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Abstract. We propose a conceptually new method for solving nonlinear inverse

scattering problems (ISPs). The method is inspired by the theory of nonlocality of

physical interactions and utilizes the relevant mathematical formalism. We formulate

the ISP as a problem whose goal is to determine an unknown and, generally, nonlocal

interaction potential V from external scattering data. We then utilize the one-to-one

correspondence between V and the T-matrix of the problem, T . An iterative algorithm

is proposed in which we seek T that is (i) compatible with the data and (ii) corresponds

to an interaction potential V that is as diagonally-dominated as possible. We refer to

this algorithm as to the data-compatible T-matrix completion (DCTMC). This paper

is Part I in a two-part series and contains theory only. Numerical examples are given

in Part II (arXiv:1505.06777).

Submitted to: Inverse Problems

1. Introduction

Inverse scattering problems (ISPs) are known to be ill-posed and nonlinear [1, 2].

Nevertheless, with the use of suitable regularization, many nonlinear ISPs can be

solved with reasonable precision. Examples include optical diffusion tomography [3, 4],

diffraction tomography [5,6], electrical impedance tomography (Calderon problem) [7–9]

and near-field [10–12] and far-field [13,14] tomographic electromagnetic imaging. Solving

nonlinear ISPs is a difficult computational task, especially in three dimensions. This is

even more true for problems involving large data sets that are available with the use of

modern experimental techniques. Developing efficient algorithms for solving nonlinear

ISPs remains an important challenge.

Nonlinear ISPs are amply reviewed in the literature [1, 2, 15–17]. The mainstream

approach to solving these problems numerically is Newton’s method and its variants

http://arxiv.org/abs/1401.3319v2
http://arxiv.org/abs/1505.06777
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such as Levenberg-Marquardt method, iteratively regularized Gauss-Newton method,

Newton-Kantorovich method and steepest descent (Landweber iteration). These

methods (except for Newton-Kantorovich) are succinctly explained in [18]. Newton-

Kantorovich iterations are closely related [19] to the method of inverse Born series [9,

20, 21]. A different class of non-deterministic inversion approaches that make use of

some form of prior knowledge about the medium is based on Bayesian inference [22].

The common feature of all these approaches (except for the inverse Born series) is that

a certain cost function is minimized and updated iteratively and that this cost function

depends on all available measurements (data points). In the case of inverse Born series,

the solution is obtained as an analytically-computable functional of the data.

The method proposed in this paper is conceptually different from the methods

reviewed above and is based on a digression into a seemingly unrelated field of physics,

namely, into the theory of nonlocality. This theory accounts for the fact that certain

physical processes occurring at the point r in space can be influenced by the field in

some finite vicinity of that point. For example, in local electrodynamics, Ohm’s law

is written as J(r) = σ(r)E(r). In a nonlocal theory, this linear relation is generalized

by writing J(r) =
∫

V (r, r′)E(r′)d3r′. Of course, we expect on physical grounds that

V (r, r′) → 0 when |r − r′| > ℓ, where ℓ is the characteristic scale of nonlocality (the

radius of influence), which is usually much smaller than the overall size of the sample.

If the electric field E(r) does not change noticeably on the scale of ℓ, we can define the

local conductivity as σ(r) =
∫

V (r, r′)d3r′ and use Ohm’s law in its local form. This is

all well known in physics. However, implications of nonlocality for nonlinear ISPs have

not been considered so far.

Let us assume that we want to find σ(r) from the measurements of voltage drop

for a direct current injected into the sample by two point-like electrodes attached to its

surface at various points (Calderon problem). It turns out that it is much easier to find

a nonlocal kernel V (r, r′) that is consistent with the measurements. Of course, V (r, r′)

can not be determined uniquely from a typical data set because the number of unknown

parameters (degrees of freedom) in V (r, r′) is usually much larger than the number of

measurements. However, as explained above, we also expect that V (r, r′) should be

approximately diagonal. We then proceed as follows:

(1) First, we define a class of kernels V (r, r′) that are compatible with the data. This

is the only instance when the data are used, and it turns out that the size of the

data set is not a limiting factor for this step.

(2) Then we iteratively reduce the off-diagonal norm of V (r, r′) while making sure that

V (r, r′) remains within the class of “data-compatible” kernels.

(3) Once the ratio of the off-diagonal and diagonal norms of V (r, r′) is deemed

sufficiently small, we compute σ(r) =
∫

V (r, r′)d3r′. This gives an approximate

numerical solution to the nonlinear ISP.

The above algorithm can be generalized to other ISPs. We refer to it as to the data-

compatible T-matrix completion (DCTMC). The role of the T-matrix in the iterations
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will be explained below.

We underscore that physical interactions are never truly local and some small

degree of nonlocality exists in all physical systems. However, the radius of influence

ℓ is typically so small (e.g., equal to the atomic scale) that the nonlocality can be

safely ignored for most practical purposes. In our approach, we relax this condition

and allow V to be off-diagonal on much larger scales. Of course, we will seek to find V

that is as diagonal as possible. However, we do not expect to eliminate all off-diagonal

terms that are separated by more than one atomic scale, not to mention that such fine

discretization of the medium is practically impossible. Thus, the non-locality of V that is

utilized in DCTMC is not an intrinsic physical property but rather a physically-inspired

mathematical trick that is used to facilitate the solution of nonlinear ISPs. In other

words, we simplify the solution process by relaxing the underlying physical model.

This paper is Part I of a two-part series, wherein we focus our attention on theory.

Numerical examples for the nonlinear inverse diffraction problem are given in Part II [23].

The remainder of this paper is organized as follows. In Sec. 2 we state the general

algebraic formulation of the nonlinear ISP that is applicable to many different physical

scenarios. In Sec. 3 we introduce the data-compatible T-matrix, which is a central idea

of the proposed method. In Sec. 4 we define the basic iterative algorithm of DCTMC. In

Sec. 5, we introduce ”computational shortcuts”, which combine analytically several steps

of the DCTMC algorithm into a single step with reduced computational complexity.

Variations and enhancements of DCTMC are discussed in Sec. 6. DCTMC algorithm

in the linear regime is discussed in Sec. 7. Sec. 8 contains a brief discussion. Auxiliary

information is given in several appendices. Summary of linearizing approximations

(first Born, first Rytov and mean-field) is given in Appendix A. Appendix B contains

a derivation that establish the correspondence between DCTMC and the conventional

methods in the linear regime. Finally, definitions and properties of several functionals

used in this paper are summarized in Appendix C.

2. General formulation of the ISP

Consider a linear operator L and the equation

L u(r) = q(r) , (1)

where u(r) is a physical field and q(r) is the source term. Note that (1) does not contain

time but can depend parametrically on frequency. It can be said that we work in the

frequency domain. Moreover, we consider only a single fixed frequency. Using different

working frequencies as additional degrees of freedom for solving an ISP can be very

useful but is outside of the scope of this paper.

