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Abstract: An instrument or instrumental variable is often used in an effort to avoid selection

bias in inference about the effects of treatments when treatment choice is based on thoughtful

deliberation. An instrument is a haphazard nudge to accept one treatment or another, where

the push can affect outcomes only to the extent that it alters the treatment received. There

are two key assumptions here: (i) the push is haphazard or essentially random once adjust-

ments have been made for observed covariates, (ii) the push affects outcomes only by altering

the treatment, the so-called “exclusion restriction.” These assumptions are often said to be

untestable; however, that is untrue if testable means checking the compatibility of assumptions

with other things we think we know. A test of this sort may result in an aporia, that is,

a collection of claims that are individually plausible but mutually inconsistent, without clear

indication as to which claim is culpable for the inconsistency. We discuss this subject in the

context of our on-going study of the effects of delivery by cesarean section on the survival of

extremely premature infants of 23-24 weeks gestational age.
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1 Testing untestable assumptions in causal inference
with instrumental variables

1.1 What is an instrument? What assumptions underlie their use?

An instrument is a haphazard nudge to accept a treatment where the nudge can affect the

outcomes only to the extent that it alters the treatment received. The most basic example

is Holland’s (1988) randomized encouragement design, in which people are randomized

to one of two groups, and members of one group are encouraged to adopt some health

promoting behavior, say quit smoking, but the outcome, say an evaluation of lung tissue,

might respond to a reduction in cigarettes consumed but not to encouragement to quit that

leaves cigarette consumption unchanged. There are two key elements here. First, in the

encouragement experiment, people are picked at random for encouragement – selection
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does not just look haphazard, it is actually randomized – so the comparison of encouraged

and unencouraged groups is equitable, not subject to biases of self-selection. Even in the

randomized encouragement design, people who change their behavior, quit smoking, are

a self-selected part of the encouraged and possibly unencouraged groups, so a comparison

of quitters and others could be very biased: quitters may be more self-disciplined in all

areas of their lives and may be more concerned with health promotion. The second

element is that encouragement works, affects the outcome, only if it changes behavior,

the so-called exclusion restriction. Stated informally in words, the instrumental variable

(IV) estimate, the Wald estimate, attributes the entire difference in outcomes between the

randomized encouraged and unencouraged groups to the greater change in behavior in the

encouraged group, thereby avoiding biases of self-selection. If the encouraged group has

a mean outcome that is one unit better than the mean in the unencouraged group, and if

half of the encouraged quit while none of the unencouraged quit, then the Wald estimator

claims the effects of quitting on those who quit when encouraged is two units, because

encouragement only affected half of those who were encouraged. See Angrist, Imbens and

Rubin (1996) for an equivalent formal statement.

So there are two key elements in the randomized encouragement design:

(i) encouragement is randomized,

(ii) encouragement affects only those individuals who change their behavior in response

to encouragement, the exclusion restriction.

In the encouragement design, (i) is ensured by the use of randomization, and (ii) seems

highly plausible because of what we think we know about the relationships that might exist

between advice, behavior and lung tissue. Typical applications of the reasoning involving

instruments are less compelling, because (i) is not ensured by actual random assignment,

and (ii) is less firmly grounded in other things we think we know. In particular, (i)

is typically rendered somewhat plausible by adjusting for visible differences in measured

pretreatment covariates between encouraged and unencouraged groups, but of course this

strategy may fail to control a covariate that was not measured. Typically, the encour-

aged and unencouraged groups are not formed by random assignment, but rather in a way

that appears irrelevant and haphazard, but these appearances may deceive. Typically,

the exclusion restriction seems plausible to anyone who cannot imagine a way encourage-

ment could affect the outcome without altering the treatment, but this may simply reflect
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inadequate imagining. So it is natural to want to test the assumptions that define an

instrument.

Instruments are useful in two related senses. First, they are useful when one expects

direct selection into the treated group to be severely biased. In the normal course of

events, people who go to college are different from people who end their education with a

high school degree, and they were different in high school – going to college costs money,

requires tolerable academic performance in high school, requires ambition of a certain

type. Therefore, one could not reasonably attribute the difference in earnings of college

graduates and high school graduates to an effect of college education – the groups were

not comparable before college. As an instrument in this case, Card (1995) used living in

a town with a college, reasoning that people who live near a college may reduce expense

by living at home, but merely growing up near a college if you do not go to college is

unlikely to boost your income. Similarly, in the normal course of events, medical practice

typically ensures that people who receive a particular medical treatment differ from those

who do not, so one cannot estimate the effects of the treatment by comparing just any

treated and untreated patients. Nonetheless, a widely used instrument exploits the fact

that different hospitals may use that treatment more or less frequently while patients may

select hospitals based on considerations such as proximity or practice affi liation; see, for

instance, McClellan et al. (1994), Lalani et al. (2010), and Lorch et al. (2012). Some

patients will either receive or be denied the treatment not for reasons unique to their own

situation but simply because they live near a particular hospital.

Second, instruments are useful when there are many possible instruments that may fail

in many unconnected ways, but direct comparisons always fail in the same way. There are

many instruments – many possible nudges – that might make going to college a little

easier or a little harder at the margin, whereas the biases that affect direct comparisons

of earnings between high school and college graduates are always biased in much the same

way; see Card (2001) for discussion of the varied instruments that have been used in this

context. If direct comparisons always face the same biases, they may always yield the

same biased answer, so repeatedly seeing similar answers in different studies does not build

conviction that the answers are correct (Rosenbaum 2001). If plausible doubts surround

each study with an instrument, but the doubts about the instrument in each study leave

the other studies untouched, then seeing similar answers in many studies with unconnected

instruments may build conviction that the estimates are actually estimating the treatment

effect, not a bias; see Imbens and Rosenbaum (2004, §1).
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1.2 Untestable assumptions?

The assumptions required for an instrument are often said to be untestable (e.g., Morgan

and Winship 2007, p. 196). Whether this is true or not depends in part on what one

means by untestable. Assumptions might be said to be untestable if they (A) are premises

of a theorem that is the basis for an inference, (B) these premises are not self-evident

or implied by other premises that are self-evident, (C) these premises cannot be tested

against data from the observable distributions specifically mentioned in the statement of

the theorem. This is an internally consistent way to use the word untestable, but it is a

manner of speaking at considerable tension with typical scientific practice. Typically in

science, each new claim to know something is checked for consistency with the other things

we think we know. There is no reason to confine this checking for consistency to the short

list of premises of a theorem. This checking may involve logical consistency, but more

often the question is whether the new knowledge claim and old knowledge claims could

plausibly be describing one and the same world, or whether something has to give.

