Static and Dynamic Elastic Properties of Fractal-cut Materials
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We investigate the static and dynamic (phononic) elastic behavior of fractal-cut materials. These
materials are novel in the sense that they deform by rotation of “rigid” units rather than by straining
these units, can be fabricated by exploiting a simple cutting paradigm, and have properties that can
be manipulated by control of the cut pattern and its hierarchy. We show that variation of fractal-cut
level and cut pattern can be exploited to manipulate the symmetry of the elastic constant tensor, the
elastic limit of deformation, and, therefore, the elastic response. By studying phonon behavior, we
demonstrate how some cut symmetries naturally open acoustic band gaps. Several of the important
features of the band structure can be directly related to the static elastic properties. Based upon
our phonon calculations, we predict the acoustic transmission spectrum of an example fractal-cut
structure and validated it through 3D printing and sound attenuation experiments.
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INTRODUCTION

Heterogeneity in the structure of materials occurs com-
monly in natural materials and can be exploited in engi-
neering materials to produce combinations of properties
tailored for particular classes of applications. In most
cases, the distributions of phases within materials ex-
hibits a substantial degree of randommness. Exceptions
include such engineered composites as laminates, aligned
fiber composites, and woven structures. For many ap-
plications, it is desirable for the phases to have proper-
ties from opposite extremes; e.g., strong/brittle phases
and weak/ductile phases. Other examples include cases
where the elastic constants are either large or zero (i.e.,
holes). In this report, we consider the elastic (static and
dynamic) properties of a uniform 2D material into which
we introduce a periodic, hierarchical array of cuts; we re-
fer to these as fractal-cut materials [1, 2]. Such materials
can be designed to produce a wide range of interesting
and useful properties.

Consider the case of a square sheet with horizontal and
vertical cuts. In the example shown in Fig. la, a hor-
izontal cut is made nearly across the sample leaving a
ligament at the left and right edges and vertical cuts are
made from the top and bottom surface to just short of
the center, leaving ligaments at the center. When this
structure is subject to nearly any external loading, it
opens by rotation of section relative to other at the lig-
aments/hinges (Fig. la). In the limit that the ligament
size goes to zero, the sections of the material between
cuts remain undeformed during the rotation.Hence, we
idealize this material as a set of rigid bodies, connected
by hinges (in 2D or 3D) or possibly universal joints (in
3D). This process of separating the material into rotating
blocks can be repeated in a hierarchical form by cutting

the previously rigid/rotatable blocks. If this is done ad
infinitum, the resultant structure is a fractal (see Fig.
1). Such structures have novel mechanical and dynami-
cal properties associated with these two central features;
rotatable units and structure across a range of scales.

Simple rotatable structures [3] can produce materials
with negative Poisson ratios (i.e., auxetics) [4-6]; fractal-
cut geometries can give rise to extremely large dilata-
tions [1, 2]. Such rotations are central to the auxetic
behavior of several perovskite structures [7]. One natu-
ral consequence of the extremely large dilatations achiev-
able with fractal-cut sheets is their ability to wrap non-
zero Gauss curvature objects without wrinkling or tear-
ing even when the matrix material is elastically rigid [1].

In addition to interesting elastic/geometric properties,
fractal-cut materials also exhibit interesting dynamic
(phononic) properties. Since our fractal-cut materials
are periodic, there is a possibility that such structures
may exhibit band gaps in the phonon spectrum (i.e., fre-
quency ranges in which sound does not propagate); such
periodic metamaterials are known as phononic crystals.
The phononic band structure is dictated by the acoustic
properties of the constituent materials and their spatial
distribution (in the present case, one phase is solid and
the other is air/vacuum). Unit cell geometries that have
been exploited in the design of phononic crystals vary
from very simple [8] to complex [9], including fractals
[10-12].

The most obvious application of phononic crystals is
in sound insulation (e.g., [13]); however, the high cost of
manufacturing such periodic structures makes most such
applications untenable. However, acoustic metamaterials
have a number of other interesting applications including
waveguides [14] in which sound can be channeled into dif-
ferent directions with little energy loss, phononic lenses



[15] akin to optical lenses, and devices which exploit neg-
ative refraction [16].