Let L = L0 − V , where L0 is known and V is the unknown interaction operator

that we seek to reconstruct. As discussed above, we assume at the outset that V is an

integral operator with the kernel V (r, r′) but, eventually, the computed image will be

obtained as a function of r only. We also assume that V (r, r′) 6= 0 only if r, r′ ∈ Ω,
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where Ω is a spatial region occupied by the sample. Our goal is to recover V from the

measurements of u performed outside of the sample, assuming that it is illuminated by

various external sources. We can not perform measurements or insert sources inside

the sample, which would have greatly simplified the ISP solution if it was physically

possible.

The inverse of L is the complete Green’s function of the system, denoted by

G = L −1. The formal solution to (1) is then u = Gq. We know that G exists as

long as the forward problem has a solution. This is usually the case if V is physically

admissible. Likewise, the inverse of L0 is the unperturbed Green’s function, denoted by

G0 = L
−1
0 . The field uinc = G0q is the incident field, in other words, it is the field

that would have existed everywhere in space in the case V = 0. Nonzero V gives rise

to a scattered field uscatt, and the total field is a sum of the incident and scattered

components, u = uinc + uscatt. A straightforward algebraic manipulation yields the

following result:

uscatt = (G−G0)q = G0(I − V G0)
−1V G0q , (2)

where I is the identity operator.

A single data point Φ(rd, rs) is obtained by illuminating the medium with a localized

source of unit strength, q(r) = δ(r−rs), and measuring the scattered field by a detector

at the location rd ‡. By scanning rd and rs on the measurement surfaces Σd and Σs

outside of the sample, we measure a function of two variables Φ(rd, rd), which is coupled

to V (r, r′) by the equation

G0(I − V G0)
−1V G0 = Φ . (3)

All product and inversion operations in (3) should be understood in the operator sense.

The ISP can now be formulated as follows: Given a measured function Φ(rd, rs), where

rd ∈ Σd and rs ∈ Σs, find an “approximately diagonal” kernel V (r, r′), where r, r′ ∈ Ω.

We do not need to define “approximate diagonality” precisely at this point, but in the

case of matrices that are inevitably used in all computations, this requirement implies

a sufficiently small ratio of the off-diagonal and diagonal norms.

It is important to note that G0 in (3) is the same operator in all instances where

it appears, but for the purpose of computing the operator products and inverses, its

kernel G0(r, r
′) is differently restricted. This is illustrated graphically in Fig. 1. Thus,

for the first term G0 in the left-hand side of (3), r = rd ∈ Σd and r′ = r′1 ∈ Ω. For

the second term (inside the brackets) r = r1 ∈ Ω and r′ = r2 ∈ Ω. For the last term,

r = r′2 ∈ Ω and r′ = rs ∈ Σs. We emphasize that the imaging geometry shown in Fig. 1

is representative but not very general. In particular, the measurement surfaces Σd and

Σs can be larger or smaller than the face of the cube, or curve, or even be regions of

space of finite volume rather than surfaces §. The sample volume Ω does not have to

be cubic and, in an extreme case, it can be a two-dimensional surface. All this has no

‡ If the source is not of unit strength, measurements should be divided by the source amplitude.
§ There is no real distinction between the two cases if the data are sampled.
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Figure 1. Illustration of the imaging geometry. The symbols A, B, Γ and V in blue

frames denote the matrices obtained by restricting and sampling the kernels G0(r, r
′)

and V (r, r′). The scattering diagram corresponds to the second order termG0V G0V G0

in the formal power-series expansion of the left-hand side in (3). Note that in the local

limit V (r, r′) = D(r)δ(r−r′), the two green arrows contract to two vertexes at r1 = r′1
and r2 = r′2.

bearing on the method of this paper. The only requirement that we impose, which is

physical rather than mathematical, is that Σd and Σs do not overlap with Ω. However,

Σd can overlap with Σs.

Further, in all practical implementations, the data are sampled rather than

measured continuously and the medium is voxelized. An example of such discretization

is given in [23]. At this point we proceed under the assumption that (3) can be suitably

discretized and converted to a matrix equation. In this case, it is logical to use different

notations for the matrices that are obtained by different restriction and sampling of

the kernel G0(r, r
′). Indeed, the matrices obtained in this manner are different and can

even be of different size. We will denote the matrices obtained by sampling the first, the

second, and the last terms G0 in (3) by A, Γ and B, respectively. These notations are

also illustrated in Fig. 1. Then the discretized version of (3) takes the following form:

A(I − V Γ )−1V B = Φ . (4)

In (4), A, B and Γ are known theoretically, Φ is measured, and we seek to find the

unknown V .

Eq. (4) is the main nonlinear equation that is discussed in this paper. It is, in fact,



Nonlinear inverse problem by T-matrix completion. I. Theory 6

very general and encompasses many different problems of imaging and tomography. The

underlying physical model is encoded in the operator G0 and in the matrices A, B and

Γ that are obtained by sampling this operator. The following three important remarks

about this equation can be made:

Remark 1: Noninvertibility of A and B. If matrices A and B were invertible in the

ordinary sense, the nonlinear ISP would be solvable exactly by three operations of matrix

inversion. Unfortunately, A and B are almost never invertible. To construct A and B

of sufficiently high rank, one needs to perform measurements inside the medium. As

was noted above, this is usually impossible. The typical sizes of all matrices involved

will be discussed below (see Fig. 2 and its discussion).

Remark 2: Linearization. One may seek a linearization of the ISP by approximating

the left-hand side in (4) with various expressions that allow an analytical linearizing

transformation. The three main approaches to achieve this end are first Born, first

Rytov and mean-field approximations, and they are briefly summarized in Appendix A.

In the mathematical formulation of the ISP, the three approximations differ only by

the transformation that is applied to the data matrix Φ, while the general form of the

linearized equation is in all cases

AV B = Ψ [Φ] , (5)

where Ψ [Φ] is the appropriate transformation of the data matrix; in the simplest case

of first Born approximation, Ψ [Φ] = Φ.

Remark 3: Matrix unrolling for the linearized problem. The linearization approaches

described in Appendix A do not require or enforce by design the diagonality of V .

However, in the conventional treatments of the problem, it is typical to assume that

V is strictly diagonal and to operate with the vector |υ〉 § composed of the diagonal

elements of V . Accordingly, the matrix Ψ is unrolled into a vector |ψ〉 by the matrix

operation known as vec, that is, by stacking the columns of Ψ into one column-vector.

The resultant equation has the form

K|υ〉 = |ψ〉 , (6)

where K is a matrix obtained by multiplying the elements of A and B according to the

rule K(mn),j = AmjBjn and (mn) is a composite index. The important point here is that

the conventional methods often treat K in (6) as a matrix of the most general form. In

contrast, DCTMC algorithm takes account of the special algebraic structure of K and,

therefore, can be used advantageously even in the linear regime. This is discussed in

more detail in Appendix B.

§ Here and below, we use Dirac notations in algebraic expressions involving elements in finite-

dimensional vector spaces. Briefly, |f〉 is a column-vector with the entries fn = 〈n|f〉, 〈f | is the

Hermitian conjugate of |f〉 (a row-vector with the elements f∗

n), 〈f |g〉 = 〈g|f〉∗ is the scalar product of

two vectors of the same length, |f〉〈g| is a matrix (not necessarily square) and 〈f |A|g〉 =
∑

nm f∗

nAnmgm.