At the risk of belaboring an example, consider asking: Is living near a college an instru-

ment for going to college? This example is attractive because no specialized knowledge

is needed to know many things about how kids end up in college. To be an instrument,

(i) and (ii) in §1.1 must be approximately true in an appropriate sense. If one confined

attention to three variables – namely college versus high school education, earnings and

whether or not one grew up in a town with a college – then perhaps there is no way to

test (i) and (ii), but why should anyone confine attention to these three variables? There

is nothing unreasonable in checking the IV assumptions against other things we think we

know. In a small college town, a college or university might be the largest private em-

ployer. (The University of Pennsylvania is the largest private employer in Philadelphia.)

Some parents, perhaps more than a few, may live in a small town with a college because

they wish to work at a college. The college may subsidize tuition for children of employees,

and concern for financing a child’s education, or perhaps simply an interest in education,

may have been a consideration in selecting the college as an employer, and hence the town

as a place to live. To the extent that parents choose to work in a college town so as to

work at the college, growing up in a college town may fail to satisfy conditions (i) and

(ii) in §1.1 for an instrument. This is all testable, but not with the three variables, and

indeed it is fixable, but not with the three variables. For example, one can exclude from

the study people whose parents worked at a college, or compare results in towns in which
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the college is the major or one minor employer. In practical work with instruments, it is

quite common to hear people announce that IV assumptions are untestable and then to

see them do the sorts of checks that test IV assumptions.

Why are IV assumptions often said to be untestable when people often test them? We

suspect there is a reason. A test of IV assumptions may lead neither to rejection of the

assumptions nor to acceptance but rather to an aporia.

1.3 Aporia: mutually inconsistent but individually plausible claims

The Oxford American Dictionary defines the noun aporia as “an irresolvable internal con-

tradiction . . . in a text, argument or theory,”with aporetic as the adjective. A collection

of propositions, $1, . . . , $L is an aporia if each $` is plausible on its own but they are

jointly inconsistent, that is, $1 ∧ . . . ∧$L is false or implausible; see Rescher (2009). A

special case of aporia occurs in mathematical reasoning in a proof by contradiction, in

which one proves ∼ $L by showing that $1, . . . , $L−1 are certainly true and $1, . . . , $L

is aporetic in yielding a contradiction. In contrast, in a typical aporia, in the general case,

the identity of the culpable proposition or propositions is unknown. In Plato’s early dia-

logues, Socrates would invalidate the views of his opponents by demonstrating that those

views were aporetic.

To recognize that one’s beliefs contain an aporia is an advance in understanding, albeit

an uncomfortable one. From a false premise, one can logically deduce every conclusion,

true or false (because, in elementary propositional logic, A ⇒ B is true for all B if A

is false). To believe $1, . . . , $L individually but fail to recognize them as aporetic is

to risk logically deducing false propositions from beliefs one holds (because one believes

$1, . . . , $L, can deduce the false proposition A = $1 ∧ . . . ∧ $L from one’s beliefs, and

can deduce any B from A because A is false). To recognize that one’s beliefs $1, . . . , $L

are aporetic is to recognize that one harbors at least one false belief, to be motivated to

identify that belief, and to be hesitant in deducing consequences from $1, . . . , $L. To

recognize an aporia is an advance in understanding, and it is certainly better than believing

the component propositions without recognizing their aporetic status.

One can escape an aporia $1, . . . , $L by arbitrarily discarding propositions $` until

the remaining propositions are no longer inconsistent. In this process, there is nothing

to ensure that one has discarded false propositions and retained true ones. Rather, one

has narrowed the scope of one’s beliefs to the point that one is committed to suffi ciently

5



few beliefs that one is safe from accusations of inconsistency. For instance, one can avoid

an aporia in testing the assumptions of IV by defining those assumptions so narrowly that

they become untestable.

1.4 Outline: an IV study; a test of IV assumptions; two technical innovations

We are currently using an instrument in a study of the possible effects of delivery by

cesarean section of extremely premature infants of 23-24 weeks gestational age. Some

background is discussed in §2.1 and the IV analysis is presented in §2.2-§2.4. In §2.5, the

IV assumptions are tested, resulting in an aporia that is discussed in detail. The two

appendices present two technical innovations: a new simpler approach to strengthening

an instrument in Appendix I, and a sensitivity analysis for an attributable effect closely

related to the Wald estimator in Appendix II.

2 Does delivery by cesarean section improve survival
of extremely premature neonates?

2.1 Background: Studies of cesarean section without an instrumental variable

We are currently engaged in a study of the possible effects of cesarean section on the

survival of very premature babies of 23-24 gestational age. For reasons to be described

shortly, we tried to find an instrument for delivery by cesarean section and to check its

validity by contrast with other trusted information. Some terminology and background

are needed.

The gestational age of a full-term baby is 39 weeks or 9 months. Babies born under 37

weeks gestation are considered premature, with infants born younger having more medical

problems, requiring more intensive medical care to survive, and having a higher likelihood

of long-term neurodevelopment and medical problems. This issue is most prominent for the

infants at the limits of viability, that is, those infants born at 23 and 24 weeks gestation.

Babies born between 23 and 24 weeks of gestational age are very premature and face high

risks of death and life-long health problems even with special care. A fetus of 23 and 24

weeks of gestational age that is not born alive is defined as a fetal death, whereas an infant

who dies after delivery is designated as a neonatal death. There are clinical indicators

around a pregnancy at the limits of viability that give the physician information about the

likelihood that an infant will survive first the delivery, and then the initial period of time
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after delivery.

In clinical epidemiology, the phrase “confounding by indication”is often defined as the

bias introduced when patients receive medical treatments based on pretreatment indica-

tions that the patient would benefit from the treatment. To the extent that such indica-

tions for treatment are incompletely recorded, thus incompletely controlled by adjustments

for recorded pretreatment differences, they may lead to bias in elementary analyses that

rely on adjustments for confounding factors using recorded pretreatment differences. At

gestational age 23-24 weeks, delivery by cesarean section is likely to reflect clinical judge-

ment about the clinical stability and likelihood of survival of the infant and the generally

unrecorded preferences of the mother. Both of these factors are likely to be incompletely

recorded in most large-scale population datasets.

A major use of instrumental variables in medicine is to break up or otherwise avoid

confounding by indication, that is, to find some circumstances in which patients received

a medical treatment for reasons other than that the patient was expected to benefit from

treatment. In a randomized trial, patients receive treatments for no reason at all, the flip

of a fair coin, and instruments are sought in observational studies to recover as best one

can some aspects of the randomized situation.

Existing literature suggests that routine or optional use of cesarean delivery for babies

of ≥ 30 weeks gestational age is not of benefit to the baby. For instance, Werner et al.

