ)

(∂θ
(1)
co (Yb))(∂θat(Yb))

∂2M(θ)

(∂θat(Yb))(∂θ
(0)
co (Yb))

∂2M(θ)
(∂θat(Yb))(∂θnt(Yb))

∂2M(θ)

(∂θat(Yb))(∂θ
(1)
co (Yb))

∂2M(θ)
(∂θat(Yb))2

 |θ=F

(A.2.6)

From direct computation, the inverse matrix V −1
n =

Σ−1
1

. . .

Σ−1
n

 where

Σ−1
b = n


−(1−λ0

λ0
)2 1
Q10(Yb)

− 1
λ20

1
Q00(Yb)

1−λ0
λ0

1
Q10(Yb)

0 0
1−λ0
λ0

1
Q10(Yb)

− 1
Q10(Yb)

0 0

0 0 −(1−λ1
λ1

)2 1
Q01(Yb)

− 1
λ21

1
Q11(Yb)

1−λ1
λ1

1
Q01(Yb)

0 0 1−λ1
λ1

1
Q01(Yb)

− 1
Q01(Yb)


(A.2.7)
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where

Q00(Yb) = η00
1

F00(Yb)(1− F00(Yb))

Q01(Yb) = η01
1

F01(Yb)(1− F01(Yb))

Q10(Yb) = η10
1

F10(Yb)(1− F10(Yb))

Q11(Yb) = η11
1

F11(Yb)(1− F11(Yb))
(A.2.8)

The matrix Vn(Y(b)) is represented as Σ(b). The corresponding the inverse matrix Vn(Y(b))
−1

is given by Σ−1
(b) .

Lemma A.2.4. Let θ̃ ∈ ϑ+ be such that 1
n

∑
b∈Iκ ||θ̃(Y(b)) − F (Y(b))||22 = OP (1/n) and

||θ̃(Y(dnκe))− F (Y(dnκe))||2 = oP (1). Then

(Mn(θ̃)−Mn(F )) =
1

n
3
2

∑
b∈I
〈θ̃(Y(b))− F (Y(b)),Zn(Y(b))〉

+
1

2
· 1

n

∑
b∈Iκ

(θ̃(Y(b))− F (Y(b)))
′Vn(Y(b))(θ̃(Y(b))− F (Y(b))) +OP (n−

3
2 ), (A.2.9)

where

Zn =

Zn,θ(Y(1))

. . .
Zn,θ(Y(n))


and

Zn,θ(Y(b)) =
1√
n


λ0Q00(Y(b))(F00(Y(b))− F00(Y(b)))

(1− λ0)Q00(Y(b))(F00(Y(b))− F00(Y(b))) +Q10(Y(b))(F10(Y(b))− F10(Y(b)))

λ1Q11(Y(b))(F11(Y(b))− F11(Y(b)))

(1− λ1)Q11(Y(b))(F11(Y(b))− F11(Y(b))) +Q01(Y(b))(F01(Y(b))− F01(Y(b)))

 .

(A.2.10)

Proof. Recall the definitions of Mn and M from (2.3.6) and (2.3.7). Then

(Mn −M)(θ̃)− (Mn −M)(F )

=
1

n

∑
u,v∈{0,1}

∑
b∈Iκ

nuv
n

{
Fuv(Y(b))− Fuv(Y(b))

}(
log

θ̃uv(Y(b))

1− θ̃uv(Y(b))
− log

Fuv(Y(b))

1− Fuv(Y(b))

)
(A.2.11)
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The log subtraction part in the parenthesis of equation (A.2.11) is

log
θ̃uv(Y(b))

1− θ̃uv(Y(b))
− log

Fuv(Y(b))

1− Fuv(Y(b))
= log

θ̃uv(Y(b))

Fuv(Y(b))
− log

1− θ̃uv(Y(b))

1− Fuv(Y(b))

=
θ̃uv(Y(b))− Fuv(Y(b))

Fuv(Y(b))(1− Fuv(Y(b)))
+Ruv(Y(b)),

(A.2.12)

where

Ruv(Y(b)) =
1

2
(θ̃uv(Y(b))− Fuv(Y(b)))

2

(
1

(1− γuv(Y(b)))2
− 1

γuv(Y(b))2

)
,

where γuv(Y(b)) ∈ [Fuv(Y(b)) ∧ θ̃uv(Y(b)), Fuv(Y(b)) ∨ θ̃uv(Y(b))].

Next, note that γuv(Y(b)) ≥ θ̃uv(Y(b)) ≥ θ̃uv(Y(dnκe)) = Fuv(Y(dnκe))+oP (1), for u, v ∈ {0, 1}.
Moreover, by Observation A.2.2 Fuv(Y(b)) ≥ Fuv(Y(dnκe)) = H−1

uv (κ) + oP (1). This implies
that there exists a constant 0 < δ(κ) < 1, such that ωuv(Y(b)) ∈ [δ(κ), 1 − δ(κ)] with high
probability. Therefore, with a OP (1) term depending on the constant κ

1

n

∑
b∈Iκ

|Ruv(Y(b))| = OP (1) · 1

n

∑
b∈Iκ

(θ̃uv(Y(b))− Fuv(Y(b)))
2 = OP (1/n), (A.2.13)

by assumption. Then, using ||Fuv(Y(b))− Fuv(Y(b))||∞ = OP (n−1/2) and (A.2.13),

1

n

∑
u,v∈{0,1}

nuv
n

∑
b∈Iκ

(Fuv(Y(b))− Fuv(Y(b)))Ruv(Y(b)) = OP (n−3/2).

Combining this with (A.2.11) and (A.2.12), gives

(Mn −M)(θ̃)− (Mn −M)(F )

=
1

n

∑
u,v∈{0,1}

∑
b∈Iκ

nuv
n

(Fuv(Y(b))− Fuv(Y(b)))

Fuv(Y(b))(1− Fuv(Y(b)))
(θ̃uv(Y(b))− Fuv(Y(b))) +OP (n−3/2),

(A.2.14)

Then the (b)-th term of the sum in (A.2.12) above can be represented in terms of

θ̃(0)
co (Y(b))−F (0)

co (Y(b)), θ̃nt(Y(b))−Fnt(Y(b)), θ̃(1)
co (Y(b))−F (1)

co (Y(b)), θ̃at(Y(b))−Fat(Y(b)),
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as follows:{
λ0Q00(Y(b))(F 00(Y(b))− F00(Y(b)))

}
(θ̃(0)co (Y(b))− F (0)

co (Y(b)))

+
{

(1− λ0)Q00(Y(b))(F̂00(Y(b))− F00(Y(b))) +Q10(Y(b))(F̂10(Y(b))− F10(Y(b)))
}

(θ̃nt(Y(b))− Fnt(Y(b)))