Nonlinear inverse problem by T-matrix completion. I. Theory 7

3. T-matrix and its representations; “experimental” T-matrix

The basic definition of the T-matrix (which is, actually, an operator) is through the

relation between the complete and the unperturbed Green’s functions: G = G0+G0TG0.

By direct comparison with (2) we find that

T = (I − V G0)
−1V . (7)

We will not use different notations for the operator T and its discretized version, which

is truly a matrix. Consequently, Eq. (4) can be rewritten as

ATB = Φ , (8)

where

T = T [V ] ≡ (I − V Γ )−1V = V (I − ΓV )−1 . (9)

Here we have defined the nonlinear functional T [·], which contains Γ as a parameter.

We can view (9) as a matrix formulation of the forward problem. If V is known,

we can use (9) to compute T , and once this is accomplished, we can predict the result

of a measurement by any detector due to any source by matrix multiplication according

to (8). Therefore, computation of T yields the most general solution to the forward

problem. The forward solution is usually known to exist if V is physically admissible.

In the iterative process of DCTMC, we can ensure physical admissibility of V every time

before the transformation T [V ] is used (see Sec. 6.3). In this case, the matrix inversion

involved in computing T [V ] is always well-defined.

We can also formally invert T and write

V = T −1[T ] ≡ (I + TΓ )−1T = T (I + ΓT )−1 . (10)

Much less is known about the existence of the inverse in (10). In other words, we do not

know the conditions of physical admissibility of T apart from the general but not very

useful symmetry property Tij = Tji. Certainly, T −1[T ] does not exist for all arguments

T . In DCTMC, one of the possible approaches is to update V iteratively by using (10).

In this case, existence of the inverse is required. While we do not possess a general

proof, numerical simulations for the inverse diffraction problem have encountered no

singularities in (10). More importantly, the problem of invertibility of T does not arise

at all if Computational Shortcut 2 is used (see Sec. 5.2 below).

A block diagram of Eq. (8) with all matrix sizes indicated is shown in Fig. 2. Here

Nd and Ns are the numbers of detectors and sources used (not necessarily equal) and

Nv is the number of volume voxels. For a practical estimate of these numbers, refer to

Fig. 1. Let the measurement surfaces Σd and Σs be identical squares located on the

opposite sides of a cubic sample. Let the detectors and sources be scanned on an L×L

square grids and let the sample be discretized on a L×L×L cubic grid with the same

pitch. Then Nd = Ns = L2, Nv = L3. These estimates are typical but, admittedly, not

very general. Still, in many practical cases we can expect that

Nd, Ns ≪ Nv ≪ NdNs . (11)
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A

Figure 2. Block diagram of Eq. (8) with sizes of all matrices indicated. Here Nd and

Ns are the numbers of detectors and sources and Nv is the number of voxels.

The first inequality in (11) illustrates Remark 1 of Sec. 2 because the matrices A and

B are in this case clearly not invertible. The second inequality is important if we

wish to compare DCTMC to some of the traditional approaches. For example, the

conventional formulation of the linearized ISP starts from equation (6). As is explained

in Remark 3, is is commonly assumed that K in (6) is a general matrix of the size

NdNs × Nv (L4 × L3). However, the sizes of A and B are Nd × Nv (L2 × L3) and

Nv ×Ns (L
3 × L2), respectively. Computing numerically the pseudoinverse of K (if we

do not account for its special algebraic structure as is described in Appendix B) is a

much more computationally-intensive task than computing the pseudoinverses of A and

B. Therefore, the relaxation of the strict requirement of diagonality of V allows one to

work with two much smaller “weight matrices” A and B instead of one large “weight

matrix” K.

We now turn to the central idea of DCTMC, namely, to the concept of data-

compatibility of the T-matrix. To formulate the mathematical constraints that equation

(8) places on T in a computationally-tractable form, consider the singular value

decompositions of A and B:

A =

Nd
∑

µ=1

σA
µ

∣

∣fA
µ

〉 〈

gAµ
∣

∣ , B =

Ns
∑

µ=1

σB
µ

∣

∣fB
µ

〉 〈

gBµ
∣

∣ . (12)

Here σA
µ ,

∣

∣fA
µ

〉

and
∣

∣gAµ
〉

are the singular values and right and left singular vectors of

A, and similarly for B. Note that
∣

∣fA
µ

〉

and
∣

∣gBµ
〉

are vectors of length Nd and Ns,

respectively, while
∣

∣gAµ
〉

and
∣

∣fB
µ

〉

are both of length Nv, and we have assumed in (12)

that Nd, Ns ≤ Nv. Using the orthogonality of singular vectors, we obtain from (8) and

(12)

σA
µ σ

B
ν T̃µν = Φ̃µν , 1 ≤ µ ≤ Nd , 1 ≤ ν ≤ Ns , (13)

where

T̃µν ≡
〈

gAµ |T |f
B
ν

〉

, 1 ≤ µ, ν ≤ Nv ; (14a)

Φ̃µν ≡
〈

fA
µ |Φ|gBν

〉

, 1 ≤ µ ≤ Nd , 1 ≤ ν ≤ Ns . (14b)
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By T̃ we denote the T-matrix in singular-vector representation while T that was used

previously is the T-matrix in real-space representation. The two representations are

related to each other by the transformation

T̃ = R∗
ATRB ≡ R[T ] , T = RAT̃R

∗
B ≡ R−1[T̃ ] , (15)

where RA is the unitary matrix whose columns are the singular vectors
∣

∣gAµ
〉

while RB is

the unitary matrix whose columns are the singular vectors
∣

∣fB
µ

〉

. Equation (15) defines

the functional R[·]. We note that R[·] is linear and invertible even though it is not

equivalent to a conventional rotation because RA 6= RB. It is useful to keep in mind

that Φ̃ 6= R[Φ]. As can be seen from the definition (14), Φ̃ is related to Φ by a similar

transformation but with different unitary matrices.

We now can write the solution to (13) as follows:

T̃µν =







1

σA
µ σ

B
ν

Φ̃µν , if σA
µ σ

B
ν > ǫ2 ;

unknown , otherwise .
(16)

Here ǫ is a small positive constant. If computations could be performed with infinite

precision, we could have set ǫ = 0. In practice, we should take ǫ to be small but at

least larger than the smallest positive floating-point constant for which a particular

implementation of numerical arithmetic adheres to the IEEE standard. We note that

under the assumptions stated above, the condition σA
µ σ

B
ν > ǫ2 can be satisfied only for

1 ≤ µ ≤ Nd and 1 ≤ ν ≤ Ns. Singular values σ
A
µ and σB

ν with indexes outside of these

ranges are identically zero.