(2013) concluded:

In this preterm cohort, cesarean delivery was not protective against poor out-

comes and in fact was associated with increased risk of respiratory distress and

low Apgar score compared with vaginal delivery. (page 1195)

More than seventy percent of the preterm cohort in Werner et al. (2013) were ≥ 30 weeks

gestational age, and more than half were ≥ 32 weeks, while less than 6% were less than

26 weeks. Werner et al. (2013) compared babies delivered by cesarean section and babies

delivered vaginally adjusting for measured covariates using logit regression. For instance,

women on Medicaid were more likely to deliver vaginally with an odds ratio of 1.43, while

women with third party insurance (e.g., Blue Cross) were more likely to deliver by cesarean

section with odds ratio 1.46, and additive adjustments on the logit scale were intended to

correct for this. Using similar methods and focusing on premature babies of ≥ 32 weeks

gestational age, Malloy (2009) reached similar findings.
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In contrast, for very premature infants of 22-25 weeks gestational age, Malloy (2008)

concluded: “Cesarean section does seem to provide survival advantages for the most im-

mature infants. . . ” (page 285). As in the other studies, the comparison was of babies

delivered by one method or the other with adjustments for measured covariates by logit

regression.

With varied emphasis, these studies note the problem of confounding by indication.

They note that a direct comparison of babies delivered by cesarean section and babies

delivered vaginally could be biased by aspects of the baby and the mother that led to

the decision to deliver by one method rather than the other, and this is true even if

logit regression is used to adjust for measured covariates. The decision to perform a

cesarean section in one case but not in another may reflect indications that were evident

to the physicians or mothers involved but not evident in measured covariates. This seems

especially likely when a complex choice is made in a thoughtful, deliberate way. For a

baby of gestational age 23-24 weeks, these considerations may include a medical judgement

about the viability of the baby, and a mother’s concern for a baby who may face severe

life-long health problems. When studying a survival outcome, one is especially concerned

about comparing groups of babies that may have been constructed with the viability of

those babies in mind. One might prefer circumstances in which more or fewer babies

were delivered by cesarean section for reasons that had nothing to do with the particular

situation of the baby and mother.

The finding that cesarean sections did not benefit more mature preterm babies did not

stir up much controversy, but the finding of benefit for very premature babies was more

controversial and surprising. We set out to study this using an instrument for cesarean

section among babies 23-24 weeks of gestational age.

2.2 An instrument: variation among hospitals in the use of cesarean section for older
babies

As noted in §2.1, confounding by indication occurs when patients receive treatments for

good reasons, for instance because a physician believes giving the treatment to this patient

will benefit this patient. It turns out that the use of cesarean section varies substantially

from one hospital to the next. A mother may deliver by cesarean section not because

of anything unique to her but simply because she delivers at a hospital that makes more

extensive use of cesarean section.
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Our instrument is the predicted c-section rate among babies of 23-24 weeks gestational

age at the hospital where the baby was delivered. The rate is predicted using logit

regression with four predictors. Three predictors describe the hospital’s use of c-sections

for older babies, that is: (a) the rate among babies with gestational age 25-32 weeks, (b)

the rate among babies with gestational age 33-36 weeks, (c) the rate among babies with

gestational age 37+ weeks. The fourth predictor was (d) the malpractice insurance rate in

the county in which the hospital was located. There is evidence that cesarean sections are

more common in regions where the risk of malpractice litigation is greater; e.g., Dubay,

Kaestner, and Waidmann (1999), Baicker, Buckles, and Chandra (2006) and Yang et al.

(2009). The continuous instrument was the predicted probability from the logit regression.

So the value of this instrument would have been constant within a hospital but for predictor

(d) which varied from year to year, so the instrument was constant in a given hospital in

a given year, and was describing the proclivity of the hospital to perform c-sections rather

than anything about a particular baby or mother.

2.3 Matching to strengthen the instrument

Available pretreatment covariates described the mother (e.g., her age), her baby (e.g.,

birth weight), the mother’s Census tract (e.g., median household income), and the hospi-

tal. Hospitals vary in their abilities to care for premature infants. In particular, neonatal

intensive care units (NICUs) are graded into seven levels of care based on available tech-

nology to care for sicker newborn patients. We matched exactly for the level of the NICU;

see Table 1. We also used logit regression to estimate a hospital’s risk-adjusted rates of

two complications, thrombosis and wound infection, and matched to balance these vari-

ables. This scores were estimated from older babies, ≥ 25 weeks gestational age, so the

scores make no use of outcomes for the group under study, namely babies of 23-24 weeks

gestational age. The literature has suggested these two factors, thrombosis and wound

infection, as measures of the quality of care provided by the obstetrical hospital. In brief,

the matching sought to compare similar mothers and babies from similar neighborhoods

at similar hospitals.

Matched pairs were formed to be similar in terms of covariates and very different in

terms of the instrument. Specifically, each of 1489 pairs contained two babies of 23-24

weeks gestational age, one at a hospital with a high frequency of use of c-sections for

older babies, the other with a low frequency of use of c-sections for older babies. So

9



the high and low groups looked similar in measured covariates, but one group went to

hospitals that often delivered by c-section for older babies and the other group went to

hospitals that used c-sections sparingly. As seen in Tables 1-3 and Figure 1, the 1489

babies in the high group and the 1489 babies in the low group were similar in terms

gestational weeks (23 or 24), birth weight, year of birth, mother’s age, mother’s education,

mother’s race/ethnicity, mother’s health insurance, the technical level of the hospital’s

neonatal intensive care unit (NICU), pregnancy complications such as hypertension and

oligohydramnios, number of prenatal care visits, parity, month that prenatal care started,

various aspects of the mother’s census tract. In Table 1, the three covariates were matched

exactly. In Table 2, the five covariates had identical marginal distributions but were not

exactly matched, a condition known as “fine balance.” In Table 3, the difference in means

for the covariates was never more than a tenth of a standard deviation, while the difference

in the instrument was more than three standard deviations. This is depicted for three

continuous covariates and the instrument in Figure 1.

The matching was done in a new but simple way described in the Appendix. Described

informally, nonoverlapping high and low instrument groups were defined by cutting the in-

strument in three places, discarding the middle. High and low babies were then selectively

matched to push the groups further apart on the instrument, balance the covariates, and

produce close individual pairs. The match was the solution to a constrained optimization

problem. The appendix describes several versions of the problem, including the one we

solved, and the associated R software to implement each version.

2.4 Outcomes: c-section and mortality rates

The instrument is intended to manipulate one outcome, whether or not a baby is delivered

by cesarean section, with possible effects on another outcome, mortality of the baby. As

intended and expected, the instrument did manipulate the rate of cesarean sections; see

Table 4. Table 4 counts pairs, not babies, in the manner that is commonly associated

with McNemar’s test; see Cox (1970). More than half the babies in both the high and

low groups were delivered vaginally, but the 24.6% c-section rate in the low group was

increased by more than half to 38.2% in the high group. When the two babies in a pair

were delivered in different ways, the odds were 396/194 = 2.04 to 1 that the high baby had

the c-section.