+
{
Q11(Y(b))(F̂11(Y(b))− F11(Y(b)))

}
(θ̃(1)co (Y(b))− F (1)

co (Y(b)))

+
{

(1− λ1)Q11(Y(b))(F̂11(Y(b))− F11(Y(b))) +Q01(Y(b))(F̂01(Y(b))− F01(Y(b)))
}

(θ̃at(Y(b))− Fat(Y(b))),

where Quv is defined in (A.2.8)

Then from (A.2.14) and the definition of the vector Zn(·) in (A.2.10),

(Mn −M)(θ̃)− (Mn −M)(F ) =
1√
n

(θ̃ − F )TZn +OP (n−
3
2 ). (A.2.15)

Finally, by a second order Taylor expansion of M(θ̃)−M(F ) around ((F (Y(b)))b∈Iκ ,λ),

M(θ̃)−M(F ) =
1

2
· (θ̃ − F )TV (θ̃ − F ) +OP (n−

3
2 ), (A.2.16)

which, together with (A.2.15), implies the result in (A.2.16) follows since the gradient of
M(F ) at the point ((F (Y(b)))b∈Iκ) is zero.

Lemma A.2.5. Let (θ̂) = arg maxθ∈ϑ+ Mn(θ) be the BL estimate. Then the following
holds:

(a) 1
n

∑
b∈Iκ ||θ̂(Y(b))− F (Y(b))||22 = OP (1/n) a.

(b) For every finite set of indices J ⊆ Iκ, (
√
n|θ̂n(Y(b))− F (Y(b))|)b∈J = OP (1).

Proof. Since ‖θ−F ‖2 = 1
n

∑
b∈Iκ ‖θ−F ‖

2
2, define B̄(F , δ) := {θ ∈ ϑ+ : δ/2 < ‖θ−F ‖ < δ}.

From the proof of Lemma A.2.3,

max
θ∈B̄(F ,δ)

M(θ)−M(F ) . − 1

n

∑
b∈Iκ

‖θ − F ‖22

= −‖θ − F ‖2 < −δ2 (A.2.17)

Now, by a first order Taylor expansion and arguments same as before, it follows that for
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θ̂ ∈ B̄(F , δ)

|(Mn −M)(θ̂)− (Mn −M)(F )|

.
1

n

∑
u,v∈{0,1}

nuv
n

∑
b∈Iκ

{
|Fuv(Y(b))− Fuv(Y(b))||θ̂uv(Y(b))− Fuv(Y(b))|

}
≤ OP

(
1√
n

)
· 1

n

∑
u,v∈{0,1}

∑
b∈Iκ

|θ̂uv(Y(b))− Fuv(Y(b))|

≤ OP

(√
δ

n

)
, (A.2.18)

where the last step uses the Cauchy-Schwarz inequality. Combining (A.2.17) and (A.2.18),
and invoking (Van der Vaart and Wellner, 1996, Theorem 3.4.1), part (a) follows.

Define D̄(F , δ) :=
{
θ ∈ ϑ+ : δ/2 < 1

|J |
∑

b∈J ||θ(Y(b))− F (Y(b))||22 < δ
}

. Then, from the

proof of Lemma A.2.3, it is easy to see that

max
θ∈D̄(F ,δ)

M(θ)−M(F ) . −δ. (A.2.19)

For θ̂ ∈ D̄(F , δ), similar to (A.2.18),

|(Mn −M)(θ̂)− (Mn −M)(F )| ≤ OP
(

1√
n

)
·
∑

u,v∈{0,1}

∑
b∈J
|θ̂uvY(b))− Fuv(Y(b))|

≤ OP

(√
δ

n

)
. (A.2.20)

Finally, as before, by (Van der Vaart and Wellner, 1996, Theorem 3.4.1), 1
|J |
∑

b∈J ||θ̂(Y(b))−
F (Y(b))||22 = OP (1/n), which implies (

√
n|θ̂n(Y(b))− F (Y(b))|)b∈J = OP (1).

Recall Zn and Vn from (A.2.10) and (A.2.6), respectively. Now, substitute θ̃ = θ̂, the BL
estimate, in (A.2.9). From Lemma A.2.4 and Lemma A.2.5,

Mn(θ̂)−Mn(F ) =
1√
n

(θ̂ − F )TZn +
1

2
(θ̂ − F )TVn(θ̂ − F ) +OP (n−

3
2 ). (A.2.21)

Then substitute θ̃ = F − n−
1
2V −1

n Zn in (A.2.15), where Zn = (Zn(Y(b))
′)′b∈Iκ and Vn =

diag(Vn(Y(b)))b∈Iκ . By using the matrix V −1
n as computed in (A.2.7), a direct multiplication
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shows that

−V −1
n Zn =



...
G00(Y(b))−(1−λ0)G10(Y(b))

λ0
G10(Y(b))

G11(Y(b))−(1−λ1)G01(Y(b))

λ1
G01(Y(b))

...


+



...
√
n
(
F00(Y(b))−(1−λ0)F10(Y(b))

λ0
− F (0)

co (Y(b))
)

+OP (1)
√
n(F10 − Fnt)(Y(b)) +OP (1)

√
n
(
F11(Y(b))−(1−λ1)F01(Y(b))

λ1
− F (1)

co (Y(b))
)

+OP (1)
√
n(F01 − Fat)(Y(b)) +OP (1)

...


where Guv(t) =

√
n(Fuv(t)− Fuv(t)). We let

F̆ (0)
co (Y(b)) =

F00(Y(b))− (1− λ0)F10(Y(b))

λ0
(A.2.22)

F̆nt(Y(b)) = F10(Y(b))

F̆ (1)
co (Y(b)) =

F11(Y(b))− (1− λ1)F01(Y(b))

λ1

F̆at(Y(b)) = F01(Y(b)).

Then, the estimators F̆
(0)
co , F̆nt, F̆(1), F̆at are the MOM estimators discussed in Abadie (2002).

Furthermore, the term −V −1
n Zn is further simplified as

−V −1
n Zn =



...
√
n(F̆

(0)
co − F (0)

co )(Y(b)) +OP (1)√
n(F̆nt − Fnt)(Y(b)) +OP (1)

√
n(F̆

(1)
co − F (1)

co )(Y(b)) +OP (1)√
n(F̆at − Fat)(Y(b)) +OP (1)

...


=
√
n(F̆ − F +OP (n−1/2)) (A.2.23)

Therefore, 1
n

∑
b∈Iκ ||

1√
n
V −1
n (Y(b))Zn(Y(b))||22 = OP (1/n), since supt |Guv(t)| = OP (1/

√
n).