Eq. (16) summarizes our knowledge about the system that is contained in the

data. There are few matrix elements of T̃ that are known with certainty. These matrix

elements can be computed by the first expression in (16). The other matrix elements can

not be determined from equation (8). We can vary these unknown elements arbitrarily

and the error of (8) will not noticeably change. The number of known elements of T̃ can

not exceed NdNs but can, in principle, be smaller, e.g., if the rank of A is less than Nd

or the rank of B is less than Ns, although this situation is not typical even for severely

ill-posed ISPs. In any event, NdNs is usually much smaller than the total number of the

matrix elements of T̃ , which is equal to N2
v . Using the previously introduced estimates,

NdNs/N
2
v ∼ 1/L2. Therefore, only a small fraction of the elements of T̃ are known.

In what follows, we assume that the singular values of A and B are arranged in the

descending order and that the known elements of T̃ can be collected into the upper-left

rectangular block of the size MA×MB (see Fig. 3), where MA ≤ Nd and MB ≤ Ns. We

emphasize again that, in many practically-important cases, equalities will hold in the

above expressions. However, it is possible to arrange the sources in such a way that the

rank of B is less than Ns (and similarly for detectors and A), at least up to the numerical

precision of the computer ¶. Moreover, the region of known matrix elements can be

¶ This possibility is closely related to the existence of non-radiating sources. Indeed, to force the rank

of B to be less than Ns, we need to arrange the sources in space and to assign them relative amplitudes

and phases so that they produce almost no field in Ω.
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Figure 3. Left panel: Elements of T̃ inside the shaded block can be computed from

the data by using (16). Elements outside of the shaded block are not known and can

not be in any way inferred from the data. Right panel: The initial guess for the T-

matrix, Texp. In this initial guess, we set the unknown elements of T̃ (in singular-vector

representation) to zero.
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Figure 4. Assuming that the singular values σA
µ and σB

µ are arranged in the descending

order, this sketch shows an example of a more general shape (compared to Fig. 3) of

the region in which the elements of T̃ are known. The numbers above the thick red

line satisfy σA
µ σ

B
ν > ǫ2. In the general case, the boundary line can only go from left to

right and from bottom to top if followed from the left-most boundary of the matrix.

of a more general shape than a rectangle, as is shown in Fig. 4. It is not conceptually

difficult to account for this fact. However, we will proceed under the assumption that

the region is rectangular in order to shorten the discussion. Besides, in the numerical

simulations of [23], this region was, in fact, rectangular.

Even though we can not gain any knowledge about the matrix elements of T̃ outside

of the shaded area shown in Fig. 3 by using equation (8) alone, we can make an initial

guess for T̃ , which we denote by T̃exp (the ”experimental” T-matrix). We define Texp (in

real-space representation) as the matrix that satisfies (8) in the minimum norm sense

and has the smallest entry-wise norm ‖T‖2. This matrix is uniquely defined by the

equation

Texp = A+ΦB+ , (17)

where “+” denotes Moore-Penrose pseudoinverse. If A and B are rank-deficient or
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invertible, (8) is satisfied by Texp exactly so that ‖ATexpB−Φ‖2 = 0. The experimental

T-matrix in singular-vector representation is obtained from (17) by the transformation

(15). In fact, the experimental T-matrix is more easily characterizable in singular-vector

representation. Indeed, all the elements of T̃exp in the unshaded area of the diagram in

Fig. 3 (right panel) are equal to zero. This is expressed mathematically by writing

(

T̃exp

)

µν
=







1

σA
µ σ

B
ν

Φ̃µν , if σA
µ σ

B
ν > ǫ2 ;

0 , otherwise .
(18)

This expression is equivalent to (17).

We conclude this section with two important observations about the experimental

T-matrix:

Remark 4: Lack of sparsity of Texp. The matrix T̃exp is sparse but the same is not true

for Texp.

Remark 5: Lack of symmetry of T̃exp. It is known theoretically that the correct T-

matrix is symmetric in real-space representation. However, this is not generally true for

Texp. Indeed, Texp = R−1[T̃exp], and in T̃exp a large fraction of the elements are replaced

by zeros. The resultant Texp is not likely to be symmetric.

4. Basic iteration cycle

In this section we describe a computational algorithm in which the matrices T and V

are continuously updated so that T is kept data-compatible and V becomes increasingly

diagonally-dominated. Our goal is to fill the unknown elements of T̃ (the white areas

in the left panel of Fig. 3) in such a way that the corresponding interaction matrix V ,

computed according to (10), is approximately diagonal. This is a general formulation

of the problem of matrix completion, although the constraint that we apply to T̃ is not

the same as in the conventional statement of the problem.

Before proceeding, we need to introduce several additional operators. First, define

the masking operators M[·] and N [·]:

(

M[T̃ ]
)

µν
≡

{

0 , σA
µ σ

B
ν > ǫ2 ;

T̃µν , otherwise .

(

N [T̃ ]
)

µν
≡

{

T̃µν , σA
µ σ

B
ν > ǫ2 ;

0 , otherwise .
(19)

We note that M[T̃ ] +N [T̃ ] = T̃ . Then the operator of enforcing data-compatibility of

T̃ (in singular-vector representation) O[·] can be defined as follows:

O[T̃ ] ≡ M[T̃ ] + T̃exp = T̃ −N [T̃ ] + T̃exp . (20)

It can be seen that the action of O[T̃ ] is to overwrite (hence the notation O) the

elements of T̃ in the shaded area of Fig. 3 with the elements of T̃exp and to leave all
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other elements unchanged. The operator O[·] is defined for any Nv × Nv matrix but

in the iterations discussed below we always apply this operator to the T-matrix in

singular-vector representation.

Next, we will need to define a diagonal approximation to V , which we denote by

D. The corresponding operator is D[·], where

D = (D[V ])ij ≡ δijVii . (21)

Unlike the operator O[·], D[·] will always be applied in real-space representation.

We are now ready to describe the iterative process of DCTMC. The iteration steps

will be defined in terms of the operators R[·] and T [·], D[·] and O[·]. A summary

of all operators used in this paper is given in Appendix C. We assume that the SVD

decompositions of matrices A and B and the experimental T-matrix T̃exp (18) have been

precomputed. Consider the case when the iterations start from an initial guess for the

T-matrix. We then set k = 1, T̃1 = T̃exp and run the following iterations:

1: Tk = R−1[T̃k]

This transforms the T-matrix from singular-vector to real-space representation.

Both T̃k and Tk are data-compatible.

2: Vk = T −1[Tk]

This gives k-th approximation to the interaction matrix V . Vk is data-compatible

but not diagonal. Compute the off-diagonal and diagonal norms of Vk. If the ratio

of the two is smaller than a predetermined threshold, exit; otherwise, continue to

the next step.

3: Dk = D[Vk]

Compute the diagonal approximation to Vk, denoted here by Dk. Dk is diagonal

but not data-compatible.

4: T ′
k = T [Dk]

Compute the T-matrix that corresponds to the diagonal matrix Dk. Unlike Tk, T
′
k

is no longer data-compatible.

5: T̃ ′
k = R[T ′

k]

Transform T ′
k to singular-vector representation. Here T̃

′
k is still not data-compatible.