Table 5 displays the main outcome, namely total in-hospital mortality. Table 5 is
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examining the possible effects of delivering at a high c-section hospital rather than a low

c-section hospital, not yet the effects of c-sections themselves. The point estimate of the

odds ratio favoring survival at a hospital with a high c-section rate is 360/185 = 1.95. In

the high group, survival rate was 34.8% and in the low group it was 23.0%, or a difference

of 360 − 185 = 175 survivors. If one believed naively that the matching in Tables 1-3

and Figure 1 had reproduced a paired randomized experiment that assigned one baby in

each pair at random to the high hospital and the other to the low hospital (i.e., if one

believed (i) but perhaps not (ii) in §1.1), then, using the method in Rosenbaum (2002,

§6), one would be 95% confident that A ≥ 132 babies were caused to survive because of

delivery at a high hospital. (This is a one-sided 95% confidence interval derived from

the randomization distribution, but if one prefers a two-sided interval, then the one-sided

97.5% interval is A ≥ 124 babies rather than 132. In a paired randomized experiment, A

is an unobserved random variable; see Appendix II.) Moving away from the naive model

for treatment assignment (i.e., moving away from (i) in §1.1), if an unobserved covariate

doubled the odds of delivery at a high hospital and doubled the odds of survival, then

the one-sided 95% confidence interval is A ≥ 66 babies were caused to survive because of

delivery at a high hospital. (More precisely, the 95% interval is A ≥ 66 at Γ = 1.25 by

the method in Rosenbaum (2002), and this amplifies to (Λ,∆) = (2, 2) by the method in

Rosenbaum and Silber (2009).) If an unobserved covariate doubled the odds of delivery

at a high hospital and quadrupled the odds of survival, then the one-sided 95% confidence

interval is A ≥ 23 babies were caused to survive because of delivery at a high hospital (or

technically, this the 95% interval at Γ = 1.25 which amplifies to (Λ,∆) = (2, 4)). The

ostensible effects of delivering at a high rather than low c-section hospital are not sensitive

to small departures from random assignment. So far, nothing has been said about the

effects of c-sections, only about the effects of delivering at hospitals that do more of them.

In Table 4, the high c-section hospitals did D = 396 − 194 = 202 more c-sections

than did the low c-section hospitals and 175 more babies survived. If the high-versus-

low grouping were a valid instrument for delivery by c-section, then the Wald estimator

would attribute the additional survivors at high c-section hospitals to the additional c-

sections at those hospitals, that is, ignoring sampling variability, 175 additional survivors

attributed to 202 additional c-sections. Assuming that the high-versus-low grouping is

a valid instrument (that is, assuming both (i) and (ii) in §1.1), the Wald estimate of the

effect of c-sections on the survival of babies who receive them because they were born

at high c-section hospitals is 175/202 = 0.87, an impressive ratio, not quite one more
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survivor for one more c-section. There is substantial sampling variability and possible

bias in assignment to high or low hospitals, and both must be addressed, the first using

a confidence statement, the second using sensitivity analysis. An interesting quantity is

A/D where A is the attributable effect in the previous paragraph and D is number of

additional c-sections at high c-section hospitals. The 95% confidence intervals for A/D

are A/D ≥ 132/202 = 0.65 for randomization inference (Γ = 1), A/D ≥ 66/202 = 0.33 for

an unobserved covariate that doubled the odds of delivering at a high c-section hospital

and doubled the odds of survival (Γ = 1.25), and A/D ≥ 23/202 = 0.11 for an unobserved

covariate that doubled the odds of delivering at a high c-section hospital and quadrupled

the odds of survival (Γ = 1.5). (In Appendix II, it is noted that A/D is the ratio of an

unobserved to an observed random variable and a confidence interval for it is discussed.)

The exclusion restriction would be false if high c-section hospitals were more aggressive

in many ways in their efforts to save babies of 23-24 weeks gestational age and if some

of the reduced mortality were due to other aspects of the care provided at high c-section

hospitals. Is the exclusion restriction compatible with other things we think we know?

2.5 A test of the exclusion restriction

As discussed in §2.1, the literature claims that there is no benefit from cesarean section for

older preterm babies, say 30-34 weeks gestational age. Presuming – that is, tentatively

and uncritically assuming – that claim to be true, we tested the exclusion restriction by

redoing the study for babies of 30-34 weeks gestational age. It is important to realize that

the literature is based on direct comparisons of babies delivered by c-section and babies

delivered vaginally, whereas we used an instrument, and there are other differences to be

discussed in a moment. So we are really asking whether different methodologies concur

in saying c-sections benefit babies at 23-24 weeks gestational age and not at 30-34 weeks

gestational age, or whether an aporia has been produced, in which it is not reasonable

to believe everyone’s methodology, in the literature and our own, is producing correct

conclusions about the effects of c-sections.

There were, of course, many more babies born at 30-34 weeks gestational age and the

mortality rate was much lower. We matched in a manner similar to that in §2.3 and the

Appendix, but because there were many more babies involved, we made more extensive

use of exact matching. This produced 23631 pairs of babies of 30-34 weeks gestational age

with covariate balance and instrument separation similar to that seen in Tables 1-3 and
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Figure 1 for the younger babies.

As before for babies of 23-24 weeks gestational age, the instrument worked for babies of

30-34 weeks gestational age, with high babies more likely than low babies to be delivered

by cesarean section. The mortality results appear in Table 6. After noting that the

mortality rates are very different in Tables 5 and 6, one notes also that high babies had lower

mortality rates than low babies in both tables, and the odds ratios are somewhat different

in magnitude but neither is small, 360/185 = 1.95 for 23-24 weeks and 1076/672 = 1.60 for

30-34 weeks. We also looked for a trend, and indeed the odds ratio is larger at 30 weeks

gestational age and smaller at 34 weeks. We redid the study again for babies of 25-29

weeks gestational age, finding mortality results between Tables 5 and 6.

So the claims in the literature and our results sound plausible and reasonable if taken

one at a time, but they cannot all be correct inferences about the effects of cesarean section

on mortality. The conclusion is an aporia, individually plausible claims that are mutually

incompatible. Of course, many things could have gone wrong, either in the literature

or in our study. In our study, the two assumptions required of an instrument might be

false. The literature implicitly assumes that if one takes account of observed covariates,

say by logit regression, then one has reproduced a randomized experiment (or formally,

they implicitly assume ignorable treatment assignment), and that assumption gets people

in no end of trouble in observational studies. Are there other possibilities?

Indeed, there is another possibility. The cited literature in §2.1 focused on neonatal

deaths, excluding fetal deaths, whereas we looked at all deaths. If a woman was pregnant

with a baby of 23-24 weeks gestational age and the pregnancy terminated at that time,

then we did not distinguish a death moments before birth and a death moments after

birth. Remember that a baby of 23-24 weeks gestational age will require substantial

medical assistance to remain alive. To our minds, the death of a baby of 23-24 weeks

gestational age is a biological event, whereas the classification of that death as before

or after birth may be little more than bookkeeping, perhaps an attempt to reduce the

emotional pain of an event that is typically distressing for the mother.