This implies,

Mn(F − n−
1
2V −1

n Zn)−Mn(F ) = − 1

2n
Z ′nV

−1
n Zn +OP (n−

3
2 ). (A.2.24)
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Subtracting (A.2.24) from (A.2.21) gives,

Mn(θ̂)−Mn(F − 1√
n
V −1
n Zn)

=
1√
n

(θ̂ − F )TZn +
1

2
(θ̂ − F )TVn(θ̂ − F ) +

1

2n
Z ′nV

−1
n Zn +OP (n−

3
2 )

=
1

2

(
(θ̂ − F ) +

1√
n
V −1
n Zn

)T
Vn

(
(θ̂ − F ) +

1√
n
V −1
n Zn

)
+OP (n−

3
2 )

=
1

2
(θ̂ − F̆ )TVn(θ̂ − F̆ ) +OP (n−

3
2 ), (A.2.25)

where F̆ (·) is defined in (A.2.22).
Lemma A.2.6. The BL estimate θ̂ satisfies

1

n

∑
b∈Iκ

||
√
n{θ̂(Y(b))− F̆ (Y(b))}||22 = OP (1/

√
n).

Proof. For b ∈ [n], denote by xxxb =
√
n{θ̂(Y(b)) − F̆ (Y(b))} and Ab = −Vn(Y(b)). Then

(A.2.25) implies,

1

n

∑
b∈Iκ

x′bAbxb = OP (1/
√
n), (A.2.26)

since Mn(θ̂)−Mn(θ0 − 1√
n
V −1
n Zn) ≥ 0.

Note that Ab is positive definite, and denote by ||A−1
b ||∞ the maximum eigenvalue of A−1

b .

Let Ab =
∑4

j=1 λbjpbjp
′
bj be the spectral decomposition of Ab, where λb1 ≤ λb2 ≤ λb3 ≤ λb4

are the eigenvalues of Ab. This implies

x′bAbxb =

4∑
j=1

λbj |p′bjxb|2 ≥ λb1
3∑
j=1

|p′bjxb|2 = λb1||xb||22 =
1

||A−1
b ||∞

||xb||22. (A.2.27)

Next, recall Quv(·) from (A.2.8), and note that

4nuv
n
≤ Quv(Y(b)) ≤

1

Fuv(Ydnκe)(1− Fuv(Ydn(1−κ)e))
,

where the upper bound uses the monotonicity of the distribution function and lower bound
uses x(1−x) ≤ 1/4. Now, there exists δ(κ) such that Fuv(Ydnκe) ∈ [δ(κ), 1] and Fuv(Ydn(1−κ)e) ∈
[0, 1− δ(κ)] with high probability. Finally, since nuv/n converges in probability to ηuv > 0,
there exists 0 < c(κ) < C(κ) <∞ such that

P(c(κ) < sup
b∈Iκ

Quv(Y(b)) < C(κ))→ 1.

This implies, supb∈Iκ ||A
−1
b ||∞ ≤ supb∈Iκ maxi ||A−1

b ei||
2
2 < M(κ), with high probability, for
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some M(κ) <∞, that is, supb∈Iκ ||A
−1
b ||∞ = OP (1). Then, from (A.2.27)

1

n

∑
b∈Iκ

||
√
n{θ̂(Y(b))− F̆ (Y(b))}||22 =

1

n

∑
b∈Iκ

||xb||22 ≤ sup
b∈Iκ
||A−1

b ||∞

 1

n

∑
b∈Iκ

x′bAbxb


= OP (1)

 1

n

∑
b∈Iκ

x′bAbxb


= OP (1/

√
n),

where the last step uses (A.2.26).

A.2.3. Proof of Theorem 2.4.1

We define the MBL estimator under the general alternative as θ̂ = arg maxθ∈ϑ+ `(θ)

and the MBL estimator under the null as ψ̂ = arg maxθ∈ϑ+,0 `(θ). Recall that θ̂(t) =

(θ̂
(0)
co (t), θ̂nt(t), θ̂

(1)
co (t), θ̂at(t)), and ψ̂(t) = (ψ̂co(t), ψ̂nt(t), ψ̂at(t)). Introduce the following

functions,

θ̂00(t) = λ0θ̂
(0)
co (t) + (1− λ0)θ̂nt(t), ψ̂00(t) = λ0ψ̂co(t) + (1− λ0)ψ̂nt(t)

θ̂01(t) = θ̂at(t), ψ̂01(t) = ψ̂at(t)

θ̂10(t) = θ̂nt(t), ψ̂10(t) = ψ̂nt(t)

θ̂11(t) = λ1θ̂
(1)
co (t) + (1− λ1)θ̂at(t), ψ̂11(t) = λ1ψ̂co(t) + (1− λ1)ψ̂at(t).

Lemma A.2.7. Let θ̂00, θ̂01, θ̂10, θ̂11, and ψ̂00, ψ̂01, ψ̂10, ψ̂11 be as defined above. Then the
BLRT statistic satisfies

Tn =
1

n

∑
{u,v}∈{0,1}

∑
b∈Iκ

nuv

{
(ψ̂uv(Y(b))− Fuv(Y(b)))

2

Fuv(Y(b))(1− Fuv(Y(b)))
−

(θ̂uv(Y(b))− Fuv(Y(b)))
2

Fuv(Y(b))(1− Fuv(Y(b)))

}
+OP (1/

√
n).

(A.2.28)

Proof. Then, the difference of the log-BL under the alternative and the null can written as
follows:

Mn(θ̂)−Mn(ψ̂) =
1

n

∑
{u,v}∈{0,1}

∑
b∈Iκ

(Tuv(Y(b))|θ̂)− Tuv(Y(b))|ψ̂), (A.2.29)

where

Tuv(Y(b)|θ̂) =
nuv
n

{
Fuv(Y(b)) log θ̂uv(Y(b)) + (1− Fuv(Y(b))) log(1− θ̂uv(Y(b)))

}
Tuv(Y(b)|ψ̂) =

nuv
n

{
Fuv(Y(b)) log ψ̂uv(Y(b)) + (1− Fuv(Y(b))) log(1− ψ̂uv(Y(b)))

}
.
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Now, adding and subtracting the negative binary entropy J(Fuv(Y(b)),Fuv(Y(b))), it follows
that

Tuv(Y(b)|θ̂)− Tuv(Y(b)|ψ̂) =
{
Tuv(Y(b)|θ̂)− J(Fuv(Y(b)),Fuv(Y(b)))

}
−
{
Tuv(Y(b)|ψ̂)− J(Fuv(Y(b)),Fuv(Y(b)))

}
. (A.2.30)

Next, note that

Tuv(Y(b)|θ̂)− J(Fuv(Y(b)),Fuv(Y(b)))

=
nuv
n

{
Fuv(Y(b)) log

θ̂uv(Y(b))

Fuv(Y(b))
+ (1− Fuv(Y(b))) log

1− θ̂uv(Y(b))

1− Fuv(Y(b))

}

=
nuv
n
· 1

2
·

(θ̂uv(Y(b))− Fuv(Y(b)))
2

Fuv(Y(b))(1− Fuv(Y(b)))
+R(b)

uv , (A.2.31)

where

R(b)
uv =

nuv
n
·

(θ̂uv(Y(b))− Fuv(Y(b)))
3

6

{ Fuv(Y(b))

(ωuv(Y(b)))3
−

1− Fuv(Y(b))

(1− ωuv(Y(b)))3

}
,

where ωuv(Y(b)) ∈ [Fuv(Y(b)) ∧ θ̂uv(Y(b)), θ̂uv(Y(b)) ∨ Fuv(Y(b))].