One important challenge in acoustic applications is to
design metamaterials such that the band gaps fall into
the frequency range of interest. For acoustic applica-
tions, this is below 1 kHz. However, since vibrational
frequencies scale inversely with unit cell size; 1 kHz com-
monly implies meter length scales. Such scales are usu-
ally impractical; hence, an important challenge is to de-
sign materials with wide, low frequency band gaps and of
reasonable size. While recent advances based upon reso-
nant structures have pushed band gaps into the desired
low frequency region [17], the resultant band gaps are too
narrow for many applications. Since fractal-cut materi-
als can be designed with tunable elastic properties, we
investigate here how such materials can be designed to
manipulate acoustic properties. As we demonstrate be-
low, elastic properties can be used as a simple predictor
of several important features of the dynamical response
of these materials.

In this paper, we report how the elastic (static and
dynamic) properties of such rotatable, fractal-cut struc-
tures vary with degree of hierarchy, cut-pattern symme-
try, and hinge properties. We begin with an analysis of
the geometric properties of rotatable hinge, fractal-cut
structures and then analyze the impact of finite hinge
stiffness in order to predict the elastic behavior (elastic
constants) of such structures. Since real fractal-cut ma-
terials will always have finite ligament sizes, we perform
finite element analyses in order to determine the corre-
lation between hinge stiffness and ligament geometries
in elastic materials (where both the ligament and blocks
are made from the same material). Next, we consider dy-
namic elastic properties by analyzing sound propagation
through these materials - determining the phonon band
structure.We then exploit 3D printing to manufacture a
fractal-like structure and measure its acoustic properties
to compare with our predictions. Finally, we examine the
correlation between the static and dynamic elastic results
in order to provide guidance for the design of such mate-
rials.

STATIC ELASTIC PROPERTIES

In this paper, we consider square and hexagonal
unit cell structures repeated to produce (square and
Kagome [18-20]) lattices [1]. We first focus on square
lattices. Consider splitting a square into four smaller
squares, connected by hinges (Fig. 1la) to form a “level
1 square lattice” (Fig. 1d). If the squares are perfectly
rigid and the hinges are of zero size, this structure has
only one degree of freedom (i.e. the angle between two
adjacent squares describes the entire lattice). If the lat-
tice is elongated in any (for example, horizontal) direc-
tion, the strain in the orthogonal (vertical here) direction
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FIG. 1. Example of a (a) “square unit cell” that can be (d)
repeated to create a “square lattice”; a level 1 structure. Each
square can be subsequently divided in exactly the same man-
ner to create a (b) level 2 structure which may be (e) repeated
to form a level 2 lattice. (c) and (f) show the corresponding
level 3 structures/lattices.

is identical; i.e., the Poisson ratio is ¥ = —1 (it is ideally
auxetic).

Each small square in the original, level 1, structure,
can be cut into four even smaller squares in exactly the
same manner , producing a level 2 square unit cell (Fig.
1b) which may be repeated to form an infinite periodic
level 2 lattice (Fig. le). The procedure of cutting each
square into four sub-squares connected by hinges may
be repeated n times to create a level n structures (see
Fig. 1). In the limit that n — oo, such a structure
is a fractal. The same approach can be applied to the
hexagonal /Kagome [18] case, as shown in Fig. 2. For
both lattice, the level 1 structures have only one degree
of freedom and a Poisson ratio of —1. As the level of
the structures increase, the open structures become less
dense/more tenuous and have large holes.

The ideal case - free-hinges, rigid bodies

We focus first on the ideal case, where the fundamental
geometrical units (squares or triangles) are perfectly rigid
and the hinges are of zero size and rotate freely. The level
1 square structure is particularly simple; it has only one
degree of freedom, the angle 5 (see Fig. 3a). To avoid
overlapping units 0 < 8 < m/2. This implies that the
strains €, = €y,. These strains are

Exa = Eyy =sinf 4+ cosf — 1; €y = 0. (1)
Note that unlike homogeneous (uncut) materials the
structure is not a unique function of strain; 8 and 7/2 — g8
generate exactly same strains albeit with different lat-
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FIG. 2. Examples of (a) level 1, (b) level 2, and (c) level
3 Kagome unit cells that are nearly closed. (d), (e) and (f)
show the corresponding fully stretched structures (scaled to
fit in the same size boxes) for which the strains are €* = 1,
V3 =171, and 2/3 — 1/2 = 2.96, respectively.
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FIG. 3. Suggested parameterization of the (a) level 1 and (b)
level 2 square lattice.

tice geometries/states. Possible geometrical states of
level 2 include those of level 1, but because level 2
has two degrees of freedom (we parameterize as (51, 82)
0< B <pBy<7w/2 in Fig. 3b) many more states are
available. The corresponding strains are

CarlB1,2) = sin iy + 5 (cos by + cos ) — 1

eyy(B1, P2) = cos B + %(Sinﬁ1 +sinfFy) —1 (2)
Exy = 0.