Because our findings differ from the literature, we separated fetal and neonatal deaths,

as shown in Tables 7 and 8. Consider what Tables 7 and 8 would look like if one removed

all pairs with at least one fetal death, that is, removed the first row and first column of

each table. The remaining babies would be either alive or neonatal deaths, the outcomes

studied in the existing literature. Indeed, the resulting tables would then agree with the

existing literature, in that c-sections would look beneficial in Table 7 but not in Table 8.
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By contrast, including fetal deaths, c-sections look beneficial in both tables. Arguably, a

death of a fetus of 23-24 weeks gestational age is a death of an extremely premature baby,

a biological event, whereas the classification of that death into a fetal death or a neonatal

death is partly a style of practice and a manner of speaking. Arguably, fetal deaths should

not be excluded from all deaths, as they were not excluded in Tables 5 and 6.

The available evidence is aporetic. Each part looks plausible on its own but the

parts are mutually inconsistent. Something has to give, but it is less than clear what

that something should be. The literature finds a benefit from c-sections at 23-24 weeks

gestational age but not at 30-34 weeks gestational age. The literature makes no effort

to address unmeasured biases in the selection of individual babies for delivery by cesarean

section, though biases at the individual level are at least plausible, perhaps more plausible

than not. In contrast, our analysis uses an instrument to avoid selection biases operating

at the level of individual babies, using the frequency of c-sections among older babies at

a hospital as an instrument for c-sections among babies of 23-23 weeks gestational age.

Hospitals with higher frequencies of c-sections have somewhat lower mortality, and this

difference is not sensitive to small biases of selection into high or low c-section hospitals. By

virtue of assuming the exclusion restriction, the Wald estimator attributes higher survival

to higher rates of c-sections, producing a point estimate of 87%, and that seems implausibly

large – that is, 87% of c-sections save babies who would otherwise have died – however,

confidence intervals include substantially smaller effects. The exclusion restriction could

easily be false here if hospitals that do more c-sections also are more aggressive in other

ways in their treatment of extremely premature infants – the exclusion restriction would

wrongly attribute the effects of those other efforts to c-sections. Our results would look

much more like the existing literature if we followed the literature in ignoring fetal deaths at

23-24 weeks gestational age, counting only neonatal deaths at 23-24 weeks gestational age,

but we worry that in many cases the distinction between a fetal death and a neonatal death

at 23-24 weeks gestational age is a distinction without much of a difference. The element

that seems least ambiguous in all this is that hospitals that do more c-sections have lower

total mortality at 23-24 weeks gestational age, a difference that is not easily attributed

to small biases in selection of mothers into hospitals, although it could conceivably be

explained by moderately large biases. Whether this difference is caused by c-sections or

by something else these hospitals are doing is not as clear.
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3 Summary

We have suggested that the assumptions of the instrumental variable argument are often

testable providing an aporia is seen as an acceptable conclusion. An aporia is a collection

of individually plausible but mutually incompatible propositions. An aporia is an advance

in understanding, albeit an uncomfortable one. In the example, the result of testing the

exclusion restriction is a heightened concern that the exclusion restriction may be false, and

the IV analysis may be wrong, but also a heightened concern that some of the things we

think we know from the literature, some of the things we assumed in testing the exclusion

restriction, may themselves be false.

Appendix I: A new bipartite matching algorithm for strengthening an instru-
mental variable

Following Baiocchi et al. (2010) and Zubizarreta et al. (2013), we used matching to

strengthen the instrumental variable while balancing observed covariates. However, we

changed, simplified, and in some contexts improved, a key element. These two papers both

took a single population, discarded part of the population, split the remainder into pairs,

where the pairs balance covariates while being far apart on the instrument. Discarding a

middle portion, an ambiguous portion, of the population makes the instrument stronger,

improving its design sensitivity, making the study less sensitive to bias from nonrandom

assignment of encouragement; see Small and Rosenbaum (2008). Traditionally, splitting

a single population into pairs is called by the awkward name “nonbipartite matching”

which means “not two parts.” The history of the awkward name involves the fact that

optimal two-part matching (e.g., treatment versus control matching), so called optimal

bipartite matching, was studied and solved first; see Korte and Vygen (2008) for a textbook

discussion of both problems with comprehensive references. Baiocchi et al. (2010) used an

algorithm and Fortran code for optimal nonbipartite matching created by Derigs (1988), as

implemented in Lu et al.’s (2011) R package nbpmatching; it minimizes the total distance

within pairs formed from a single population, discarding a portion of the population using

a technical trick called “sinks”. Zubizarreta et al. (2013) used integer programming,

specifically Zubizarreta’s (2012) mipmatch package, to impose additional linear constraints

on the nonbipartite match, such as requiring nominal covariates to be perfectly balanced

or requiring means of continuous covariates to be close. Also, Zubizarreta et al. (2013)
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changed the optimized objective function along the lines suggested in Rosenbaum (2012),

so as to optimize the number of individuals discarded. A feature of the nonbipartite

approach is that individual pairs are far apart on the instrument, but the high baby in one

pair may be lower on the instrument than the low baby in some other pair. Depending

upon the nature of the instrument and the covariates, that feature may or may not be

reasonable. It might be reasonable if the meaning of the instrument changed with the

levels of the covariate. In the current study, with an instrument defined in terms of a

hospital’s rate of use of c-sections in older babies, this feature did not seem reasonable.

We wanted each and every baby in the high group to have a higher value of the in-

strument than each and every baby in the low group. This change was implemented in a

simple way using bipartite matching. We cut the population into three groups based on

the value of the instrument, V , where the middle group, 0.29 ≤ V ≤ 0.31 contained 10%

of the population and was discarded. Write {α1, . . . , αh, . . . , αH} for the H remaining

babies in the high group and {β1, . . . , β`, . . . , βL} for the L remaining babies in the low
group, noting that Vαh > Vβ` for every h, `. We then matched babies in the high group

to babies in the low group to be close in terms of a covariate distance, δh`, measuring how

similar baby αh and baby β` were in terms of covariates, and far apart on the instrument,

with δh` = ∞ if Vαh − Vβ` < ω for an ω > 0. The covariate distance combined a robust

Mahalanobis distance for covariates with δh` =∞ for mismatches on the variables in Table

1. Write ah` = 1 if baby αh in the high group is paired with baby β` in the low group,

ah` = 0 otherwise, so that we require ah` ∈ {0, 1},
∑H

i=1 ai` ≤ 1,
∑L

j=1 ahj ≤ 1, for each

h, `. In principle, one could simply minimize the total distance within matched pairs,∑H
h=1

∑L
`=1 ah` δh`, subject to

∑H
h=1

∑L
`=1 ah` = min (H,L), and this could be done using

the optimal assignment algorithm – e.g., Bertsekas’ (1981) auction algorithm as made

available in the pairmatch function of Hansen’s (2007) optmatch package in R. Alterna-

tively, one could make ω larger, as we did, to further strengthen the instrument, discarding

some babies to achieve this more stringent objective. This can be done using the same

software for the assignment algorithm without constraining
∑H

h=1

∑L
`=1 ah` and instead

minimizing
∑H

h=1

∑L
`=1 ah` δh` − λ

∑H
h=1

∑L
`=1 ah` for specified λ > 0, and this determines

an optimal number of babies to discard; see Rosenbaum (2012) for extensive specifics.