Next, note that ωuv(Y(b)) ≥ θ̂uv(Y(b)) ≥ θ̂uv(Y(dnκe)) = Fuv(Y(dnκe))+oP (1), for u, v ∈ {0, 1}.
Moreover, Fuv(Y(b)) ≥ Fuv(Y(dnκe)) = Fuv(Y(dnκe)) + oP (1). Finally, since Fuv(Y(dnκe)) =
G−1
uv (κ) + oP (1) (Notation change). This implies that there exists a constant 0 < δ(κ) < 1,

such that ωuv(Y(b)) ∈ [δ(κ), 1− δ(κ)] with high probability. Then, since κ is a constant,∑
b∈Iκ

|R(b)
uv | ≤ OP (1)

∑
b∈Iκ

|θ̂uv(Y(b))− Fuv(Y(b))|3

≤ OP (1)
∑
b∈Iκ

|Fuv(Y(b))− θ̂uv(Y(b))|3 +OP (1/
√
n). (A.2.32)

Now, note that

1

n
3
2

∑
b∈Iκ

|
√
n[Fuv(Y(b))− θ̂uv(Y(b))]|3

.
1

n
3
2

∑
b∈Iκ

|
√
n{Fuv(Y(b))− θ̂uv(Y(b))}+ V −1

n (Y(b))Zn(Y(b))|3 +
1

n
3
2

∑
b∈Iκ

|V −1
n (Y(b))Zn(Y(b))|3

≤

 1

n

∑
b∈Iκ

|
√
n{Fuv(Y(b))− θ̂uv(Y(b))}+ V −1

n (Y(b))Zn(Y(b))|2
 3

2

+OP (1/
√
n) = oP (1),

(A.2.33)

using Theorem 2.3.2 and that maxb∈Iκ |V −1(Y(b))Z(Y(b))| = OP (1). Finally, combining
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(A.2.32) and (A.2.33), it follows that
∑

b∈Iκ |R
(b)
uv | = oP (1). This implies, by (A.2.31),

Tuv(Y(b)|θ̂)− J(Fuv(Y(b)),Fuv(Y(b))) =
nuv
n
· 1

2
·

(θ̂uv(Y(b))− Fuv(Y(b)))
2

Fuv(Y(b))(1− Fuv(Y(b)))
+ oP (1).

(A.2.34)

Similarly,

Tuv(Y(b)|ψ̂)− J(Fuv(Y(b)),Fuv(Y(b))) =
nuv
n
· 1

2
·

(ψ̂uv(Y(b))− Fuv(Y(b)))
2

Fuv(Y(b))(1− Fuv(Y(b)))
+ oP (1).

(A.2.35)

Combining (A.2.34) and (A.2.35) with (A.2.29) and (A.2.30) the result follows.

Proposition A.2.1. Under the null H0,

1

n

∑
b∈Iκ

∥∥∥∥∥∥∥

√
n[θ̂co(Y(b))− τ̂co(Y(b))]√
n[θ̂nt(Y(b))− τ̂nt(Y(b))]√
n[θ̂co(Y(b))− τ̂at(Y(b))]


∥∥∥∥∥∥∥

2

2

= oP (1)

where

τ̂co(t) =
(C01(t) + C11(t))

(
F00(t)−(1−λ0)F10(t)

λ0

)
+ (C10(t) + C00(t))

(
F11(t)−(1−λ1)F01(t)

λ1

)
C(t)

τ̂nt(t) = F10(t) +
λ0

1−λ0C10(t)

C(t)

{
F00(t)− (1− λ0)F10(t)

λ0
− F11(t)− (1− λ1)F01(t)

λ1

}
τ̂at(t) = F01(t) +

λ1
1−λ1C01(t)

C(t)

{
F11(t)− (1− λ1)F01(t)

λ1
− F00(t)− (1− λ0)F10(t)

λ0

}
.

(A.2.36)

and

C00(t) =
F00(t)(1− F00(t))

η00λ2
1

C01(t) =
F01(t)(1− F01(t))

η01λ2
0(1− λ1)2

C10(t) =
F10(t)(1− F10(t))

η10(1− λ0)2λ2
1

C11(t) =
F11(t)(1− F11(t))

η11λ2
0

C(t) = C00(t) + C01(t) + C10(t) + C11(t)

Proof. Similar to the proof in Theorem 2.3.2.
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From Theorem 2.3.2, it follows that

1

n

∑
u,v∈{0,1}

∑
b∈Iκ

(√
n[θ̃uv(Y(b))− Fuv(Y(b))]

)2
= oP (1).

Next, denote

B0(t) =
F00(t)− (1− λ0)F10(t)

λ0
, B1(t) =

F11(t)− (1− λ1)F01(t)

λ1
.

Then

τ̂00(t) = F00(t) +
C01(t)λ0

C(t)

(F11(t)− (1− λ1)F01(t)

λ1
− F00(t)− (1− λ0)F10(t)

λ0

)
+ oP (n−1/2)

= F̂00(t) +
C00(t)λ0

C(t)

(
B1(t)−B0(t)

)
τ̂01(t) = F01(t) +

C01(t) λ1
1−λ1

C(t)

(F11(t)− (1− λ1)F01(t)

λ1
− F00(yb)− (1− λ0)F10(t)

λ0

)
= F01(t) +

C01(t) λ1
1−λ1

C(t)

(
B1(t)−B0(t)

)
τ̂10(t) = F10(t) +

C10(t) λ0
1−λ0

C(t)

(F00(t)− (1− λ0)F10(t)

λ0
− F11(t)− (1− λ1)F01(t)

λ1

)
= F10(t) +

C10(t) λ0
1−λ0

C(t)

(
B0(t)−B1(t)

)
τ̂11(t) = F11(t) +

C11(t)λ1

C(t)