Some strains may be generated by only one state (set
of 8s) but, like for level 1, some may be generated by two
different states. Figure 4 shows the accessible strains for
the level 2 square lattice as well as the number of states
that can access each strain. Several states labeled in Fig.
4 are shown explicitly in Fig. 5; these states are special
in the following sense. “A” corresponds to the maximum
dilatation of level 1. There are two states which generate
the strain “B”; the one shown in Fig. 5b is stable and
incompressible while the other, shown in Fig. 5c, is only
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FIG. 4.  Accessible strains of the level 2 square lat-
tice; white indicates inaccessible strain states, red indicates
strains for which only one state exists and yellow indicates
strains which may be realized in two ways (sets of Ss).
Points A (€z2 = €yy = V2 — 1), B (€42 = €4y = 1/2), and C
(€2 = (V5 —1)/2, €4y = 1/4/5) are special and correspond
to the structures shown in Fig. 5.
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FIG. 5. Special states of the level 2 square lattice (see Fig.
4). (a) generates strain A, (b) and (c) both generate strain B
and (d) generates state C.

special in the sense that it corresponds to the same strain
as Fig. bb. “C” corresponds to the maximum uniaxial
strain (in the x-direction).

What is the total number of degrees of freedom of a
level n lattice? It may be estimated as follows. The unit
cell of a level n periodic lattice consists of Ng(n) = 4"
squares with Ny (n) = (4"*! 4 8)/3 hinges per unit cell.
Since each square has three degrees of freedom (two
translations and one rotation) and each hinge constrains
two of these, the total number of degrees of freedom is

4" — 16

NDOF(TL) ZBND(TL)—QN}L(TL) = T, (3)
where the last expression is applicable at large n. This
formula does not account for linearly dependent degrees
of freedom. The linearly dependent degrees of freedom
tend to zero as n — o0; hence Eq. 3 should be viewed
as asymptotic for large n and as approximate at smaller
n. Clearly, this is a very poor approximation for n = 1
(1-exact, —4-estimate), n = 2 (2-exact, 0-estimate), and
n = 3 (14-exact, 16-estimate).

What is the maximum strain of a level n structure
under uniform biaxial load? In the state of maximum
dilation, each unit cell is 4-fold symmetric (hence, €., =
€yy). The maximum dilatation states for the first 4 levels
are given in Fig. 6 and their strains are shown in Table I.
It is unclear whether these strains are finite as n — oo,
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FIG. 6. States of maximum dilation of the square lattice
(scaled to the same size) for n = 1, 2, 3, and 4 in (a)-(d),
respectively.

but based on the numerical results for the first several
levels we suspect that they do not.

TABLE I. Maximum dilatational strain for the square lat-
tice for several n from analytical and numerical calculations
performed using the Bullet Physics library [21].

Level n|e*, analytical form|e*, numerical value
1 V2-1 0.41
7
2 VE 1 0.57
1
3 71 0.71
4 0.82

We follow the same steps for the Kagome lattice. Level
1 may be parameterized with one angle 3, as shown
in Fig. 7a. To avoid self-penetration, S must satisfy
0 < B < 27/3. As for the square lattice, £,, and Eyy are
equal:

€xx(B) = €yy(ﬁ) = \/gsmﬂ +cosfB—1

4

Exy = 0. @
Strains do not uniquely define the shape of a unit cell;
B and 27 /3 — (B generate the same strains, although the
shapes are different (see Fig. 8). For the square lattice,
replacing 8 with 7/2 — 8 was equivalent to rotating the
unit cell by 7/2, while for the Kagome lattice replacing

FIG. 7. Parameterization of the Kagome lattice employed
here for (a) n = 1 and (b) 2. The solid black lines indicate
mirrors.
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FIG. 8. Two different Kagome level 1 states that generate
the same strains.