As in Zubizarreta (2012) and Zubizarreta et al. (2013), we used integer programming,

not the optimal assignment algorithm, to minimize
∑H

h=1

∑L
`=1 ah` δh` − λ

∑H
h=1

∑L
`=1 ah`

but with additional linear constraints. As in these references, these added constraints

forced the fine balance in Table 2 and the close mean match seen in Table 3. Moreover,
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we added a new constraint to further strengthen the instrument. Setting δh` = ∞ if

Vαh−Vβ` < ω forces each matched pair to differ by≥ ω in terms of the instrument. The new
additional constraint forced the mean difference in the instrument V to differ by a larger

number, Ω > ω, so every pair meets the minimum requirement of ω, but on average a larger

difference of Ω is achieved. The new constraint was
∑H

h=1

∑L
`=1 ah`

(
Vαh − Vβ` − Ω

)
> 0.

Appendix II: Confidence intervals and sensitivity analyses for A/D

Section 2.4 reported confidence intervals for ratios of survival effects to differences in the

frequency of use of c-sections. These intervals are new but are a direct extension of

an existing method. This appendix describes the new method and briefly indicates its

justification. There are I matched pairs, i = 1, . . . , I, of two subjects, j = 1, 2, one

encouraged, Zij = 1, the other not, Zij = 0, so Zi1 +Zi2 = 1 for each i. In §2.3, there are

I = 1489 pairs of two babies, one at a high c-section hospital, Zij = 1, the other at a low

c-section hospital, Zij = 0. Pairs were matched for observed covariates xij , so xi1 = xi2 for

each i, but the matching may have failed to control an unobserved covariate uij , so possibly

ui1 6= ui2 for many or all i. Baby ij has two potential binary responses (rT ij , rCij), one

rT ij if encouraged with Zij = 1, the other rCij if unencouraged with Zij = 0. In §2.4,

rT ij = 1 if baby ij would survive at the high c-section hospital in the ith pair, rT ij = 0

otherwise, and rCij = 1 if baby ij would survive at the low c-section hospital in the ith pair,

rCij = 0, otherwise. Fisher’s (1935) sharp null hypothesis of no treatment effect asserts

H0 : rT ij = rCij for all babies ij – in words, switching from a low c-section hospital to

a high c-section hospital does not change any baby’s survival. In a randomized paired

experiment with binary response, McNemar’s test is the randomization test of Fisher’s H0.

Each baby is observed under one treatment, so the effect of the treatment, rT ij − rCij ,
is not observed for any baby; see Neyman (1923), Welch (1937) and Rubin (1974). In

constructing one-sided tests and confidence intervals, we assume rT ij ≥ rCij ; however,

two sided inferences are straightforwardly obtained by combining two one-sided inferences

in opposing directions. An important unobservable quantity in §2.4 is the attributable

effect A =
∑I

i=1

∑2
j=1 Zij (rT ij − rCij); it is the unobservable number of babies caused

to survive by virtue of delivering at the high c-section hospital. For inference about A

we follow Angrist, Imbens and Rubin (1996) in additionally assuming rT ij ≥ rCij , so a

23-24 week baby who would survive with the stress of a vaginal delivery, rCij = 1, would

also survive with the reduced stress of a cesarean delivery, rT ij = 1. Under Fisher’s null
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hypothesis of no effect, every rT ij − rCij = 0, so A = 0 no matter how treatments Zij are

assigned.

Similarly, (dT ij , dCij) is the binary indicator of delivery by cesarean section or vaginal

delivery (1 for c-section, 0 for vaginal delivery) at the high and low c-section hospital. Baby

ij is said to be a complier if encouragement shifts the baby’s delivery in the encouraged

direction, that is, if 1 = dT ij > dCij = 0, so this baby would be delivered by c-section

at the high c-section hospital in pair i and would be delivered vaginally at the low c-

section hospital in pair i. Baby ij is said to be an always taker if dT ij = dCij = 1, a

never taker if dT ij = dCij = 0, and a defier if 0 = dT ij < dCij = 1, and we follow the

usual practice of assuming there are no defiers, dT ij ≥ dCij , so a baby who would be

delivered by c-section at a low c-section hospital would also be delivered by c-section at

a high c-section hospital; see Angrist, et al. (1996) for discussion of this terminology.

Write F = {(rT ij , rCij , dT ij , dCij ,xij , uij) , i = 1, . . . , I, j = 1, 2} and Z for the event that
Zi1 + Zi2 = 1 for each i. In a randomized paired encouragement design, encouragement

Zij is assigned by Pr (Zi1 = 1 | F , Z) = 1/2, Zi2 = 1 − Zi1, and assignments in distinct
pairs are independent. A simple model for sensitivity analysis in observational studies

has 1/ (1 + Γ) ≤ Pr (Zi1 = 1 | F , Z) ≤ Γ/ (1 + Γ) for specified Γ ≥ 1, Zi2 = 1 − Zi1, with
independent assignments in distinct pairs, so randomization inference corresponds with

Γ = 1; see Rosenbaum (1987; 2002, §4) for discussion of this method of sensitivity analysis,

and for other methods, see Cornfield et al. (1959), Rosenbaum and Rubin (1983), Gastwirth

(1992), Marcus (1997), Small (2007), Yu and Gastwirth (2005), Hosman et al. (2010), and

Schwartz et al. (2012). Write Rij for the baby ij’s observed survival response, Rij =

Zij rT ij + (1− Zij) rCij , and Dij for the observed delivery, Dij = Zij dT ij + (1− Zij) dCij .
Table 9 renumbers the two babies in a pair so Zi1 = 1, Zi2 = 0, and then records the joint

distribution of (Ri1, Di1, Ri2, Di2) = (rT i1, dT i1, rCi2, dCi2).