(F00(t)− (1− λ0)F10

λ0
− F11(t)− (1− λ1)F01(t)

λ1

)
+ oP (n−1/2)

= F11(t) +
C11(t)λ1

C(t)

(
B0(t)−B1(t)

)
.

and by Proposition A.2.1, it follows that

1

n

∑
u,v∈{0,1}

∑
b∈Iκ

(√
n[ψ̃uv(Y(b))− τ̂uv(Y(b))]

)2
= oP (1).
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By putting these asymptotically equivalent estimators into equation (A.2.28), we get

Tn =
1

n

∑
b∈Iκ

λ0C00(Y(b))
√
Q̂00(Y(b))

C(Y(b))

√
n(B1(Y(b))−B0(Y(b)))

2

+
1

n

∑
b∈Iκ

 λ1
1−λ1C01(Y(b))

√
Q̂01(Y(b))

C(Y(b))

√
n(B1(Y(b))−B0(Y(b)))

2

+
1

n

∑
b∈Iκ

 λ0
1−λ0C10(Y(b))

√
Q̂10(Y(b))

C(Y(b))

√
n(B1(Y(b))−B0(Y(b)))

2

+
1

n

∑
b∈Iκ

λ1C11(Y(b))
√
Q̂11(Y(b))

C(Y(b))

√
n(B1(Y(b))−B0(Y(b)))

2

+ oP (1). (A.2.37)

Note that Q̂uv(t)
P−→ ηuv

Fuv(t)(1−Fuv(t)) := Quv(t) in the supremum norm. In fact,

sup
b∈Iκ

∣∣∣∣∣Q̂uv(Y(b))

Quv(Y(b))
− 1

∣∣∣∣∣ = oP (1).

Define

W (Y(b)) =
1

λ2
0Q00(Y(b))

+
(1− λ1)2

λ2
1Q01(Y(b))

+
(1− λ0)2

λ2
0Q10(Y(b))

+
1

λ2
1Q11(Y(b))

.

We have

Tn =
1

n

∑
b∈Iκ

1
λ20

Q̂00(Y(b))

Q00(Y(b))
2 + (1−λ1)2

λ21

Q̂01(Y(b))

Q01(Y(b))
2 + (1−λ0)2

λ20

Q̂10(Y(b))

Q10(Y(b))
2 + 1

λ21

Q̂11(Y(b))

Q11(Y(b))
2

W (Y(b))2
(
√
n{B0(Y(b))−B1(Y(b))})2 + oP (1)

=
1

n

∑
b∈Iκ

(
√
n{B0(Y(b))−B1(Y(b))})2

W (Y(b))
+ oP (1) (A.2.38)

using the above estimates and the definition of W (t). Note that E(B0(Y(b))−B1(Y(b))|Y(b) =
t) = 0 and variance

nVar(B0(t)−B1(t)) = Var

(
F00(t)− (1− λ0)F10(t)

λ0
− F11(t)− (1− λ1)F01(t)

λ1

)
=

1

λ2
0Q00(t)

+
(1− λ1)2

λ2
1Q01(t)

+
(1− λ0)2

λ2
0Q10(t)

+
1

λ2
1Q11(t)

= W (t).
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Recall the definitions of B0(t) and B1(t). Then B0(t)−B1(t) = 1
λ0
Ĝ00− 1−λ0

λ0
Ĝ01+ 1−λ1

λ1
Ĝ10−

1
λ1
Ĝ11 = Ĝ, where Ĝuv = Fuv−Fuv, for u, v ∈ {0, 1}. Note that supt∈R

∣∣∣√nĜn(t)−G(t)
∣∣∣ =

oP (1), where

G(t) =

(√
φc + φn
φ0

B00(F00)−

√
φn
φ1
B10(F10)

)
−

(√
φc + φa
φ1

B11(F11)−

√
φa
φ0
B01(F01)

)
,

for independent Brownian bridges B00, B01, B10, B11. This implies,

Tn =
1

n

∑
b∈Iκ

{
√
nĜn(Y(b))}2

W (Y(b))
+ oP (1)

D
=

1

n

∑
b∈Iκ

G(Y(b))
2

W (Y(b))
+ oP (1)

=

ˆ 1−κ

κ

G(H−1(s))2

W (H−1(s))
ds+ oP (1)

=

ˆ H−1(1−κ)

H−1(κ)

G(t)2

Var(G(t))
dH(t) + oP (1). (A.2.39)

A.3. EM-PAVA algorithm

A.3.1. The pool-adjacent-violator (PAV) algorithm

The maximization (2.3.5) is not easy to solve because the parameter space ϑ+ includes the
non-decreasing condition. We use the EM algorithm to achieve the maximum. To apply
the EM algorithm, we need to find the complete data binomial likelihood. Given that
the compliance class indicator S is known, the complete data binomial likelihood LB(θ) is
defined as

LB(θ|Z,D,S,Y )

=
n∏
a=1

n∏
b=1

θ(0)
co (Yb)

1{Ya≤Yb,Za=0,Da=0,Sa=co}(1− θ(0)
co (Yb))

1{Ya>Yb,Za=0,Da=0,Sa=co}

×θnt(Yb)1{Ya≤Yb,Za=0,Da=0,Sa=nt}(1− θnt(Yb))1{Ya>Yb,Za=0,Da=0,Sa=nt}

×θat(Yb)1{Ya≤Yb,Za=0,Da=1,Sa=at}(1− θat(Yb))1{Ya>Yb,Za=0,Da=1,Sa=at}

×θnt(Yb)1{Ya≤Yb,Za=1,Da=0,Sa=nt}(1− θnt(Yb))1{Ya>Yb,Za=1,Da=0,Sa=nt}

×θ(1)
co (Yb)

1{Ya≤Yb,Za=1,Da=1,Sa=co}(1− θ(1)
co (Yb))

1{Ya>Yb,Za=1,Da=1,Sa=co}

×θat(Yb)1{Ya≤Yb,Za=1,Da=1,Sa=at}(1− θat(Yb))1{Ya>Yb,Za=1,Da=1,Sa=at}.

and the log complete data log-likelihood is defined as `B(θ|Z,D,S,Y ) = logLB(θ|Z,D,S,Y ).

We use the following algorithm to solve the maximization:

1. Set an initial value of θ as θ(0).

2. Compute the expected value of the complete data log-likelihood, with respect to the
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conditional distribution of S given observed data (Z,D,Y ):

Q(θ|θ(0)) = ES|Z,D,Y [`B(θ)].

3. Maximize the quantity Q(θ|θ(0)):

θ
(1)
temp = arg max

θ∈ϑ
Q(θ|θ(0))

However, θ
(1)
temp is not in the parameter space ϑ+ that is our interest. The maximiza-

tion of this step can be easily solved.