6: T̃k+1 = O[T̃ ′
k]

Advance the iteration index by one and overwrite the elements of T̃ ′
k that are

known from data with the corresponding elements of T̃exp. This will restore data-

compatibility of T̃k+1. Then go to Step 1.

The computational complexity of Steps 1,2,4,5 is O(N3
v ). However, the complexity can

be dramatically reduced with the use of the computational shortcuts that are described

in the next section, with the only exception of Step 4. Therefore, Step 4 is the true

computational bottleneck of the method. It’s complexity can be reduced by accounting

for sparsity of V as is described in Sec. 6.2. However, if no a priori knowledge about

sparsity of V is available, then the computational complexity of Step 4 is the limiting

factor of DCTMC, at least to the best of our current understanding.
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Figure 5. Basic flowchart of the DCTMC iteration process for the case when the

iterations start with an initial guess for T̃ . Other options are discussed in Sec. 6.1.

Numbered iteration steps are defined in Sec. 4. Computational shortcuts are described

in Sec. 5. The iteration step labeled ”The Bottleneck” is the step in comparison

to which the complexity of all other steps can be made insignificant. Eliminating

the bottleneck by accounting for sparsity of V is discussed in Sec. 6.2. Matrix

representations are abbreviated by SV (singular-vector) and RS (real-space).

5. Computational shortcuts

5.1. Shortcut 1: Fast rotations

Consider iteration Steps 5,6,1 written sequentially:

5 : T̃ ′
k = R[T ′

k] O(N3
v ) = O(L9) ,

6 : T̃k+1 = O[T̃ ′
k] ≤ O(NdNs) = O(L4) ,

1 : Tk+1 = R−1[T̃k+1] O(N3
v ) = O(L9) .

To the right, we have indicated the computational complexity of each step and used

the previously introduced estimates for Nd, Ns and Nv in terms of the grid size L. The

complexity of Step 6 is equal to, at most, NdNs. Therefore, the complexity of Steps 5

and 1 is dominating. Now, let us combine the steps by writing

Tk+1 = R−1 [O [R[T ′
k]]] = R−1

[

R[T ′
k]−N [R[T ′

k]] + T̃exp

]

, (22)
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where in the second equality we have used the definition of O[·] (20). We now use the

linearity and invertibility of R to rewrite (22) as

Tk+1 = T ′
k + Texp −R−1 [N [R[T ′

k]]] . (23)

We are therefore left with the task of numerically evaluating an expression of the type

R−1[N [R[T ]]], where we have dropped all indexes for simplicity. But this can be

accomplished in much less than O(N3
v ) operations due to the sparsity of N [·]. Indeed,

consider first the computation of N [R[T ]]. This operation is illustrated in Fig. 6. It

can be seen that N [R[T ]] = P ∗
ATPB, where the matrix PA is obtained from RA by

overwriting all columns of RA, except for the first MA columns, with zeros, and PB

is defined analogously. The complexity of computing P ∗
ATPB is O(min(MA,MB)N

2
v ),

which is less than N3
v by the factor of at least O(L). Quite analogously, we can show

that

R−1[N [R[T ′
k]]] = PA (P ∗

ATPB)P
∗
B . (24)

It should be kept in mind that PAP
∗
A 6= I and PBP

∗
B 6= I and that premultiplying

these matrices is not a computationally efficient approach. Doing so will result in an

expression of the type Q∗
ATQB, where QA = PAP

∗
A and QB = PBP

∗
B are not sparse.

Instead, one should evaluate the right-hand side of (24) using the operator precedence

implied by the parentheses. We conclude that the Steps 5,6,1 of the iterative procedure

described above can be combined in the following single computational step:

Tk+1 = T ′
k + Texp − PA (P ∗

AT
′
kPB)P

∗
B . (25)

In this formula, Texp, PA and PB are precomputed and stored in memory. We finally

note that the sparsity of N can be used efficiently even if the region of ”known” elements

of T̃ is not rectangular. Although matrices PA and PB can not be easily defined in this

case, the use of appropriate masks in computing expressions of the type N [R∗
ATRB] will

achieve a similar reduction of computational complexity.

5.2. Shortcut 2: Fast T → D operation.

Next consider Steps 2 and 3:

2 : Vk = T −1[Tk] O(N3
v ) = O(L9) ,

3 : Dk = D[Vk] O(Nv) = O(L3) ,

To the right, we have indicated the computational complexity of each step. The goal of

Steps 2 and 3 is to find a diagonal matrix D that in some sense ”corresponds” to the

previously-computed T-matrix. More specifically, we compute V that corresponds to T

exactly but is not diagonal in Step 2 and then seek a diagonal matrix D that minimizes

the entry-wise norm ‖V −D‖2 in Step 3. Obviously, the latter task is achieved by simply

nullifying all off-diagonal elements of V . An alternative approach is to seek a diagonal

matrix D that satisfies the equation

T = D +DΓT (26)



Nonlinear inverse problem by T-matrix completion. I. Theory 15

= ââ

TP
ã

A
PB

= ââ

TR
ã

A
RBR[T ]

N[R[T ]]

N

MA

MB

0 0
0

0
0

0
0

0

0MA

MB

Figure 6. Schematics of computing N [R[T ]]. Matrices PA and PB are obtained from

RA and RB by setting all columns to zero except for the first MA and MB columns,

respectively.

in the minimum L2-norm sense (of course, (26) can not be satisfied exactly by any

diagonal matrix D). The above is a classical minimization problem, which has the

following analytical solution:

Dij = δij
Tii + [(ΓT )∗ T ]ii

1 + [(ΓT )∗ + (ΓT ) + (ΓT )∗ (ΓT )]ii
. (27)

It may seem that evaluation of (27) still requires O(N3
v ) operations because it contains

the matrix-matrix product ΓT . However, this is not so. The matrix Λ ≡ ΓT can be

updated iteratively during Computational Shortcut 1 by using (25) multiplied from the

left by Γ , viz,

Λk+1 = Λ′
k + Λexp − (ΓPA) (P

∗
AT

′
kPB)P

∗
B . (28)

Here Λk+1 = ΓTk+1, Λ
′
k = ΓT ′

k and Λexp = ΓTexp. The matrix ΓPA can be precomputed

and has exactly the same sparsity structure as PA itself, that is, all of its columns except

for the first MA columns are zero. Therefore, computing the last term in (28) is of the

same complexity as Computational Shortcut 1, that is, O(min(MA,MB)N
2
v ). There

remains the question of how Λ′
k is computed and whether this computation requires an

extra matrix-matrix multiplication. The answer is, it can be precomputed at Step 4 of

the k-th iteration without any additional matrix-matrix multiplications. Indeed, let us

utilize the second formula in the definition of T [·] (9) and write Step 4 of k-th iteration

as follows:

T ′
k = Dk(I − ΓDk)

−1 . (29)

We then multiply from the left both sides of (29) by Γ and obtain

Λ′
k = ΓDk(I − ΓDk)

−1 = (I − ΓDk)
−1 − I . (30)
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Now we can compute T ′
k and Λ′

k without any additional complexity by using the following

sub-steps:

1: Compute the product ∆k ≡ ΓDk, which is fast because Dk is diagonal.