As I →∞ in a randomized encouragement design, for fixed α, 0 < α < 1, conventionally

α = 0.05, it is possible to find an observed random variable Ã such that Pr
(
A ≥ Ã

∣∣∣ F , Z)
tends to a probability ≥ 1−α, so that A ≥ Ã holds with 95% confidence, that is, the unob-
served attributable effect A is at least equal to Ã except in at most 100α% of experiments;

see Rosenbaum (2002) for specifics and Weiss (1955) for general discussion of confidence

sets for unobserved random variables in terms of observed random variables. Moreover,

in a sensitivity analysis in an observational study, if the bias in treatment assignment is at

most Γ ≥ 1, then there is an observed random variable ÃΓ such that Pr
(
A ≥ ÃΓ

∣∣∣ F , Z)
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tends to a probability ≥ 1− α as I →∞; again, see Rosenbaum (2002).

The exclusion restriction says that encouragement that does not change the delivery

(dT ij , dCij) does not change the response (rT ij , rCij), that is, rT ij = rCij whenever dT ij =

dCij . Stated informally, the exclusion restriction says that if high c-section hospitals

sometimes save the lives of babies, then they do it by performing c-sections not by doing

something else. The exclusion restriction could easily be false: high c-section hospital

could be more aggressive in many ways in trying to save the lives of babies of 23-24

weeks gestational age, and c-sections may produce only a part or even none of the survival

effect of generally more aggressive treatment. The exclusion restriction places a series of

constraints on the relationship between the observed Table 9 and the unobservable table

recording (rCi1, dCi1, rCi2, dCi2). The unobserved table is called the pivot table. Consider,

for example, the 44 pairs in the first row and first column of the observed Table 9. Because

the exclusion restriction says rT ij = rCij whenever dT ij = dCij , those 44 pairs could be in

the same place in the pivot table or some could move to the third and fourth row of the

first column, but none could move to the second row. In fact, the only differences that

can exist between the observed and pivot tables are movements from the first row to the

third or fourth row in the same column. Under the exclusion restriction, A is the total

number of pairs that are in the first row of the observed table and in the fourth row of the

pivot table.

Let bij = 1 if rT ij > rCij and dT ij > dCij , and bi = 0 otherwise. If bij = 1,

then baby ij would survive receiving a c-section at the high c-section hospital in pair

i and would die without a c-section at the low c-section hospital in pair i. Using

the exclusion restriction, rT ij − bij (dT ij − dCij) = rCij , and the attributable effect is

A =
∑I

i=1

∑2
j=1 Zij (rT ij − rCij) =

∑I
i=1

∑2
j=1 Zijbij (dT ij − dCij). The mean difference

in survival is:

Tr =
1

I

I∑
i=1

2∑
j=1

ZijRij − (1− Zij)Rij =
1

I

I∑
i=1

2∑
j=1

Zij {rCij + bij (dT ij − dCij)} − (1− Zij) rCij

=
1

I

I∑
i=1

2∑
j=1

(2Zij − 1) rCij +
1

I

I∑
i=1

2∑
j=1

Zijbij (dT ij − dCij)

=
1

I

I∑
i=1

2∑
j=1

(2Zij − 1) rCij +
A

I
.
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In a randomized paired encouragement experiment, E (Zij = 1 | F , Z) = 1/2 so that

E

 1

I

I∑
i=1

2∑
j=1

(2Zij − 1) rCij

∣∣∣∣∣∣ F , Z
 = 0, and E

(
A

I

∣∣∣∣ F , Z) =
1

2I

I∑
i=1

2∑
j=1

(rT ij − rCij) = τ , say,

so that Tr and A/I are both unbiased for the average effect of encouragement, τ ; how-

ever, departures from random assignment (i.e., failures of (i) in §1.1) can introduce bias.

The observable random variable Td = 1
I

∑I
i=1

∑2
j=1 ZijDij − (1− Zij)Dij is the difference

between the number of c-sections performed by the high and low c-section hospitals; in

Table 4 it is Td = 396− 194 = 202. It is a descriptive, not a causal quantity: it describes

what happened, not what would happen. The Wald estimator is Tr/Td. For the Wald

estimate to work, encouragement must increase the frequency of what is encouraged so

that Td converges in probability to a strictly positive quantity δ > 0 as I → ∞, and
that is assumed here; therefore, with high probability, high c-section hospitals have done

more c-sections among the I pairs than low c-section hospitals for suffi ciently large I, and

Pr (Td ≤ 0 | F , Z) is negligible for large I. The quantity

W =

∑I
i=1

∑2
j=1 Zijbij (dT ij − dCij)∑I

i=1

∑2
j=1 ZijDij − (1− Zij)Dij

=
A∑I

i=1

∑2
j=1 ZijDij − (1− Zij)Dij

=
A/I

Td

is the number of babies caused to survive by a c-section in a high c-section hospital as a

fraction of the number of additional c-sections performed by high c-section hospitals. Now,

W is the ratio of an unobservable random variable A/I, a causal quantity, and an observed

random variable Td, a descriptive quantity, so W is unobservable. The quantity W is

directly interpretable on its own; however, it might reasonably be regarded as the intended

finite sample estimand of the Wald estimator, in the sense that Tr/Td andW both converge

in probability as I →∞ to the average effect of c-sections on compliers if encouragement is

randomized within pairs; see Angirst et al. (1996) for discussion of this estimand. Given

the large sample confidence interval, A ≥ Ã Γ with Pr
{
A ≥ Ã Γ

∣∣∣ F , Z} ≥ 1 − α for

suffi ciently large I, and continuing to regard Pr (Td ≤ 0 | F , Z) is negligible for large I, we

have Pr
{
A/Td ≥ Ã Γ/Td

∣∣∣ F , Z} = Pr
{
W ≥ Ã Γ/Td

∣∣∣ F , Z} ≥ 1−α for suffi ciently large
I. The confidence interval W ≥ Ã Γ/Td was reported in §2.4.
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Table 1: Three variables were exactly matched in forming 1489 pairs of two babies with
gestational ages 23-24 weeks, namely gestational age (23 or 24 weeks), the capability or
level of the neonatal intensive care unit (NICU), and the year of birth (1993-2005). The
table gives counts of babies, and these are identical in the high and low instrument group
defined by the estimated probability of a c-section at a given hospital.

Instrument Group
High Low

Gestational age in weeks
23 weeks 726 726
24 weeks 763 763

NICU Level
1 333 333
2 56 56
3A 126 126
3B 480 480
3C 438 438
3D 15 15
FC 41 41

Year of birth
1993 30 30
1994 47 47
1995 90 90
1996 89 89
1997 104 104
1998 124 124
1999 133 133
2000 132 132
2001 129 129
2002 166 166
2003 188 188
2004 132 132
2005 125 125
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Table 2: Five variables were finely balanced in forming 1489 pairs of two babies with gesta-
tional ages 23-24 weeks, meaning that these variables had the same marginal distributions
in the high and low instrument groups, so the counts are identical. The table gives counts
of babies, and these are identical in the high and low instrument group defined by the
estimated probability of a c-section at a given hospital.