4. Apply the pool-adjacent-violator algorithm (PAVA) to the temporarily obtained pa-

rameter θ
(1)
temp: θ(1) = fPAV A(θ

(1)
temp). The algorithm fPAV A is illustrated in the

following section.

5. Iterate the Step 2, Step 3 and Step 4 until the tolerance is achieved.

The algorithm implicitly assumes that the maximization arg maxθ∈ϑ+ `B(θ) is solved by
using Step 3 and Step 4. This two step maximization is justified by Ma et al. (2015).

A.3.2. Pool-Adjacent-Violators Algorithm (PAVA)

We introduce a general concept of the pool-adjacent-violators algorithm (PAVA) before
introducing the details of estimation method. Assume that u = (u1, ..., un) are the ob-
servations and we want to find v = (v1, ..., vn) to minimize the following loss function∑n

i=1(ui − vi)
2 subject to v1 ≤ v2 ≤ ... ≤ vn. This regression is known as an isotonic

regression. The isotonic regression can be easily solved by using a standard PAVA. Also,
the PAVA can be interpreted as a mapping from Rn to Rn; fPAVA : Rn → Rn. If we have
u = (u1, ..., un), then we get the output fPAVA(u) = v as the solution for the minimization
problem. More generally, if we have weights wi, then the optimization problem is formulated
by

arg min
v1≤v2≤...≤vn

n∑
i=1

wi(ui − vi)2. (A.3.1)

It is well-known that this optimization problem is easily solved by a weighted PAVA Barlow
et al. (1972); de Leeuw et al. (2009).

A weighted PAVA is a simple algorithm that changes a sequence into an increasingly ordered
sequence with predetermined weights. If we have a sequence u = (u1, ..., un) and a weight
sequence w = (w1, ..., wn), then the algorithm is as follows.

Step 1. Set f↑(uj) = uj as initial values for all j.

Step 2. Start the first step with u1. Take f↑(u1) = f↑(u1) if f↑(u1) ≤ f↑(u2) and update

f↑(u1) = f↑(u2) =
w1f↑(u1)+w2f↑(u2)

w1+w2
if u1 > u2.

w1f↑(u1)+w2f↑(u2)
w1+w2

is the weighted
average of {f↑(u1), f↑(u2)}. Then, move to the next point f↑(u2). Note that the first

95



step does not update the points from the third to the last. That means f↑(uj) = uj
for j = 3, ..., n.

Step 3. For the i-th point, compare f↑(ui) with f↑(ui+1). If f↑(ui) ≤ f↑(ui+1), then f↑(ui)
remains the same and move to the next point. If f↑(ui) > f↑(ui+1), then f↑(ui) =
f↑(ui+1) is updated by the weighted average of {f↑(ui), f↑(ui+1)} and compare this
value with f↑(ui−1). If the nondecreasingness is achieved, i.e. f↑(ui−1) ≤ f↑(ui),
then move to the (i + 1)-th point. If f↑(ui−1) > f↑(ui), then f↑(ui−1) = f↑(ui) =
f↑(ui+1) is updated by the weighted average of {f↑(ui−1), f↑(ui), f↑(ui+1)}. Keep
doing this procedure until nondecreasingness is achieved. Once the partial sequence
(f↑(u1), ..., f↑(ui)) is nondecreasing, then move to the (i+ 1)-th point.

The output fPAVA(u) = (f↑(u1), ..., f↑(un)) from a weighted PAVA is nondecreasing and
is the solution for the optimization problem (A.3.1). For a simple example, we consider
a three-dimensional sequence of observations with equal weights. If we assume that the
sequence is u = (3, 2, 1), then the output sequence fPAVA(u) is updated as the following
order,

(3, 2, 1)→ (5/2, 5/2, 1)→ (5/2, 7/4, 7/4)→ (2, 2, 2).

In practice, there is a R package ‘Iso’ to implement a weighted PAVA. The ‘pava’ function
with specifying weights can provide the output sequence fPAVA(u) for any sequence u.

A.4. Appendix from Chapter 5

A.4.1. Evaluation of the choice of c0

In Section 5.3, we discussed the penalized likelihood method using the penalty function
s(α) = c0‖α‖. Although our model is more complicated than the model in Efron (2016),
the evaluation of the choice of c0 is similar. To choose c0, he considers the ratio of traces
R(α), R(α) = tr{s̈(α)}/ tr{I(α)} where I(α) is the Fisher information.

Like Efron (2016), assume that the space T of parasite density is a finite discrete set,

T = {z1, . . . , zk} with z1 = 0.

Then, the two densities g1(z) and g2(z) are re-written as

g1(zj ; q, α) = q · I(zj = 0) + (1− q) · exp{QTj α− φ1(α)}I(zj > 0), 0 ≤ q ≤ 1

g2(zj ;α, γ) = exp{QTj α+ γzj − φ2(α, γ)}

where QTj is jth row of the known k×m structure matrix Q and α is a m-dimensional vector.
We penalize the parameter α only, so we instead use g1(α) and g2(α) for simplicity. Also,
since the measurement error mechanism h is known, then the vector Pi = (pi1, . . . , pik)

T for
the observation Di is also known where pij = h(Di; zj). Furthermore, the marginal density
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for Di in the afebrile sample (Y obs
i = 0) becomes

f0i(Di;α) =

k∑
j=1

h(Di; zj)g1(zj ;α) = P Ti g1(α).

Similarly, the marginal density in the febrile sample (Y obs
i = 1) is

f1i(Di;α) = (1− λ∗)(P ∗i )T g1(α) + λ∗P Ti g2(α).

where P ∗i = (p∗i1, . . . , p
∗
ik)

T and p∗ij = h(Di;βzj) with the fever killing parameter β. From
Remark A2 in Efron (2016), we have

ḟ0i(α)

f0i(α)
= QTW0i(α)

ḟ1i(α)

f1i(α)
= (1− λ∗) ·QTW ∗0i(α) + λ∗ ·QTW1i(α)

= QT {(1− λ∗)W ∗0i(α) + λ∗ ·W1i(α)} := QT W̃1i(α)

where

W0i(α) = g1(zj ;α) {pij/f0j(α)− 1}
W ∗0i(α) = g1(zj ;α)

{
p∗ij/f1j(α)− 1

}
W1i(α) = g2(zj ;α) {pij/f1j(α)− 1} .