B with 27/3 — (3 is equivalent to rotating the unit cell by
/3.

The level 1 Kagome lattice has three mirror symme-
tries, as shown in Fig. 7a. We employ the parameteriza-
tion of the level 2 structure shown in Fig. 7b. In general,
the total number of degrees of freedom for the Kagome
lattice may be estimated in a manner similar to Eq. 3
(Na(n) =6-4""1 and Nj(n) = 6-4""1 + 3):

Npor(n) =3Na(n) —2N,(n) =6 (4""' =1). (5)

As for the square lattice, this estimate is strictly valid in
the limit that n — oo since it does not remove the linearly
dependent degrees of freedom. A detailed analysis of a
Kagome lattice degrees of freedom was performed in [18].

Unlike for the square lattice, we were able to analyti-
cally compute the maximum dilation strain as a function
of level n: e* = +/3(3/2)" 1 — (v/3/2 — 1)22~" — 1. For
large n the maximum dilation strain grows exponentially
with n (fully stretched states of the first three levels are
shown in Fig. 2).

Making it Real(er)

Real materials, of course, are very different from the
ideal free-hinge model discussed above. In this section
we replace the free-hinges with spring-hinges, which is
a relatively simple description of the elastic deformation
that occurs in the vicinity of a hinge in a real, cut sheet.
We model each hinge as a torsion spring of stiffness x;
i.e., the elastic energy of hinge i is U; = 2k(3; — 87)?,
where 8; and Y is the half angle between a particular
pair of rigid bodies (Fig. 3a) and that angle for which
the torque is zero (we omit the subscript ¢ for level 1



structures). Unlike for free-hinges, here materials can
store elastic energy and their elastic constants are, in
general, non-zero. The potential energy per unit cell for
the Level 1 square and Kagome lattice are 16x(8 — 3°)?
and 18k(8— )2, respectively, and for the Level 2 square
is 326[(B1 — B7)% + (B2 — £9)> — (B1 — BY) (B2 — 53)].

The compliance tensor Sjjr; for the square lattice
structures has the following form [22]:

Eax Sll Sl2 0 [
Eyy = Suu 0 Oyy (6)
2Emy Se6 Oy

The number of independent elastic constants equals the
number of degrees of freedom up to the point where
there are more degrees of freedom than independent
strain components (i.e., 3 for the square lattice and 2
for the Kagome lattice). Beyond this point, strains do
not uniquely define the shape of a free-hinge unit cell.
However, with hinge-springs, the strains fully define the
shape of the system; the structure may be very compliant
even though its primitive elements are rigid.

For the level 1 square lattice structure, there is only
one degree of freedom S1; = S12 and Sgg = 0 and for
the level 2 structure there are two degrees of freedom
S11 # Si2 and Sgg = 0. We can determine how Si; is
related to the length of the edge of the primitive square a,
the hinge stiffness x and zero-torque half-angle 3° for the
level 1 square lattice structure. The strain e, is related
to the angle opening AB = 3 — 8° by

=D

cos 9 — sin B9
Exx = 10 =

~ cos 39 + sin B9

AB+0O(AB%),  (7)

such that the elastic energy per unit area is

8kAB?

U= .
a?(cos 89 + sin 30)2

From this, we find that the elastic compliance is

51 —sin23°

16+ 9)

511 =a
In particular, in the fully folded state 8° = 0 and
S11 = a?/(16k).
The compliance tensor for hexagonal lattice structures
have the following form [22]:

Exx Sll S12 0 Oxx
Eyy | = S11 0 Tyy (10)
2€ 4y 2(511 — Si2) Ty

As for the square lattice, the level 1 Kagome structure in
the fully folded state (8% = 0) has only one degree of free-
dom; S11 = S12 = V3a?/16k (and, of course, Sgs = 0),
where a is a length of the edge of the primitive trian-
gle. The level 2 (and all higher level) structure has more

than two degrees of freedom and, therefore, its compli-
ance tensor takes the general form.

For 3% # 0, the level 1 square and Kagome lattices
retain their square and hexagonal symmetries. How-
ever, for n > 1 this is, in general, not the case. For
example, the level 2 square lattice possess square sym-
metry if 89 = /2 — 89, but rectangular symmetry for
BY # 7/2 — B (see Fig. 3b). Higher levels can also have
oblique or rhombic symmetries.