Instrument Group
High Low

Mother had hypertension during pregnancy
Yes 75 75
No 1437 1437
Oligohydramnios

Yes 52 52
No 1308 1308

Mother’s race/ethnicity
Non-Hispanic White 551 551
Non-Hispanic Black 305 305

Hispanic 478 478
Non-Hispanic Asian/P. Islander 87 87

Other 36 36
Missing 32 32
Mother’s education

8th grade or less 128 128
Some high school 249 249

High school graduate 473 473
Some college 303 303

College graduate 164 164
More than college (MS, PhD) 108 108

Missing 64 64
Mother’s health insurance

Fee for service 116 116
HMO 647 647

Federal/State 662 662
Other 20 20

Uninsured 42 42
Missing 2 2
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Table 3: Covariates balanced in mean only and forced imbalance in mean in the instrument
in forming 1489 pairs of two babies with gestational ages 23-24 weeks. The table gives the
mean of each covariate or instrument before and after matching, together with the difference
in means divided by the standard deviation before matching (S-Dif). For Yes/No = Y/N
variables, 1=Yes, 0=No. RAHR = risk adjusted hospital rate.

Before matching After matching
Mean S-Dif Mean S-Dif

High Low High Low
Birth weight (grams) 591.12 577.25 0.16 587.08 580.31 0.08
Hypertension (Y/N) 0.07 0.04 0.12 0.05 0.05 0.00
Chorioamnionitis (Y/N) 0.28 0.26 0.04 0.27 0.26 0.02
RAHR of thrombosis 0.00 0.00 0.31 0.00 0.00 0.09
RAHR of wound infection 0.00 0.00 0.18 0.00 0.00 -0.05
Mother’s age (years) 28.15 26.89 0.19 27.69 27.61 0.01
Prenatal care visits (#) 7.04 5.89 0.27 6.52 6.32 0.05
Prenatal care missing (Y/N) 0.09 0.05 0.14 0.07 0.05 0.07
Parity 1.90 1.90 -0.00 1.91 1.77 0.09
Parity missing (Y/N) 0.01 0.01 0.02 0.01 0.01 0.03
Month prenatal care started 2.00 2.16 -0.14 2.00 2.12 -0.10
Month care started missing (Y/N) 0.08 0.04 0.20 0.06 0.04 0.09
Multiple delivery 1.27 1.19 0.15 1.22 1.18 0.09
Congenital (Y/N) 0.15 0.14 0.04 0.15 0.14 0.03
Placentation (Y/N) 0.23 0.20 0.07 0.22 0.20 0.04
Diabetes (Y/N) 0.03 0.03 0.00 0.03 0.03 -0.03
Pre-term labor (Y/N) 0.81 0.74 0.17 0.80 0.76 0.09
PROMM (Y/N) 0.35 0.28 0.15 0.33 0.30 0.08
Household median income ($) 45024 41435 0.21 44730 44848 -0.01
Income missing (Y/N) 0.00 0.00 0.03 0.00 0.00 0.00
Poor (????) 0.11 0.16 -0.10 0.15 0.16 -0.03
Hospital delivery volume (#) 2850 2903 -0.03 2568 2722 -0.09
Small for gestation age (Y/N) 0.09 0.12 -0.11 0.09 0.12 -0.09
C-sec. predicted prob. 0.38 0.23 2.56 0.40 0.22 3.12
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Table 4: C-sections in 1489 matched pairs of babies of 23-24 weeks gestational age. The
table counts pairs, not babies. As expected, c-section rates are higher in the high c-section
group.

Low Baby
High Baby C-section Other Total High Baby Rate
C-section 173 396 569 38.2%

Other 194 726 920 61.8%
Total 367 1122 1489

Low Baby Rate 24.6% 75.4% 100.0%

Table 5: Mortality in 1489 matched pairs of babies of 23-24 weeks gestational age. The
table counts pairs, not babies. Mortality rates are higher in the low c-section group.

Low Baby
High Baby Dead Alive Total High Baby Rate

Dead 786 185 971 65.2%
Alive 360 158 518 34.8%
Total 1146 343 1489

Low Baby Rate 77.0% 23.0% 100.0%

Table 6: Mortality in 23631 matched pairs of babies of 30-34 weeks gestational age. The
table counts pairs, not babies. Mortality rates are higher in the low c-section group.

Low Baby
High Baby Dead Alive Total High Baby Rate

Dead 108 672 780 3.3%
Alive 1076 21775 22851 96.7%
Total 1184 22447 23631

Low Baby Rate 5.0% 95.0% 100.0%
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Table 7: Mortality by type of death in 1489 matched pairs of babies of 23-24 weeks ges-
tational age. The table counts pairs, not babies. Mortality rates are higher in the low
c-section group.

Low Baby
High Baby Fetal Death Neonatal Death Alive Total High Baby Rate
Fetal Death 111 99 47 257 17.2%

Neonatal Death 220 356 138 714 48.0%
Alive 141 219 158 518 34.8%
Total 472 674 343 1489

Low Baby Rate 31.7% 45.3% 23.0% 100.0%

Table 8: Mortality by type of death in 23631 matched pairs of babies of 30-34 weeks
gestational age. The table counts pairs, not babies. Mortality rates are higher in the low
c-section group.

Low Baby
High Baby Fetal Death Neonatal Death Alive Total High Baby Rate
Fetal Death 64 6 298 368 1.6%

Neonatal Death 26 12 374 412 1.7%
Alive 692 384 21775 22851 96.7%
Total 782 402 22447 23631

Low Baby Rate 3.3% 1.7% 95.0% 100.0%
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Table 9: Mortality Rij and mode of delivery Dij (C = C-section, V = vaginal) in 1489
matched pairs of babies of 23-24 weeks gestational age. For the high baby with Zij = 1,
mortality is Rij = rT ij and delivery is Dij = dT ij , whereas for the low baby with Zij = 0,
mortality is Rij = rCij and delivery is Dij = dCij . To avoid notational ambiguity, in this
table j is changed so the first baby, j = 1, is the high baby. The table counts pairs, not
babies.

Low Baby, Zi2 = 0

C-Alive C-Dead V-Alive V-Dead
rCi2 = 0 rCi2 = 1 rCi2 = 0 rCi2 = 1

High Baby, Zi1 = 1 dCi2 = 1 dCi2 = 1 dCi2 = 0 dCij = 0

C-Alive, rT i1 = 0, dT i1 = 1 44 54 37 144
C-Dead, rT i1 = 1, dT i1 = 1 37 38 36 179
V-Alive, rT i1 = 0, dT i1 = 0 31 35 46 127
V-Dead rT i1 = 1, dT i1 = 0 47 81 65 488
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Figure 1: The match was intended to balance covariates and imbalance the instrument, and the boxplots 

depict this for three continuous covariates – mother’s age, birth weight, and number of prenatal visits – 

and for the continuous instrument – the estimated probability of a c‐section at the hospital predicted 

from c‐section rates for older babies. 
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