From Theorem 1 in Efron (2016), we can obtain the approximation for the ratio R(α) as
R(α̂) = tr{s̈(α̂)}/ tr{I(α̂)} where

s̈(α̂) =
c0

‖α̂‖

(
I − α̂α̂T

‖α̂‖2

)
I(α̂) =

[
QT

{
n0∑
i=1

W0i(α̂) {n0f0i(α)}W0i(α̂)T +

n1∑
i=1

W̃1i(α̂) {n1f1i(α)} W̃1i(α̂)T

}
Q

]
.

For the malaria example, c0 = 50 was a modest choice for the regularizing constant since
R(α) ≈ 0.005. For truncated normal distribution scenarios in simulations, c0 = 50 was a
modest choice.

A.4.2. Estimation of the dispersion parameter in the negative binomial distribution

In Section 6, we assume that the measurement error model (M2) has the negative binomial
distribution: Dobs|Dcur ∼ 40×NB(Dcur/40, r) where the mean is Dcur/40 and the disper-
sion parameter is r. The dispersion parameter r is not known, but can be estimated from
the data in O’Meara et al. (2007).

O’Meara et al. (2007) computed the false negative rate by counting numbers of slides re-
ported as negative from 25 microscopists, and they plotted the false nagative rate on the
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mean parasite density in Figure 2. We let y be the number of negative slides and x be the
mean parasite density. We use the data (x, y) to find the maximum likelihood estimate of
the dispersion parameter r; yi is the number of ‘negative’ from the binomial distribution
B(n = 25, pi) where pi is the probability of being falsely negative, and pi is computed from
the negative binomial distribution NB(xi/40, r). The log-likelihood is given as

` ∝
∑n

i=1 yi log(pi) + (25− yi) log(1− pi)
=

∑n
i=1 yi log(f(0;xi/40, r)) + (25− yi) log(1− f(0;xi/40, r))

(A.4.1)

where f(x;xi/40, r) is the probability mass function of the negative binomial with the mean
xi/40 and the dispersion parameter r. From the data in O’Meara et al. (2007), the estimate
of r is obtained as 5.83, and we use r = 6 in our paper. The R code for this estimation is
provided online.

A.4.3. Connection to Existing Methods

We will show that the existing estimators of the MAFF are not consistent under Assump-
tions 2 and 3 alone, and that an additional, implausible assumption is needed. The estimator
of the MAFF based on relative risk converges in probability to

plim(M̂AFFRR) = pf (R− 1)/R (A.4.2)

where R is the relative risk of fever associated with the exposure of parasites, i.e. R =
P (Y obs = 1|Dobs > 0)/P (Y obs = 1|Dobs = 0). We note that pa, pf and R can be estimated

from the observed data (Y obs, Dobs). The consistency of the estimator M̂AFFRR relies on
the following assumption.
Assumption 4. No Errors Assumption. The parasite density is not affected by a fever
caused solely by a non-malaria infection, Y nmi = 1, Y mi = 0, and the observed parasite
density Dobs is measured without error.
Proposition 1. Under Assumptions 2 - 4, the potential outcome framework MAFF is equal
to the relative risk MAFF. That is, MAFFpotential = plim(M̂AFFRR).

Proof. Since Y nmi does not depend on the parasite level D and P (Y mi = 1|D = 0) = 0, we
can have

P (Y obs = 1|D = 0) = P (Y nmi = 1, Y mi = 0|D = 0) + P (Y mi = 1|D = 0)
= P (Y nmi = 1)P (Y mi = 0|D = 0)
= P (Y nmi = 1).

(A.4.3)

Similarly, we have

P (Y obs = 1|D > 0) = P (Y nmi = 1|D > 0) + P (Y nmi = 0, Y mi = 1|D > 0)
= P (Y nmi = 1) + P (Y nmi = 0, Y mi = 1|D > 0).

(A.4.4)
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Then, from Equations (A.4.3) and (A.4.4), M̂AFFRR is

M̂AFFRR = pf (R− 1)/R

= P (D > 0|Y obs = 1) · P (Y obs=1|D>0)−P (Y obs=1|D=0)
P (Y obs=1|D>0)

= P (D > 0|Y obs = 1) · {P (Y nmi=1)+P (Y nmi=0,Ymi=1|D>0)}−P (Y nmi=1)
P (Y obs=1|D>0)

= P (Y obs=1,D>0)
P (Y obs=1)

P (Y nmi=0,Ymi=1|D>0)
P (Y obs=1|D>0)

= P (Y nmi=0,Ymi=1,D>0)
P (Y obs=1)

= P (Y nmi = 0, Y mi = 1|Y obs = 1).

Another popular choice of an estimator for the MAFF based on odds ratio is M̂AFFOR =
(p̂f − p̂a)/(1− p̂a) that has the probability limit, plim(M̂AFFOR). This estimator is an

approximated version of the estimator p̂f (R̂ − 1)/R̂ because the relative risk R is often
approximated by the odds ratio, pf (1−pa)/pa(1−pf ). The probability limit of this estimator
is as

plim(M̂AFFOR) = (pf − pa)/(1− pa). (A.4.5)

plim(M̂AFFOR) is approximately equal to plim(M̂AFFRR) when the prevalence of cases
is rare.
Proposition 2. Under Assumptions 2-4, in terms of the potential outcome framework,
plim(M̂AFFOR) is given by

plim(M̂AFFOR) =
P (Y mi = 1)

P (Y obs = 1)
=

plim(M̂AFFRR)

P (Y nmi = 0)
. (A.4.6)

Proof. Let R∗ be the odds ratio pf (1− pa)/pa(1− pf ). Since pf = P (D > 0|Y obs = 1) and
pa = P (D > 0|Y obs = 0), the odds ratio R∗ is

R∗ =
pf

1−pf ·
1−pa
pa

= P (D>0|Y obs=1)
P (D=0|Y obs=1)

· P (D=0|Y obs=0)
P (D>0|Y obs=0)

= P (Y obs=1,D>0)
P (Y obs=1,D=0)

· P (Y obs=0,D=0)
P (Y obs=0,D>0)

= P (Y obs=1,D>0)
P (Y obs=0,D>0)

· P (Y obs=0,D=0)
P (Y obs=1,D=0)

= P (Y obs=1|D>0)
P (Y obs=0|D>0)

· P (Y obs=0|D=0)
P (Y obs=1|D=0)

.

(A.4.7)

By substituting Equation (A.4.3), R∗ is

R∗ = P (Y obs=1|D>0)
P (Y nmi=0,Ymi=0|D>0)

· P (Y nmi=0)
P (Y nmi=1)

= P (Y obs=1|D>0)
P (Y nmi=1,Ymi=0|D>0)

.
(A.4.8)
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Then, M̂AFFOR is

M̂AFFOR = pf · R
∗−1
R∗

= P (D > 0|Y obs = 1) · P (Ymi=1|D>0)
P (Y obs=1|D>0)

= P (Ymi=1,D>0)
P (Y obs=1)

= P (Ymi=1)
P (Y obs=1)

(A.4.9)

According to Proposition 2, under Assumptions 2-4, M̂AFFOR is an asymptotically biased
estimator of the MAFF, and estimates the proportion of children who have malaria fevers
among febrile children P (Y mi = 1|Y obs = 1), not the MAFF.