Porous structures are often studied in the context of
auxetic (negative Poisson ratio v) materials [23]. For
this class of materials, the Poisson ratio is negative for
all 3? = 0. For the level 1 lattices ez, = €yy, and
therefore v = —1 for 8% # 7/4 in the square lattice
and $° # /3 in the Kagome lattice. When 3° = 7/4
(square) or 7/3 (Kagome), v is not defined, since the
material is fully stretched and therefore may be neither
stretched nor compressed by applying uniaxial load. For
n > 1, v is a function of the 8?; e.g., for a level 2 square
structure v = v(B7, 39). For a level 2 square lattice, not
only is v undefined at (37, 39) = (0, arctan 2) (where the
structure is fully stretched in the z-direction), but the
limit does not exist as we approach this point. In fact,
v(8Y,89) may vary from —oo to oo depending on the
path which is used to approach the singular point. Ex-
amination of Fig. 4 shows that the slope of the boundary
(deyy/desy) = oo at point C, which implies v = +o0 (de-
pending on whether this point is approached from above
or below). This is consistent with the numerical results
in [2] where they showed that for a structure akin to our
level 2, the Poisson ratio can take on large positive or
negative value for a particular set of (39, 89). Therefore
even for level 2, the Poisson ratio may take on any value.

The results presented here suggest that it is possible to
design materials with a prescribed elastic constant tensor
and with any value of the Poisson ratio. For example,
it is possible to design materials for which some elastic
constants are much smaller than all of the others, for
example, as described in [24, 25].

Making it Really Real

The model presented above, even with the elastic ro-
tational hinges, involves several idealizations compared
with the cut sheet. Of these, the most important are:
(1) that the hinges are point hinges, when in fact the
cuts leave a finite hinge ligament and (2) the assumption
that the units are rigid, when in fact they are elastic bod-
ies (see [1]). In this section, we discuss the relaxation of
these two constraints by replacing the rigid blocks with
isotropic elastic bodies and by making the hinges of fi-
nite size. Examples of such structures with finite hinge
ligaments are shown in Fig. 9. In these examples, we
employ wedge-shaped hinges of finite radius r and finite
zero-torque angle, 3°. The mechanical response of such
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FIG. 9. Wedge-shaped hinges of normalized radius, r/a, for
the (a) square and (b) Kagome lattices.
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FIG. 10. (a) Torque versus relative hinge angle for the ge-
ometry in Fig. 9a with hinge size r = 2 mm, as determined
from finite element analysis and the analytical relationship
for the spring hinge model. (b) The spring hinge stiffness
versus hinge size as determined from FEA. For both figures
B° = 7/18 and E = 2560MPa and v = 0.37.

structures must be determined numerically.

We first investigate the relationship between the prop-
erties of a structure with such wedge-shaped hinges and
the spring hinges discussed in the previous section in or-
der to determine the applicability of the earlier results.
We solve for the torque 7 - rotation angle 8 relationship
for the case where the entire material is linear elastic with
elastic constants chosen for polycarbonate; i.e., the ma-
terial used in our experimental work, VisiJet© SL Clear
[26] (density p = 1.17g/cm?, and isotropic linear elastic
constants F = 2560MPa and v = 0.37). The numerical
solutions are obtained using linear elastic finite element
analysis (i.e., COMSOL 4.4 [27]) in plane strain (i.e., we
assume the structure is infinitely thick in the direction
normal to the plane of the cuts - this assumption is con-
sistent with our experimental geometry used in the next
section).

Figure 10a shows the relation between the torque per
unit length and angle 8 for the wedge-shaped hinge in
Fig. 9. The torque is a linear function of relative angle
B— B0, for small relative angle. However, at larger angle,
the torque grows in a sub-linear manner. In the spring-
hinge model, the torque is a linear function of angle:
7 =2k(B — B°). The two curves agree well (within 10%)
for relative angles 2(3 — 8°) < 0.127 = 22°. Clearly, the
spring hinge model accurately represents the real struc-

ture for small deformation. We correlate the hinge stiff-
ness in the elastic hinge and wedge-shape hinge (finite
element) models as a function of hinge size in Fig. 10b.
To leading order in r, the spring hinge stiffness scales with
radius as k o r2. Hinge stiffness also depends on the elas-
tic constants of the base material. By comparison of our
wedge hinge results with elastic predictions from discli-
nation theory [28], we expect that xk = aEr? where « is
a dimensionless constant. Comparison of this relation
with the finite element result in Fig. 10b, we find that
a = 1.34 for the geometry in Fig. 9a and E = 2560MPa
and v = 0.37.