2: Compute the inverse Sk ≡ (I −∆k)
−1, which has the complexity of N3

v .

3: Compute Λ′
k = Sk − I [as follows from (30)].

4: Compute T ′
k = DkSk [as follows from (29)], which is again fast because Dk is

diagonal.

Thus, in all the computations outlined above only inversion of I − ∆k has the

computational complexity of N3
v . This is, therefore, the true computational bottleneck

of the algorithm.

5.3. Streamlined iteration cycle

The computational shortcuts can be integrated into a single streamlined iteration

algorithm. Doing so requires careful consideration of the flowchart shown in Fig. 5 and of

the associated data dependencies. However, the resulting algorithm is relatively simple.

For ease of programming we have broken this algorithm into elementary computational

steps as described below.

Initial setup:

a: Permanently store in memory the analytically-known matrix Γ .

b: Compute the SVD decomposition (12) of A and B. This will yield a set of singular

values σA
µ , σ

B
µ (some of which are identically zero) and singular vectors |fA

µ 〉, |f
B
µ 〉,

|gAµ 〉, |g
B
µ 〉.

c: Use the previous result to construct and permanently store in memory the dense

matrices RA and RB, sparse matrices PA and PB and QA = ΓPA. Note: no

additional memory allocation for PA and PB is required.

d: Compute Φ̃µν according to (14) and T̃exp according to (18). Discard the real-space

data function, the singular values and singular vectors, and deallocate the associated

memory.

e: Compute and store permanently in memory Texp = RAT̃expR
∗
B = PAT̃expP

∗
B and

Λexp = ΓTexp.

f: Initialize iterations by setting T1 = Texp and Λ1 = Λexp.

Main iteration: For k = 1, 2, . . ., perform the following computations:

1: (Dk)ij = δij
(Tk)ii + (Λ∗

kTk)ii
1 + (Λ∗

k + Λk + Λ∗
kΛk)ii

;

2: ∆k = ΓDk ;

3: Sk = (I −∆k)
−1 ;
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4: T ′
k = DkSk , Λ′

k = Sk − I ;

5: Tk+1 = T ′
k + Texp − PA (P ∗

AT
′
kPB)P

∗
B , Λk+1 = Λ′

k + Λexp −QA (P ∗
AT

′
kPB)P

∗
B .

Operations whose order of execution is insignificant and which can run independently

in parallel threads are shown on the same line. Note that computation of the terms

(ΛkTk)ii and (Λ∗
kΛk)ii for i = 1, . . . , Nv has the computational complexity of only O(N2

v ).

Therefore, the true bottleneck of each iteration is the operation of matrix inversion

Sk = (I −∆k)
−1 whose computational complexity is O(N3

v ). Iterations can be stopped

when the norm ‖Tk −Dk −DkΓTk‖2 is smaller than a predetermined threshold.

6. Variations and improvements

6.1. Staring iterations from an initial guess for V

Starting from an initial guess for the T-matrix is not a requirement of DCTMC. We

can as well start from an initial guess for V . For example, we can use the generalized

solution to the linearized equation (6) to build the initial guess for V , DL. Here DL

has the elements of |υ〉 on the diagonal and zeros elsewhere. We then set D1 = DL and

skip Step 1 in the k = 1 iteration of the algorithm described in Sec. 5.3. A methods

to obtain the initial guess DL that avoids the high computational complexity of finding

the pseudo-inverse of K is described in Appendix B.

6.2. Accounting for sparse targets

The computational bottleneck of DCTMC is computing the matrix inverse (I −∆k)
−1.

The computational load of this step can be significantly reduced if some of the elements

of Dk are zero. Indeed, since ∆k = ΓDk, this occurrence would imply that some of the

columns of ∆k are zero and, consequently, that some of the columns of (I −∆k) contain

unity on the diagonal and zeros elsewhere. Complexity of inverting such matrices scales

as cube of the number of nonzero elements in Dk. We note that, if (Dk)ii = 0, then i-th

column and i-th row of T ′
k are zero. The size of the T-matrix is effectively reduced in

this case.

In practice, we can often expect that many diagonal elements of the unknown

interaction matrix V are zero but the location of these zero elements is unknown. If we

accidentally run into a matrix Dk that has many zeros on the diagonal, we would be

able to reduce the computational complexity of inverting (I−∆k). However, it is highly

unlikely that the iterative computation of (Dk)ii according to Step 1 of the algorithm

of Sec. 5.3 would produce exact zeros for any i. To overcome this difficulty, we can

apply an additional operation to Dk, which we refer to as ”roughening”. This operation

entails setting to zero the diagonal elements of Dk that are smaller than a certain

predetermined threshold, either relative or absolute. Such elements can be deemed as

insignificant computational noise. Alternatively we can send a predetermined number

of the smallest diagonal elements of Dk to zero. The approach was implemented in [23]

and shown to significantly improve the efficiency and convergence rate of DCTMC.
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6.3. Accounting for physical constraints

DCTMC allows one to apply additional nonlinear constraints to Dk. This can be

accomplished immediately after Dk is updated in each iteration of the cycle. For

example, a physical constraint may require that all elements of Dk be non-negative

or have a non-negative imaginary part. This procedure can be viewed as a form of

regularization of the ISP.

7. DCTMC in the linear regime and the questions of convergence and

regularization

Consider the iteration cycle of Sec. 5.3 in the limit Γ → 0. Omitting intermediate steps,

we find that each iteration is reduced to the following two operations:

1: Dk = D[Tk] ;

2: Tk+1 = Dk + Texp − (PAP
∗
A)Dk (PBP

∗
B) ,

where D[·] is defined in (21). These two steps can be combined in the following simple

iteration:

Dk+1 = Dk +Dexp −D [(PAP
∗
A)Dk (PBP

∗
B)] , (31)

where Dexp = D[Texp]. Iteration (31) can be obtained simply by applying the operator

D[·] to the equation in Step 2 above. Let us now convert (31) to an equation with

respect to the vector |υk〉 that contains the diagonal elements of Dk. From the linearity

of (31) we immediately find

|υk+1〉 = |υexp〉+ (I −W )|υk〉 , (32)

where |υexp〉 is the vector of diagonal elements of Dexp and matrix W has the elements

Wij = (PAP
∗
A)ij (PBP

∗
B)ji . (33)

It is easy to see that (32) is Richardson first-order iteration with the fixed point

|υ∞〉 = W−1|υexp〉. Therefore, DCTMC in the linear regime simply provides an iterative

way of solving the equation

W |υ〉 = |υexp〉 . (34)

This equation can be derived independently from DCTMC and in a more straightforward

manner starting from the linearized equation (6). This derivation is shown

in Appendix B and it takes advantage of the algebraic properties of K (see Remark

3). It is important to realize that, although (34) can be obtained from (6) by a series of

linear transformations, the two equations are not equivalent in the following sense: if K

is not invertible, then the pseudoinverse solutions of the two equations can be different.

However, if K is invertible, then the two equations have the same unique solution.