Proposition 2 implies that plim(M̂AFFOR) is strictly larger than plim(M̂AFFRR) when

the probability of having non-malaria caused fever is positive. Technically, plim(M̂AFFRR)
is represented by multiplication of the probability of not having non-malaria caused fever
P (Y nmi = 0) and plim(M̂AFFOR) as shown by equation (A.4.6). If the target estimand

of some methods is plim(M̂AFFOR), the estimate from the method should be adjusted by

multiplying P (Y nmi = 0) in order to acquire the estimate of plim(M̂AFFRR). However,
one difficulty is that P (Y nmi = 0) is not observable. The following proposition shows that
this adjustment can be successfully achieved by estimating P (Y nmi = 0).

Proposition 3. Under Assumption 2-4, the estimator M̂AFFRR can be represented by

the estimator M̂AFFOR and the probability p = ̂P (Y obs = 1). Let λ = M̂AFFRR and

λ∗ = M̂AFFOR. Then, λ is obtained as

λ =
λ∗ − pλ∗

1− pλ∗
. (A.4.10)

Proof. From equation (A.4.6),

λ = P (Y nmi = 0) · λ∗

=
P (Y mi = 0)P (Y nmi = 0)

P (Y mi = 0)
· λ∗

=
1− P (Y obs = 1)

1− P (Y mi = 1)
· λ∗

=
1− p

1− pλ∗
· λ∗.

A.4.4. Simulation Study of Existing Methods

We evaluate the performance of several existing methods for estimating the MAFF with
a simulation study. Specifically, we consider three settings; (1) there is no fever killing
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Table 22: Means of estimates of the MAFF in Situation 1, 2 and 3 with 1000 simulations:
Neither fever killing nor measurement error (Situation 1) No fever killing, but measurement
error (Situation 2) and 50% fever killing and measurement error (Situation 3), True MAFF
is 0.5.

S P L LI

Situation 1 0.499 0.449 0.470 0.507
Situation 2 0.469 0.442 0.386 0.476
Situation 3 0.334 0.286 0.258 0.370

and no measurement error (we call it Situation 1), (2) there is no fever killing effect, but
there is measurement error (Situation 2) and (3) there is both fever killing (50%) and
measurement error (Situation 3). We consider the four estimation methods discussed in
Section 5.2: logistic regression (L), logistic regression with power parameter (P), local linear
smoothing followed by isotonic regression (LI) and the adjusted semiparametric method

(S). The first three methods (L, P and LI) have probability limits of plim(M̂AFFRR).

The semiparametric model method has a probability limit of plim(M̂AFFOR), so we use

adjustment (A.4.10) to obtain an estimate of plim(M̂AFFOR). We call this estimate the
adjusted semiparametric method. The true MAFF is fixed as 0.5 across the simulation
study; the true model is the first scenario described in Section 5.4 with sample size n = 500
and endemicity 0.2.

Table 22 shows the performance of the four estimators in the three situations. In Situation
1, the adjusted semiparametric method (S) and the nonparametric method (LI) produce
estimates that are approximately unbiased; however, the other two methods produce biased
estimates. This biased estimation for P and L is because the two methods rely on cer-
tain model assumptions and the true model in the simulation does not satisfy these model
assumptions. In Situation 2 and 3, all estimators are significantly biased from the true
value 0.5. In Situation 2, the increased magnitude of biases compared to Situation 1 can
be understood as biases caused by measurement error. Also, the further increase in mag-
nitude of bias in Situation 3 compared to Situation 2 represent biases caused by 50% fever
killing. The combination of both fever killing and measurement error severely degrades the
performance of the existing methods. Although the nonparametric method provides a good
estimate of the MAFF in the absence of fever killing and measurement error, it performs
poorly in the presence of both problems. The existing methods fail to provide unbiased
estimates of the MAFF when Assumption 4 is violated.

Both the fever killing effect and measurement error are obstacles to obtain accurate measures
of the parasitological challenge Dno.nmi

i faced by a child. The failure to measure Dno.nmi
i

makes estimation of either P (Y = 1|Dno.nmi) or f(Dno.nmi|Y = 1) biased, thus resulting in
a biased estimate of the MAFF as can be seen in Table 22. In Section 5.4, more simulation
results are displayed in various simulation settings. In the following section, we propose
our new estimation method to account for both fever killing and measurement error by
considering how to recover Dno.nmi

i from Dobs
i .
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J. R. Zubizarreta, M. Cerdá, and P. R. Rosenbaum. Effect of the 2010 chilean earthquake
on posttraumatic stress reducing sensitivity to unmeasured bias through study design.
Epidemiology, 24(1):79–87, 2013.

110


	ACKNOWLEDGEMENT
	ABSTRACT
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	Introduction
	Nonparametric Inference for Distributional Treatment Effects in Instrumental Variable Models
	Introduction
	Framework and Review
	The Maximum Binomial Likelihood Method
	Hypothesis Test
	ECLS-K 2010-2011: The Effect of SBP Participation on Childhood Obesity
	Summary

	Discovering Effect Modification in an Observational Study of Surgical Mortality at Hospitals with Superior Nursing
	Superior Nurse Staffing, Surgical Mortality and Resource Utilization in Medicare
	Review of Effect Modification in Observational Studies
	Discovering and Using Effect Modification in the Magnet Hospital Study
	Summary and Discussion: Confirmatory Analyses that Discover Larger Effects by Exploratory Methods

	A New, Powerful Approach to the Study of Effect Modification in Observational Studies
	Does Physical Activity Prolong Life?  Equally for Everyone?
	Notation and Review of Observational Studies
	Joint Bounds for Two or More Comparisons
	Simultaneous Inference and Closed Testing
	Aids to Interpreting Subgroup Comparisons
	Pairs or Sets that Are Not Exactly Matched for Some Covariates
	Summary and Discussion

	Estimating the Malaria Attributable Fever Fraction Accounting for Parasites Being Killed by Fever and Measurement Error
	Introduction
	Malaria Attributable Fever Fraction
	Estimation Method
	Simulation Study
	Application to the Data From Kilombero, Tanzania
	Summary

	Discussions
	
	APPENDIX
	Simulation for the Estimation of Distributions from Chapter 2
	Proofs from Chapter 2
	EM-PAVA algorithm
	Appendix from Chapter 5

	BIBLIOGRAPHY