DYNAMIC ELASTIC PROPERTIES

We now examine the impact of microscopic rotational
degrees of freedom on sound propagation. In particular,
we exploit such rotational degrees of freedom to engineer
phononic band gaps (e.g., [6]). To this end, we numerical
solve the wave equation for our 2D fractal-cut materials:

0%u; ) Ouy
— —(ciipi—) = F;, 11
P atZ axj (C gkl a$l) ( )

where F; is a body force, p is the density, u is dis-
placement, t is time, and c;jp = si_jkl are elements
of the elastic stiffness tensor that depend on location
(i.e., they are zero in the holes between the blocks of
the base material and finite within those blocks) - the-
ses elastic constants are not the elastic constants of the

whole structure Cjji = S; jil, discussed above. We look
for solutions compatible with (Floquet) periodic bound-
ary conditions: w;(x 4+ mag,y+nay,z) = uwi(z,y,2) -
exp(—ikymay — ikynay), where a, and a, are the lengths
of a simulation cell in z and y directions, k. and k, are z
and y components of wavevector k, and m and n are inte-
gers. The numerical solutions were obtained using finite
element analysis [27]. In the results presented below, we
model the solid phase as an isotropic elastic body with
parameters corresponding to polycarbonate [26]. We do
not explicitly consider damping within the solid material
or interactions between the solid material and air.

Dispersion Relations

In 2D periodic materials, the wavevectors of interest
k are contained within the first Brillouin zone, where
we use the standard notation to represent directions in
reciprocal space (e.g., see [29]). The phonon band struc-
ture for the level 2 square lattice structure of Fig. 11a is
shown in Figure 11b. Although results vary with level,
geometrical state, and hinge size, no low frequency band
gaps are observed for (level 1 and level 2) square lattices
(below 50 kHz for this particular sample size).
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FIG. 11. The phonon band structure for the (a) level 2 square
lattice structure with (51, 32) = (7/6,7/6) are shown in (b)
for relative hinge size r/a = 0.15. The unit square edge length
a = 2 mm. The solid material properties correspond to poly-
carbonate.

On the other hand, gaps in the phonon band struc-
ture do exist for Kagome lattices, as shown in Fig. 12
for three sets of equilibrium hinge openings for the level 2
structures shown in the insets in that figure. The general
form of the band structure is independent of the open-
ing angles (over the range of angles examined here) and,
in fact, the band structure only changes slightly for the
range of opening angles examined here (the magnitude
of the band gap decreases slowly with increasing opening
angles).

Figure 13 shows the effect of hinge size on the phonon
dispersion relations. The overall form of the phonon band
structure varies little with hinge size. More quantita-
tively, we see that the magnitude of the band gap varies
by less than 5% when the hinge size r/a changes by a fac-
tor of three. On the other hand, the hinge size has a pro-
found effect on the width of the low frequency band, al-
though not the shapes of the individual dispersion curves
within this band.

Two of the dispersion curves in Fig. 13 have non-zero
slopes (sound wave group velocities) at k = T'. These
correspond to the long wavelength limit of the transverse
and longitudinal modes [30] and are simply the static
elastic stiffnesses [31]

dv 2
Cll 47T2p <L >
dVT 2
Ces = 41°p ( )
* dlk] |

where p is the average density and C7; and Cgg are re-
lated to the S;; discussed in the static elastic properties
section, above. These elastic constants (slopes) play a
central role in the phonon band structure. If we scale
the lower band in the band structures from Fig. 13 by
their slope (or C11) as 2mv/+/Ch1/p, we find that all three
band structures nearly coincide (the error in the scaling
is less than 10% for a 200% change in r/a), as shown in
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FIG. 12. Phonon band structures for level 2 Kagome