Of course, iteration (32) is only a particular numerical method of solving (34) and

not the most efficient one: conjugate-gradient descent is expected to provide better
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computational performance. However, consideration of DCTMC in the linear regime

is not a vane or trivial exercise but is useful in several respects. First, it gives us an

insight into the convergence properties of DCTMC. Second, it gives us an idea of how

DCTMC iterations can be regularized. Indeed, so far we did not discuss regularization,

apart from what is afforded by imposing physical constraints (Sec. 6.3). Convergence

and regularization will be discussed in the remainder of this section.

It is obvious that the iterations converge to the fixed point provided that |1−wn| < 1

for all n, where wn are the eigenvalues of W . Since W is Hermitian, all its eigenvalues

are real and therefore the convergence condition reads 0 < wn < 2. Under the same

condition the inverse W−1 exists. We will now prove that

0 ≤ wn ≤ 1 . (35)

The fact that W is non-negative definite is obvious from (33). We will however make

an additional step and recall that the columns of PA are the singular vectors |gAµ 〉 for

µ = 1, . . . ,MA and zeros otherwise while the columns of PB are the singular vectors |fB
µ 〉

for µ = 1, . . . ,MB and zeros otherwise. We then obtain in a straightforward manner:

Wij =

MA
∑

µ=1

MB
∑

ν=1

〈i|gAµ 〉〈g
A
µ |j〉〈j|f

B
ν 〉〈f

B
ν |i〉 . (36)

Let |x〉 be an arbitrary nonzero vector of length Nv and X be an Nv ×Nv matrix with

the elements of |x〉 on the diagonal and zeros elsewhere. Then

〈x|W |x〉 =
MA
∑

µ=1

MB
∑

ν=1

∣

∣〈gAµ |X|fB
ν 〉

∣

∣

2
≥ 0 . (37)

We therefore have proved that wn ≥ 0. Next, we use the orthonormality of each set of

singular vectors to write the following identities

〈x|x〉 =
Nv
∑

i=1

〈i|X∗X|i〉 =
Nv
∑

µ=1

Nv
∑

ν=1

∣

∣〈gAµ |X|fB
ν 〉

∣

∣

2
. (38)

Since Ma,Mb ≤ Nv, 〈x|W |x〉 ≤ 〈x|x〉 and we have proved (35). The equality

〈x|W |x〉 = 〈x|x〉 holds only in the case MA = MB = Nv, in which case W = I and the

iteration (32) trivially converges to its fixed point right upon making the initial guess.

In this unrealistic case, all elements of the T-matrix are determined from the data and

no iterations are needed.

We thus conclude that convergence can be slow in the case W has a small (or

zero) eigenvalue. We can define the characteristic overlap of singular vectors related to

detectors and sources as

ξ = inf
X 6=0

{

∑MA

µ=1

∑MB

ν=1

∣

∣〈gAµ |X|fB
ν 〉

∣

∣

2

∑Nv

µ=1

∑Nv

ν=1

∣

∣〈gAµ |X|fB
ν 〉

∣

∣

2

}

. (39)
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The iterations (32) converge at least as fast as the power series
∑

n(1 − ξ)n. If ξ is

close to zero, the convergence can be slow. This observation gives us an idea of how the

iterations can be regularized. This can be accomplished by replacing W by W + λ2I,

where λ is a regularization parameter. As is shown in Appendix B, this procedure is

equivalent to Tikhonov regularization of equation (B.8), which can be derived from (6)

by several linear operations. However, the substitution W →W +λ2I is not equivalent

to Tikhonov regularization of (6).

We can now introduce regularization of the general iterative algorithm of Sec. 5.3,

which is applicable to the nonlinear case as well. Namely, for any matrix X , we replace

the linear transformation (PAP
∗
A)X(PBP

∗
B) by (PAP

∗
A)X(PBP

∗
B) + λ2D[X ]. This entails

the following modified Step 5 of the algorithm:

5: Tk+1 = T ′
k − λ2D [T ′

k] + Texp − PA (P ∗
AT

′
kPB)P

∗
B ,

Λk+1 = Λ′
k − λ2D [Λ′

k] + Λexp −QA (P ∗
AT

′
kPB)P

∗
B .

8. Discussion

This paper contains a mathematical description of a novel method for solving nonlinear

inverse scattering problems. The method is based on iterative completion of the

unknown entries of the T-matrix and we refer to it as to the data-compatible T-matrix

completion (DCTMC). It should be emphasized that the constraint that we apply to

the T-matrix (namely, that it corresponds to a nearly diagonal interaction matrix V )

is not the same as in the conventional formulation of the matrix completion problem.

The method developed in this paper is well suited for overdetermined ISPs in which

the number of volume voxels is not too large (e.g., . 104) or the target is sparse. The

size of the data set in not a limiting factor for this method, unlike in many traditional

approaches to the same problem.

In the case of ill-posed ISPs, regularization plays the key role. One should not

expect to recover a reasonable image without some form of regularization. DCTMC

allows for two types of regularization: (i) by imposing physical constraints and (ii) by

regularizing the matrixWij = (PAPA∗)ij(PBP
∗
B)ji. In the linear regime, the approach (ii)

corresponds to Tikhonov regularization of the linearized equation ΘUK|υ〉 = ΘU |φ〉,

which is obtained from Eq. (6) by multiplying the latter by ΘU from the left; the

unitary matrix U and the matrix of diagonal scaling Θ are defined in Appendix B. In

the nonlinear regime, the approach (ii) is somewhat ad hoc and its applicability requires

additional research.

Although the main goal of DCTMC is to solve nonlinear problems, we note that it

has conceptual similarity with the image reconstruction methods of references [24–27]

that were developed for solving linear ISPs. The similarity lies in exploring the algebraic

structure of the matrix K, which is obtained as a product of two unperturbed Green’s

functions. In the nonlinear case, we use this algebraic structure to obtain an expression

of the form ATB, where the T-matrix T is viewed as the fundamental unknown. This

replaces the traditional approach in which one writes ATB = F [V ], where F [V ] is
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a nonlinear functional and the strictly diagonal (by definition) matrix V is viewed as

the fundamental unknown. DCTMC also bears conceptual similarity to the methods

of reference [14] in which the notion of the fundamental unknown is also expanded to

include the internal fields or the complete Green’s function G.
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Appendix A. Linearizing approximations

In this Appendix we state the linearizing approximations without derivation or analysis

as this is outside of the scope of this paper. We only note that first Born approximation is

obtained by retaining the first-order term in the power-series expansion of the complete

Green’s function G; first Rytov approximation is obtained by retaining the first-order

term in the cumulant expansion of log(G) and the mean-field approximation is obtained

by using the first-order approximant in the continued-fraction expansion of G. More

details are given in [27]. Only first Born approximation can be stated in abstract form

while the other two approximations involve entry-wise expressions. Correspondingly,

the accuracy of these two approximations depends on the matrix representation while

the accuracy of first Born approximation is representation-independent.

(i) First Born approximation. The simplest approach to linearization is the first Born

approximation, according to which

A(I − V Γ )−1V B ≈ AV B . (A.1)

Obviously, the first Born approximation is valid if ‖V Γ‖2 ≪ 1. By substituting the

above approximation into the left-hand side of (4), we obtain (5) in which Ψ = Φ.

Therefore, the data transformation in the case of first Born approximation is trivial.

(ii) First Rytov approximation. The first Rytov approximation can be stated as

[

A(I − V Γ )−1V B
]

ij
≈ Cij

{

exp

[

(AV B)ij
Cij

]

− 1

}

, (A.2)

where Cij = G0(ri, rj) and ri ∈ Σd, rj ∈ Σs. Thus we have encountered yet another

restriction of G0(r, r
′). Obviously, with this restriction used, G0(r, r

′) is the direct

(unscattered) field that would have been produced by a source located at r and measured

by a detector at r′ in the case V = 0. If we substitute the approximation (A.2) into the

left-hand side of (4) and introduce the data transformation

Ψij = Cij log (1 + Φij/Cij) , (A.3)

we would arrive again at (5). Therefore, (A.3) defines the data transformation of first

Rytov approximation.

(iii) Mean-field approximation. The mean-field approximation is

[

A(I − V Γ )−1V B
]

ij
≈

(AV B)ij
1− (AV B)ij/Cij

(A.4)

The data transformation of the mean-field approximation has the form of element-wise

harmonic average and reads

Ψij =
1

1/Φij + 1/Cij

. (A.5)
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Appendix B. Derivation of the equation W |υ〉 = |υexp〉 [Eq. (34)] from (6).

Consider the linearized equation (6) in the first Born approximation, that is, with

the trivial data transformation Ψ = Φ or equivalently |ψ〉 = |φ〉. We recall that

K(mn),j = AmjBjn and use (12) for Amj and Bjn to obtain the following result for

the elements of K:

K(mn),j =

Nd
∑

µ=1

Ns
∑

ν=1

σA
µ σ

B
ν 〈m|fA

µ 〉〈g
A
µ |j〉〈j|f

B
ν 〉〈g

B
ν |n〉 . (B.1)

Now define the unitary matrix U with the elements

U(µν),(mn) = 〈fA
µ |m〉〈n|gBν 〉 , 1 ≤ µ,m ≤ Nd , 1 ≤ ν, n ≤ Ns (B.2)

and multiply (6) by U from the left:

(UK)|υ〉 = U |φ〉 . (B.3)

We emphasize that multiplication of any linear equation by a unitary matrix does not

change its Tikhonov-regularized pseudoinverse solution. This follows immediately from

(UK)∗(UK) = K∗K and (UK)∗U = K∗. Now we use the equalities

(UK)(µν),j = σA
µ σ

B
ν 〈g

A
µ |j〉〈j|f

B
ν 〉 , 〈(µν)|U |φ〉 = Φ̃µν (B.4)

to write (B.3) as

σA
µ σ

B
ν

Nv
∑

j=1

〈gAµ |j〉〈j|f
B
ν 〉〈j|υ〉 = Φ̃µν , 1 ≤ µ ≤ Nd , 1 ≤ ν ≤ Ns . (B.5)

Next we observe that the set (B.5) may contain some equations in which all coefficients

are zero or very small. These equations can be safely discarded and this operation still

does not affect the pseudo-inverse. Therefore we obtain

σA
µ σ

B
ν

Nv
∑

j=1

〈gAµ |j〉〈j|f
B
ν 〉〈j|υ〉 = Φ̃µν , 1 ≤ µ ≤MA , 1 ≤ ν ≤MB , (B.6)

where MA and MB are the dimensions of the shaded rectangle in Fig. 3, which is

the region where the inequality σA
µ σ

B
ν > ǫ2 holds and ǫ is the small positive constant

introduced in (16). Note that (B.6) is in all respects equivalent to (6).

At this point however, we make a transformation that will, in fact, change the

equation. Namely, we divide (B.6) by the factor σA
µ σ

B
ν , which is larger than ǫ2 for all

equations included in (B.6). In computational linear algebra, this operation is known

as preconditioning by diagonal scaling. We thus obtain

Nv
∑

j=1

〈gAµ |j〉〈j|f
B
ν 〉〈j|υ〉 =

(

T̃exp

)

µν
, 1 ≤ µ ≤ MA , 1 ≤ ν ≤MB , (B.7)
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where we have used the definition (18) of T̃exp. The diagonal scaling that was applied

to obtain (B.7) is invertible. Therefore, if (6) has a solution in the ordinary sense, then

(B.7) has the same solution. However, if (6) is not invertible, then the two equations

have different pseudoinverse solutions that can not be related to each other by a simple

transformation. In this sense, the two equations (6) and (B.7) are no longer equivalent.

To obtain (34), we observe that (B.7) can be written as

Q|υ〉 = |τ〉 , (B.8)

where Q(µν),j = 〈gAµ |j〉〈j|f
B
ν 〉 and 〈(µν)|τ〉 =

(

T̃exp

)

µν
. We then multiply (B.6) by Q∗

from the left and obtain

(Q∗Q)ij =

MA
∑

µ=1

MB
∑

ν=1

〈fB
ν |i〉〈i|gAµ 〉〈g

A
µ |j〉〈j|f

B
ν 〉 = Wij , (B.9)

where W = Q∗Q is the same matrix as in (33) (compare (B.9) to (36)). In a similar

manner, we obtain

〈i|Q∗|τ〉 =
MA
∑

µ1

MB
∑

ν=1

Q∗
i,(µν)

(

T̃exp

)

µν
= (PAT̃expP

∗
B)ii = (Texp)ii = 〈i|υexp〉 . (B.10)

Therefore, Q∗|τ〉 = |vexp〉. We thus conclude that (34) is obtained from (B.8) by

multiplying both sides with Q∗. Moreover, the substitution W →W +λ2I is equivalent

to Tikhonov-regularization of (B.8).

Finally, we can state the formal relation between K and W in the following form:

W = (ΘUK)∗(ΘUK) = K∗U−1Θ2UK , (B.11)

where U is the unitary matrix defined in (B.2) and Θ is the diagonal conditioning

matrix containing the quantities 1/(σA
µ σ

B
ν ) for 1 ≤ µ ≤MA and 1 ≤ ν ≤MB and zeros

otherwise.

Appendix C. Definitions and properties of several functionals used in this

paper

This appendix gives a summary of the functionals used in this paper. In the table, F

refers to any of the functionals T , R, D, M and N and O.
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F Entry-wise? Y = F [X ] Invertible? X = F−1[Y ]

T No Y = (I −XΓ )−1X Sometimes X = (I + Y Γ )−1Y

R No Y = R∗
AXRB Yes X = RAY R

∗
B

D Yes Yij = Xijδij No N/A

M Yes Ỹµν =

{

0 , σA
µ σ

B
ν > ǫ2

X̃µν , otherwise
No N/A

N Yes Ỹµν =

{

X̃µν , σA
µ σ

B
ν > ǫ2

0 , otherwise
No N/A

O Yes Ỹ = M[X̃ ] + T̃exp No N/A

= X̃ −N [X̃ ] + T̃exp
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