lattices (see insets) for (Bi, B2, B3, Ba) = (a)
(2n/3,7/12,7/12,7/12), (b) (27/3,57/36,5m/36,57/36),
and (c) (2m/3,7m/36,77/36,7m/36) and relative hinge size
r/a = 0.15, with unit triangle edge length a = 2 mm. The
solid material properties correspond to polycarbonate and the
Bi are as defined in Fig. 7b.
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FIG. 13. Phonon band structure vs. relative hinge size for
the level 2 Kagome unit cell, with (81, B2, B3, B4) = (27/3,
5m/36, 5w /36, 57/36) for relative hinge sizes r/a = (a) 0.05,
(b) 0.10, and (c) 0.15, respectively, with unit triangle edge
length a = 2 mm. The solid material properties correspond
to polycarbonate.

Fig. 14. As we demonstrated above, C; is proportional
to the square of the hinge size 2, so hinge size controls
the location of the band gap.

Of course, as the hinge size tends to zero, the linear dis-
persion at small k goes to zero slope (no elastic restoring
force), and the bands below the gap collapse (this is the
free-hinge limit). The bands above the gap do not col-
lapse in this limit. The fact that band gaps change with
geometry in porous materials was noted earlier by [5] -
the present results show which features of the geometry
are important.

Taken together, these results demonstrate that we can
independently control both the band gap and its location
by separately scaling the hinge stiffness and the length
scale of the overall structure (i.e., ). The band struc-
ture can be tuned further by varying the opening angles
(and fractal structure level). The static elastic constants
provide an accurate means of predicting the position of
the bottom of the band gap.
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FIG. 14. Phonon band structures from Fig. 13 in which the
frequency was scaled by 27 (p/Ci1)'/2.
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FIG. 15. Numerical model for computing transmission spec-
trum of a 3 unit cells thick (in the z-direction) structure.
Black regions correspond to perfectly matched layers (PML),
and input and output elastic energies were each integrated
over the left-hand side (red) and right-hand side (blue) square
blocks, respectively. A force, sinusoidally varying in time, was
applied to the left edges of the red blocks.

Transmission Spectra

The phonon band structures in the previous section
was determined based upon a periodic structure. On
the other hand, most acoustic properties of interest are
measured for finite samples. For example, one common
measurement is of the acoustic transmission spectrum;
the transmission coefficient 7" is the ratio of the output
acoustic energy to the input acoustic energy through a
finite thickness sample.

We examine the transmission spectrum for the level
2 Kagome lattice (periodic in y, three unit cells in z)
as shown in Fig. 15. The simulations were, again,
performed using the finite element package COMSOL
4.4 127] . The sound was input into the structure through
a perfectly matched layer (PML, shown in black), in order
to avoid wave reflection from the boundary, via applica-
tion of a harmonic force.

Figure 16 shows the transmission spectrum for the
polycarbonate model in Fig. 15. This figure shows
that there is substantial transmission at low frequency
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FIG. 16. Transmission spectrum for the polycarbonate model
in Fig. 15. The corresponding band structure is shown in Fig.
12b.

and again at high frequency. However, between these
two frequency ranges, a large range of frequencies exist
for which there is no acoustic energy transmission (i.e.,
a phononic band gap). Comparison of this transmis-
sion spectrum with the phonon band structure in Fig.
12b (i.e., f1 = 2n/3, B2 = 57/36, B3 = 57/36, and
B4 = 57/36) shows the origin of the transmission spec-
trum peaks and gaps.

Experimental Comparison

In order to validate the acoustic property predictions,
above, we manufactured a level 2 Kagome structure,
akin to that shown in Fig. 12a. The sample was pro-
duced by 3D printing (3D Systems ProJet 6000) with
a polycarbonate-like material VisiJet© SL Clear [26]
(p = 1.17g/ecm3, E = 2560MPa, v = 0.37). To re-
duce costs, the primitive triangular units were hollow,
rather than filled (as in Fig. 12a) as seen in Fig. 17a.
The entire sample was 3 unit cells thick (4.5 ¢cm) in the
x (sound propagation)-direction and 11.5 unit cells (20
cm) in the y-direction and 20 cm long in the z-direction
(i.e., the sample is square in the directions perpendic-
ular to the sound propagation direction); see Fig. 18.
The calculated phonon band structure for the periodic
polycarbonate sample is shown in Fig. 17b and the cal-
culated frequency-dependent transmission coefficient for
this 3 unit cell thick sample is shown in Fig. 19.

We measure the transmission spectrum of the 3D
printed sample in a soundproof chamber. The sound
was generated through a speaker driven by a BK Pre-
cision 4003A signal generator in a 3-25kHz frequency
range. The receiving sensor, mounted on the other side
of the sample from the speaker, was a Behringer ECM
8000 microphone, the output of which was amplified and
recorded on a Tektronix TDS 540 oscilloscope. The
transmission coefficient is the ratio between the sound in-
tensities registered by the microphone with and without
the sample. The results are compared with the numerical
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FIG. 17. The unit cell (a) and calculated phonon band struc-
ture (b) of the 3D-printed polymer structure with r/a = 0.15,
51 :271'/37 and ﬂz :ﬁ;; :,84 :71'/12.
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FIG. 18. 3D printed sample. In the experiment, sound prop-
agates along the z-direction.

prediction in Fig. 19.

The finite element analysis reproduces the general form
and frequency range of the experimental transmission at
low frequency. Both the FEA and experiments also show
the transmission coefficient going to zero below 10 kHz.
However, while the FEA calculations show a pronounced
peak in the transmission coefficient between 18 and 25
kHz, no such peak is observed in the experiment.

The missing high frequency peak in the transmission
spectrum in the experiment may be associated with the
neglect of one or more of the following factors in the
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FIG. 19. The transmission spectra from the numerical model
(red curve) and the experimental measurement (blue) for sam-
ple in Fig. 18.

FEA calculations: (1) solid-air interactions, (2) sound
propagation through and dissipation in the air, (3) dissi-
pation (damping) within the polycarbonate, and (4) out-
of-plane bending (drumhead-like) modes in the sample.
Of these, we expect that the neglect of damping is the
most important effect at high frequency. Unfortunately,
no damping data is available for our polycarbonate in
the correct frequency range. High frequency damping
data on a similar material is available [32] in the 2-10
MHz frequency range. This data suggests that damping
grows linearly with frequency (in this range). Extrapo-
lating this data to frequencies of interest here suggests
that this damping is too small to cause significant at-
tenuation at 22 kHz for the sample size employed here.
If the material were a uniform plate, we would expect
the damping associated with air to be too small to ac-
count for the present observations. However, we note
that our material is extremely porous; that is, the air-
polycarbonate surface area is very much larger than if
the same mass of polycarbonate was in the form of a ho-
mogeneous plate. This large area would imply greatly
enhanced damping. We suspect that this explains why
the high frequency peak seen in the simulations if absent
in the experimental transmission spectrum (Fig. 19).

Nonetheless, the fact that the transmission coefficient
goes to zero (at a frequency similar to the predictions)
is clear evidence of a phononic band gap in these ma-
terials. Unfortunately, we are unable to experimentally
characterize its size. We consider this confirmation of the
main theoretical predictions (albeit not strong quantitive
confirmation).

CONCLUSION

In this paper, we investigated the static and dynamic
elastic response of fractal-cut materials. These materials
are novel in the sense that (a) they deform by rotation
of “rigid” units rather than by straining these units, (b)



these materials can be fabricated by exploiting a simple
cutting paradigm (or fabricated by 3D printing), and (c)
have both static and dynamic properties that can be ma-
nipulated by control of the cut pattern, its hierarchy (to
arbitrary fractal level), and hinge size. For example, we
showed that variation of fractal-cut level can be used to
manipulate the symmetry of the elastic constant tensor.
Our results also demonstrate how to manipulate the elas-
tic limit of deformation (e.g., the maximum achievable
dilatation before onset of macroscopic material deforma-
tion) and to design elastic response by manipulating cut
structure (i.e., cut structure/elastic constant relations).
We also examined phonon behavior in fractal-cut ma-
terials and showed how some cut symmetries naturally
open acoustic band gaps, while others do not. We also
established which features of the fractal-cut structure de-
termine specific features of the phonon band structure.
Based upon these results we predicted an acoustic trans-
mission spectrum for a fractal-cut material and validated
it via 3D printing of a structure and testing in an acous-
tic chamber. The results confirmed the existence of an
acoustic band gap in a subset of fractal-cut materials.
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